Amateurfunklehrgang Klasse A von E. Moltrecht, DJ4UF |
Lehrgang nach dem neuen Fragenkatalog vom 28.2.2007
Eine für den Amateurfunk wichtige Anwendung des Transistors als Verstärker ist der Oszillator. Ein Oszillator ist ein Schwingungserzeuger für sinusförmige Schwingungen, wie sie für den Sender in der Funktechnik gebraucht werden. Allerdings werden kommerzielle Sender nicht mehr mit solchen frei schwingenden Oszillatoren aufgebaut, sondern mit so genannten PLL-Schaltungen, wie sie in der Lektion 11 beschrieben werden. Übersicht
Der selektive Verstärker als HF-VerstärkerBetreibt man einen Transistor oder einen Operationsverstärker als Breitbandverstärker mit Widerständen und Kondensatoren zur Beschaltung (so genannter RC-Verstärker), wird man feststellen, dass es nicht ganz einfach ist, sehr hohe Frequenzen (z.B. über 1 MHz) zu verstärken. Die äußeren Kapazitäten (C1 in Bild 7-1) der Verstärkerbauelemente und der Schaltung bilden für hohe Frequenzen einen niedrigen Wechselstromwiderstand, eventuell sogar einen Kurzschluss.
Ersetzt man jedoch den Kollektorwiderstand RC des Breitbandverstärkers durch einen Parallelschwingkreis (Bild 7-1 B), kann die Schaltkapazität mit eingerechnet werden und der Schwingkreis hat bei seiner Resonanzfrequenz einen großen Widerstand und damit hohe Verstärkung. Allerdings hat er die hohe Verstärkung nur bei dieser Frequenz, bzw. entsprechend der Bandbreite in einem schmalen Frequenzbereich. Man nennt einen solchen Verstärker deshalb "Schmalbandverstärker" oder "selektiven Verstärker" oder "Resonanzverstärker". Die Resonanzfrequenz berechnet sich mit Hilfe der Thomsonschen Schwingkreisformel - wobei die Schaltkapazität einbezogen werden muss - und die Bandbreite mit Hilfe der Güte des Schwingkreises (siehe Lektion 4). Der Nachteil dieses selektiven Verstärkers ist, dass er bei Frequenzwechsel nachgestimmt werden muss, um wieder eine gute Verstärkung zu erzielen. Deshalb wird er im Kurzwellenbereich nicht mehr so gern verwendet, nur gelegentlich noch als so genannter "Preselektor" (selektiver Vorverstärker). Im UKW-Bereich setzt man ihn gern ein, wo man eine entsprechend hohe Bandbreite für das gesamte 2-m-Band erzielt. Der selektive Verstärker mit einem Parallelschwingkreis ist die Grundschaltung für einen LC-Oszillator.
Frequenz Durch Ändern von L oder C kann die Frequenz des Oszillators verändert werden. Prüfungsfrage
Kommentar: Aus der obigen Formel kann man erkennen, dass sich Frequenz und Kapazität umgekehrt proportional verhalten, weil die Kapazität unter dem Bruchstrich steht. Umgekehrt proportional bedeutet, dass die eine Größe sinkt, wenn die andere steigt und umgekehrt.
Prüfungsfrage
Prüfungsfrage
Die RückkopplungEin Oszillator ist ein Schwingungserzeuger. Im Gegensatz zu PLL-Systemen werden beim LC-Oszillator direkt sinusförmige Spannungen erzeugt. Elektrische Schwingungen erzeugt man auf elektronischem Wege durch Rückkopplung.
Führt man einen Teil der Ausgangsspannung eines Verstärkers auf den Eingang zurück, bezeichnet man dies als Rückkopplung (Bild 7-3). Man unterscheidet zwei Arten der Rückkopplung. Bei der Gegenkopplung ist die zugeführte Spannung in der Phasenlage entgegengesetzt zur Eingangsspannung. Dadurch heben sich die Spannungen am Eingang teilweise auf und die Gesamtverstärkung geht zurück. Gleichzeitig nehmen auch die in diesem Verstärker erzeugten Verzerrungen ab. Die Gegenkopplung wird angewendet, um im NF-Bereich eine Klangverbesserung und im HF-Bereich eine größere Bandbreite zu erreichen (Breitbandverstärker). Wird die über K (Bild 7-3) zurück gekoppelte Spannung gleichphasig (jges = 360° oder 0°) an den Eingang geführt, addieren sich die Spannungen. Die Verstärkung wird erhöht. Man nennt diese Art der Rückkopplung Mitkopplung. Die Mitkopplung hat man früher in billigen Empfängern (Rückkopplungsempfänger, Einkreiser usw.) zur Trennschärfeverbesserung eingesetzt. Der Nachteil der vergrößerten Unstabilität des Verstärkungsfaktors und des Arbeitspunktes hat den Einsatz der Mitkopplung für diesen Zweck stark verdrängt. Ist die Mitkopplungsspannung genau so groß wie die Eingangsspannung, setzen selbsttätig Schwingungen ein. In diesem Fall ist der Rückkopplungsfaktor K gleich dem Kehrwert des Verstärkungsfaktors v. Man nennt dies Schwingbedingung, also die Bedingung, wenn Schwingungen einsetzen.
Ein Beispiel mag dies verdeutlichen. Führt man bei einem Verstärker mit v = 100 nur 1/100 der Ausgangsspannung von z.B. 100 mV, also 1 mV, auf den Eingang zurück, wird die Spannung wieder auf 100 mV verstärkt. Der Vorgang hält sich aufrecht. Ist der Verstärkungsfaktor etwas größer als der Kehrwert des Rückkopplungsfaktors, braucht keine Spannung von außen zugeführt zu werden. Eine kleine zufällige Spannungsänderung beim Einschalten bewirkt, dass die Ausgangsspannung immer mehr ansteigt bis der Verstärker begrenzt. Diesen Fall, bei dem selbsttätig Schwingungen einsetzen, nennt man Anschwingen oder Entstehung von ungedämpften Schwingungen. Es gilt die Anschwingbedingung (Siehe Formel auf dieser Seite links unten!). Eine gute Zusammenfassung findet man in der richtigen Antwort der folgenden Prüfungsfrage. Prüfungsfrage
Der LC-OszillatorBei Hochfrequenzoszillatoren verwendet man meistens selektive Verstärker, die mit LC-Schwingkreisen arbeiten. Bei diesen LC-Sinusoszillatoren gibt es drei Grundprinzipien, die sich in der Art der Erzeugung der Rückkopplung unterscheiden.
Fast alle LC-Oszillatoren lassen sich auf die im Bild 7-4 dargestellten Prinzipien zurückführen. Beim Meißner-Oszillator wird die Rückkopplung über transformatorische Kopplung (induktiv) erreicht. Bei der Hartley- und der Colpitts-Schaltung haben wir es mit so genannten Dreipunktschaltungen zu tun, bei der die Rückkopplung über Anzapfungen an der Spule (Hartley) oder am Kondensator (Colpitts) erfolgt. Merkhilfe: H = Henry (Induktivität), C = Kapazität.
Der Meißner-OszillatorJeder Oszillator kann in einer der Transistorgrundschaltungen Emitter-, Basis- oder Kollektorschaltung betrieben werden. Im Bild 7-5 ist dies am Beispiel der Meißner-Schaltung dargestellt. Bei der Emitterschaltung (Bild 7-5 A) muss die Phasendrehung des Transistorverstärkers durch den entgegen gesetzten Wickelsinn des Transformators aufgehoben werden. Die Punkte deuten den Wickelsinn an. Die mit den Punkten gekennzeichneten Stellen haben zu denselben Zeiten gleiche Phasenlage. Die Ausgangsspannung kann kapazitiv abgenommen werden. Es ist auch eine transformatorische Auskopplung durch eine weitere Zusatzwicklung möglich. Bei der Basisschaltung (Bild 7-5 B) ist die Basis über einen Kondensator an Masse gelegt. Bei der Kollektorschaltung muss vom Emitter zur Basis zurückgekoppelt werden. Wegen der Spannungsverstärkung kleiner 1 muss bei der Kollektorschaltung das Übersetzungsverhältnis des Transformators so bemessen sein, dass die Basiswicklung mehr Windungen erhält. Der Rückkopplungsfaktor K wird bei allen drei Schaltungen durch das Übersetzungsverhältnis des Trafos bestimmt. Die Widerstände R1 und R2 bestimmen den Arbeitspunkt und damit die Verstärkung des Transistors. Die Widerstände und Kondensatoren in der Emitterleitung dienen der Arbeitspunktstabilisierung. Mit dem Widerstand Rk in der Rückkoppelleitung kann der Rückkopplungsfaktor eingestellt werden. Prüfungsfrage
Kommentar: Oberton gibt es nur bei Quarzoszillatoren.
Dreipunkt-SchaltungenDie Meißner-Schaltung arbeitet immer mit einem Transformator im Rückkopplungszweig. Die beiden anderen Grundschaltungen weichen nur insoweit von der Meißner-Schaltung ab, als dass die Rückkopplungsspannung an Anzapfungen abgegriffen und die Wechselspannung über Koppelkondensatoren der entsprechenden Elektrode zurückgeführt wird. Beim Hartley-Oszillator (Bild 7-6) wird die Rückkopplungsspannung an einer Spulenanzapfung abgegriffen. Je nach Transistor-Grundschaltung (Emitter-, Basis-, Kollektorschaltung) muss die Betriebsspannung anders zugeführt werden. Bei der Emitterschaltung ist darauf zu achten, dass die Betriebsspannung an die Anzapfung der Spule gelegt wird, damit Kollektor und Basis an den entgegengesetzten Seiten des Schwingkreises angeschlossen werden können, um die Phasendrehung von 180° des Transistorverstärkers wieder auszugleichen.
Prüfungsfrage
Kommentar: Anzapfug an der Spule -> induktive Dreipunktschaltung
Prüfungsfrage
Der Colpitts-Oszillator unterscheidet sich vom Hartley-Oszillator nur dadurch, dass die Anzapfung nicht an der Spule sondern am Kondensator erfolgt. Eine Anzapfung am Kondensator gibt es normalerweise nicht; deshalb wird der Schwingkreiskondensator durch zwei in Reihe geschaltete Kondensatoren ersetzt. Die Gleichstromverbindung muss deswegen durch einen parallel geschalteten Widerstand oder eine Hochfrequenzdrossel hergestellt werden. Selbstverständlich können alle Oszillatorschaltungen auch mit anderen Verstärkerbauelementen wie Feldeffekttransistor oder Operationsverstärker aufgebaut werden. Es wird sich lediglich die Erzeugung der Vorspannung für den Arbeitspunkt des Bauelementes ändern. Beim bipolaren Transistor ist dafür immer der Basis-Spannungsteiler R1 / R2 verantwortlich.
Prüfungsfrage
Kommentar: C3/C4 bewirken die kapazitive Rückkopplung.
Der QuarzoszillatorBild 7-10: Quarzoszillatorschaltungen, a) kapazitive Rückkopplung (Dreipunktschaltung), Parallelresonanz, b) Induktive Rückkopplung, Serienresonanz In seinem elektrischen Verhalten ist der Quarz mit einem Schwingkreis vergleichbar (Siehe Lektion 4, Abschnitt Quarz!). Er kann jedoch eine etwa tausendfach höhere Güte erreichen. Er hat eine hohe Frequenzstabilität. Deshalb wird ein Quarz als Ersatz für einen Schwingkreis bei solchen Oszillatoren eingesetzt, bei denen es auf gute Frequenzstabilität ankommt. Prüfungsfrage
Quarzoszillatoren können in jeder Oszillator-Grundschaltung ausgeführt werden. Der Quarz wird dann entweder für den Schwingkreis eingesetzt (Parallelresonanz), wie dies in Bild 7-10 a beim Colpitts-Oszillator zu sehen ist. Oder der Quarz wird in den Mitkopplungszweig in Reihe geschaltet (Reihenresonanz). Ein Quarz kann als Parallelkreis oder als Reihenkreis eingesetzt werden. Allerdings weichen die Resonanzfrequenzen in Parallel- oder Reihenresonanz geringfügig voneinander ab (siehe Lektion 4). Bei dieser Schaltung Bild 7-10 b wird nur eine solche HF-Spannung zurückgekoppelt, für die der Quarz in Serienresonanz einen sehr kleinen Widerstand darstellt. Prüfungsfrage
Prüfungsfrage
Bei Quarzoszillatoren mit dem Quarz in Serienschaltung kann der Schwingkreis auf eine Oberwelle der Quarzfrequenz abgestimmt werden. Beispielsweise hat der Quarz eine Grundfrequenz von 4 MHz und der Schwingkreis wird auf 12 MHz eingestellt. Man nennt diese Schaltung dann Oberton-Quarzoszillator. Prüfungsfrage
Kommentar: Basisschaltung, weil Basis über C5 an Masse.
Praktische Oszillatorschaltung
Bei einem schlecht spannungsstabilisierten Oszillator kann es beim Tasten in Telegrafie zu Frequenzverwerfungen kommen, die sich wie das Chirpen eines Spatzes anhören. Man nennt diese Frequenzverwerfung deshalb Chirp. Prüfungsfrage
Hochfrequenz-Leistungsverstärker (PA)Ein Oszillator plus Pufferstufe liefert Hochfrequenzleistungen im Bereich von Milliwatt. Diese Leistung muss verstärkt werden. Dabei handelt es sich um relativ hohe Frequenzen und eine Leistungsverstärkung ist nicht so einfach wie im Niederfrequenzbereich zu erreichen. Man verstärkt die vorhandene Leistung in einzelnen Treiberstufen, die selten mehr als zehnfache Leistungsverstärkung (10 dB) haben. Die letzte Stufe heißt Endstufe (PA, power amplifier). Die Senderendstufe soll die gewünschte HF-Leistung an die Antenne abgeben. Sie soll bei einem möglichst hohen Wirkungsgrad die zugeführte Gleichstromleistung in Hochfrequenzleistung umwandeln.
Der WirkungsgradEin HF-Verstärker (PA) kann am Ausgang mehr Leistung abgeben, als ihm am Eingang zugeführt wird. Er hat eine Leistungsverstärkung. Woher kommt diese Leistung? Natürlich wird diese Leistung nicht „gewonnen“. Eine Verstärkung entsteht dadurch, dass man mit einem kleinen Strom einen großen Strom steuert. Verstärkung ist also eine Steuerwirkung. Damit Wechselstromleistung (Hochfrequenz) entstehen kann, muss Gleichstromleistung zugeführt werden. Von dieser zugeführten Gleichstromleistung wird nur ein Teil in Wechselstromleistung umgewandelt. Der Rest der zugeführten Leistung fällt als Verlustleistung (Wärme) an. Unter Wirkungsgrad h (sprich: eta) bei Hochfrequenz-Leistungsverstärkern versteht man das Verhältnis der abgegebenen Hochfrequenzleistung zur zugeführten Gleichstromleistung. Der Wirkungsgrad wird meistens in Prozent angegeben. Dem Faktor 1 entspricht 100%. Je höher die Ausgangsleistung sein soll, desto mehr muss auf einen guten Wirkungsgrad geachtet werden.
Lösung: Wie aus Bild 7-13 zu erkennen ist, gibt die PA 100 W HF-Leistung ab und es werden 167 W Gleichstromleistung zugeführt.
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Verstärker-BetriebsartenNormalerweise arbeiten Verstärker entweder mit rein positiven oder rein negativen Versorgungsspannungen. Vom Nullpunkt aus können sie dann nur positive oder nur negative Spannungen verarbeiten (verstärken). Eine zu verstärkende Signalspannung hat meistens aber eine negative und eine positive Halbwelle. Deshalb verstärkt man Wechselspannungen so, dass man als Arbeitspunkt einen Mittelwert auswählt und von diesem Mittelwert aus die Spannung größer oder kleiner werden lässt. Diese Wahl des Arbeitspunktes in der Mitte der
Steuerkennlinie des Verstärker-Bauelementes nennt man A-Betrieb oder
man sagt, es ist ein Klasse-A-Verstärker. Der Klasse-A-Verstärker hat
den Vorteil, dass er sehr wenige Verzerrungen produziert. Er wird in der
NF-Technik gern eingesetzt, wenn neuerdings auch hier mal wieder Röhren
verwendet werden. In der Hochfrequenztechnik wird diese Betriebsart bei
HF-Vorverstärkern, Treibern (Pufferstufen) verwendet. Den Arbeitspunkt im
unteren Knickpunkt der Steuerkennlinie heißt B-Betrieb, mit Vorspannung in
Sperrrichtung Prüfungsfrage
Klasse ABei Leistungsverstärkern hat die Wahl des Arbeitspunktes in der Mitte der Steuerkennlinie einen großen Nachteil. Es wird nämlich bereits ohne Signal ein relativ hoher, mittlerer Strom fließen und damit das Verstärker-Bauelement (Transistor, FET, Röhre) stark erwärmen. Es entstehen Leerlaufverluste und der Wirkungsgrad wird schlecht. Man rechnet mit einem Wirkungsgrad von zirka 40 % bei Vollaussteuerung. Prüfungsfrage
Prüfungsfrage
Klasse BBeim B-Betrieb fließt ohne Ansteuerung kein Strom (Siehe Bild 7-14). Dies hat zur Folge, dass nur positive Halbwellen des Signals verstärkt werden können und damit große Verzerrungen entstehen. Man kann aber zwei Transistoren so gegeneinander schalten, dass ein Transistor die positive und der andere die negative Halbwelle verstärkt (Gegentaktbetrieb). Mit zwei Transistoren im B-Betrieb als Leistungsverstärker (siehe Bild 7-18) erhält man einen guten Wirkungsgrad (theoretisch bis 78,5 %) bei geringen Verzerrungen, bei etwas höheren Verzerrungen bis zu 80%. Prüfungsfrage
Klasse CDen höchsten Wirkungsgrad (bis 87,5 %) erreicht man beim Verstärker der Klasse C. Hierbei werden kleine Signalspannungen noch nicht verstärkt sondern nur die großen Signalspitzen. Dieser Verstärker kann in der Digitaltechnik verwendet werden und für die Verstärkung von Hochfrequenzsignalen bei Frequenzmodulation oder Telegrafiesendern, da die Information bei FM in der Frequenzänderung und nicht in der Amplitude steckt und weil bei Morsetelegrafie sowieso nur ein- und ausgeschaltet wird. Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Hochfrequenzverstärker im C-Betrieb arbeiten mit einem Parallelschwingkreis als Arbeitswiderstand. Der Parallelschwingkreis wird durch die entstehenden Stromimpulse angestoßen und schwingt dann selbständig weiter. Er ergänzt sozusagen die fehlende Halbwelle und macht aus den Impulsen wieder einen Sinus. Ohne den Schwingkreis würden wegen der Verzerrung der Sinusform starke Oberwellen entstehen, die zu Störungen führen können.
Klasse A-BPrüfungsfrage
Es gibt auch noch den D-Betrieb. Dabei wird die Impulsbreitensteuerung angewendet. Dies ist aber kein Thema für den Amateurfunk.
HF-Verstärker-Schaltungen
Die höchste Leistungsverstärkung erreicht man mit der Emitterschaltung. Allerdings hat eine normale Emitterschaltung mit Arbeitswiderstand (Bild 7-15 b) eine relativ niedrige Grenzfrequenz. Die Grenzfrequenz (Frequenz, bei der die Verstärkung auf 70% des Maximalwertes abgesunken ist) wird umso höher, je kleiner der Arbeitswiderstand gewählt wird. Desto kleiner wird dann aber auch der Verstärkungsfaktor und es fließt ein großer Ruhestrom. Höhere Verstärkung und gleichzeitig bessere Anpassung an den Eingangswiderstand der nächsten Stufe erreicht man mit einem Verstärker mit Transformatorkopplung. Es werden hier HF-Transformatoren mit Ringkern verwendet (Bild 7-15 c). Eine sehr hohe Verstärkung erreicht man mit einem Resonanz-Verstärker (Bild 7-15 a). Hierbei wird ein Schwingkreis als Arbeitswiderstand eingesetzt. Allerdings hat diese Schaltung den Nachteil, dass nur ein sehr schmales Frequenzband verstärkt wird und man bei Frequenzwechsel nachstimmen muss. Diese Schaltung ist nur sinnvoll bei Sendern, die mit einer konstanten Frequenz oder in einem schmalen Frequenzbereich arbeiten. Man nennt die Schaltung auch selektiven HF-Verstärker. Der Emitterwiderstand RE dient zur Arbeitspunktstabilisierung und zur Strombegrenzung. Er wird so bemessen, dass im Arbeitspunkt eine Spannung von 1/10 bis 1/20 der Betriebsspannung abfällt.
Der erste Transistor bei folgendem dreistufigen HF-Verstärker (Bild 7-16) arbeitet als RC-Verstärker, die beiden weiteren Stufen als Transformator gekoppelte Schaltungen, beide ebenfalls in Emitterschaltung. Wenn jede Stufe nur eine zehnfache Leistungsverstärkung hätte, ergäbe sich eine Gesamtleistungsverstärkung von eintausend.
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Kommentar: Der Trafo bildet mit seiner Induktivität und der Schaltkapazität einen Schwingkreis für sehr hohe Frequenzen, wodurch möglicherweise Eigenschwingungen entstehen könnten. Der Widerstand bedämpft die Entstehung.
In folgendem Bild 7-17 ist die typische Prinzipschaltung eines Gegentaktverstärkers dargestellt. Die beiden Transistoren arbeiten im B-Betrieb (Ruhestrom zirka 1/10 des maximalen Betriebsstroms), um einen guten Wirkungsgrad (zirka 80 %) bei geringen Verzerrungen zu erzielen. Die Anpassung erfolgt über Breitband-Transformatoren auf Ferrit-Ringkernen.
Prüfungsfrage
Die 2-m-Band-FM-Endstufe (Bild 7-18) aus dem Fragenkatalog kann im B- oder im C-Betrieb arbeiten. Mit R2 zu R1 wird der Arbeitspunkt entsprechend eingestellt. Mit dem Eingangsschwingkreis erreicht man eine Resonanztransformation. Je größer C2 zu C1 gewählt wird, desto niederohmiger wird ausgekoppelt. Die Anzapfung an L1 wird für 50 Ohm Eingangswiderstand dimensioniert. L2 zu L3 dient zur Transformation auf 50 Ohm Ausgangsimpedanz. Die Drossel Dr1 mit C5 dient zur HF-Entkopplung von der Netzversorgung. HF-Entkopplung bedeutet hier, dass keine Hochfrequenz des Senders in die Netzstromversorgung gelangt. Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Die Erläuterungen finden Sie im Text unter Bild 7-18.
HF-Verstärker mit Röhren
Im Fragenkatalog finden Sie ab der Prüfungsfrage TG313 eine Hochfrequenzverstärker-schaltung mit einer Röhre in einer besonderen Schaltungsart. Das Gitter der Röhre liegt an null Volt, die HF-Signalspannung wird der Katode zugeführt und die Auskopplung erfolgt über ein Pi-Filter (Siehe Resonanztransformation Lektion 4) an die Antenne. Man sagt zu dieser Schaltung Röhren-Endstufe in Gitterbasisschaltung mit Pi-Filter (Siehe Lektion 6, Röhre). Eine Röhre benötigt immer am Gitter eine negativere Spannung als an der Katode. Weil das Gitter hier auf null Volt liegt, wird die Katode auf eine positive Spannung angehoben. Damit ist das Gitter auch negativer als die Katode. Man erreicht dies, indem man entweder der Katode eine konstante positive Spannung über ein Netzgerät zuführt oder indem man einen Widerstand (hier R1) in den Katodenstromkreis legt. An H1 – H2 wird die Heizspannung angelegt und Ua ist die Spannungsversorgung für die Anode. Alle Stromversorgungen sind verdrosselt. Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
SenderleistungenIn der Funktechnik gibt es eine Reihe von Leistungsbegriffen, die es zu unterscheiden gilt: Ausgangsleistung, Strahlungsleistung (ERP und EIRP), Spitzenleistung (PEP) und mittlere Leistung. Die Ausgangsleistung eines Senders ist die unmittelbar nach dem Senderausgang messbare Leistung, bevor sie Zusatzgeräte durchläuft. Die Ausgangsleistung eines Senders kann nun wiederum als Spitzenleistung PEP bei der Betriebsart SSB oder als Trägerleistung bei AM oder CW oder RTTY angegeben werden. Prüfungsfrage
Tipp: Wenn Sie den Text der Aufgabe aufmerksam gelesen haben, finden Sie die richtige Lösung. Die Spitzenleistung PEP (peak envelope power) ist der Durchschnittswert der Leistung während einer Periode der Hochfrequenzschwingung bei der höchsten Spitze der Modulationshüllkurve (Bild 7-20). Dieser Spitzenwert darf nicht mit dem Scheitelwert von einer Sinusspannung verwechselt werden. Auch die Spitzenleistung ist ein Effektivwert, aber eben nur für einen sehr kurzen Augenblick. Prüfungsfrage
Die mittlere Leistung bei einem SSB-Sender hängt stark von der Stärke der Modulation ab. Bei Sprache gibt es Stellen mit hohen Spannungsspitzen aber oft langen Bereichen mit weniger Modulation. Wenn man beispielsweise einen Vokal „A“ in das Mikrofon spricht, erhält man ein Signal, das wie ein Dreieck aussieht. Wenn man hier versucht, eine waagerechte Linie eines mittleren Wertes einzuzeichnen, erhält man die mittlere Modulationsspannung und daraus die mittlere Leistung. Man könnte sie auch Durchschnittleistung oder durchschnittliche Leistung nennen.
Man kann diese mittlere Leistung auch sehr gut an einem außen angeschlossenen Leistungsmesser erkennen. Wenn man beispielsweise zunächst in das Mikrofon pfeift (möglichst sauberer Sinus) und dabei die ALC des Senders beobachtet und den Sender nicht übersteuert, müsste man fast den Spitzenwert als Anzeige bekommen. Wenn man dann anschließend ein lang gezogenes „A“ in das Mikrofon spricht, ohne die Aussteuerung zu verändern, wird man nur noch zirka ein Drittel der Leistung angezeigt bekommen. Die Definition der mittleren Leistung finden Sie als Antwort in der Prüfungsfrage TB903. Mehr zu den Leistungsbegriffen ERP und EIRP finden Sie in der Lektion 9 Antennentechnik und in der Lektion 18 EMV und Sicherheit unter Personenschutz. Prüfungsfrage
Leistungen ERP, EIRPBereits im Buch Klasse E in der Lektion 11 Antennentechnik wurden die Begriffe EIRP und ERP und im Buch Betriebstechnik/Vorschriften die Begriffe Ausgangsleistung, Spitzenleistung, mittlere Leistung, äquivalente Strahlungsleistung und äquivalente isotrope Strahlungsleistung ausführlich erläutert. Weil es dazu aber immer wieder Fragen gibt, bearbeiten Sie bitte die folgenden Prüfungsfragen.
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
VerzerrungenEin Hochfrequenzverstärker für SSB muss „linear“ verstärken. Dies bedeutet, dass die Kurvenform am Ausgang genau der am Eingang entspricht. Wenn man einen SSB-Sender durch zu hohe Modulation „übersteuert“, werden die Spitzen des Signals begrenzt. Die sinusförmigen Signale werden „rechteckig“ und erzeugen Oberwellen, die sich als Nebenfrequenzen äußern und sich als so genannte „Splatter“ störend bemerkbar machen. Mehr zu Oberwellen in der folgenden Lektion! Nochmals Prüfungsfrage
Beim Eigenbau von HF-Verstärkern kann bei zu hoher Verstärkung leicht der Fall eintreten, dass ein Teil der Ausgangsspannung wieder auf den Eingang zurückkoppelt. Wenn man Pech hat, kann es zu Mitkopplung kommen und möglicherweise der HF-Verstärker zu einem Oszillator werden. Meistens ist dann keine Modulation mehr möglich. Prüfungsfrage
Manchmal passiert es auch, dass ein Teil der HF-Ausgangsspannung in den Mikrofoneingang zurück koppelt und dort möglicherweise gleichgerichtet (demoduliert) wird. Dieses Signal überlagert sich der eigenen Modulation und hört sich auf der Gegenseite „kaputt“ an. Abhilfe schafft eine bessere Erdung des Ausgangs, bessere Abschirmung des HF-Kabels zur Antenne oder eine „ Entstörung“ des Mikrofoneingangs mit einem Tiefpass. Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Prüfungsfrage
Hinweis: Es muss eine Kombination sein, die mit mal 3 endet, denn 144 x 3 = 432. Dann probieren Sie ob 12 x 3 x 3 x 2 oder 12 x 2 x 2 x 3 auf 144 kommt.
Prüfungsfrage
Prüfungsfrage
Kommentar: Ein Filter für einen Kurzwellensender muss 3 bis 30 MHz durchlassen und darüber möglichst alles sperren.
Prüfungsfrage
Prüfungsfrage
BegleitbuchDieser Online-Lehrgang wurde mit freundlicher Genehmigung des Autors aus seinem Buch für das Internet umgewandelt.
Dieser Lehrgang basiert auf dem Prüfungsfragenkatalog 2007 der Bundesnetzagentur (BNetzA). Alle darin vorkommenden Themen wie Grundlagen der Elektrotechnik, Elektronik sowie Sender- und Empfängertechnik, Übertragungstechnik, Antennentechnik und Messtechnik aus dem Gebiet "Technische Kenntnisse" werden ausführlich erläutert. Die Erfahrung mit praktischen Lehrgängen wird genutzt, um den Prüfling in die Lage zu versetzen, jede Frage aus dem Fragenkatalog richtig zu beantworten. Dieses Buch ist auch sehr gut für das Selbststudium geeignet. Dieser Lehrgang baut auf dem Lehrgang für die Klasse E auf. Sie sollten also erst den Lehrgang für das Amateurfunkzeugnis Klasse E durchgearbeitet haben oder zumindest bei Verweisen dort nachlesen können.
*) Wenn Sie noch vor dem 1. Juni die Prüfung Klasse A (nach dem alten
Fragenkatalog Klasse 1+2) machen wollen, sollten Sie sich dieses Buch besorgen,
denn es wird in Kürze ausverkauft sein. Bis Ende Mai wird noch nach dem alten
Fragenkatalog geprüft.
|