PROCESS AUTOMATION

Reference Manual
DMS / AP

T

PROCESS AUTOMATION

Freelance 2019

Reference Manual
DMS / API

Document Number: 3BDD012508-111
Revision: A
Release: January 2019

Notice

This document contains information about one or more ABB products and may include a description of or areference
to one or more standards that may be generally relevant to the ABB products. The presence of any such description
of a standard or reference to a standard is not a representation that all of the ABB products referenced in this docu-
ment support all of the features of the described or referenced standard. In order to determine the specific features
supported by a particular ABB product, the reader should consult the product specifications for the particular ABB
product.

ABB may have one or more patents or pending patent applications protecting the intellectual property in the ABB
products described in this document.

The information in this document is subject to change without notice and should not be construed as a commitment
by ABB. ABB assumes no responsibility for any errors that may appear in this document.

Products described or referenced in this document are designed to be connected, and to communicate information
and data via a secure network. It is the sole responsibility of the system/product owner to provide and continuously
ensure a secure connection between the product and the system network and/or any other networks that may be
connected.

The system/product owners must establish and maintain appropriate measures, including, but not limited to, the
installation of firewalls, application of authentication measures, encryption of data, installation of antivirus pro-
grams, and so on, to protect the system, its products and networks, against security breaches, unauthorized access,
interference, intrusion, leakage, and/or theft of data or information.

ABB verifies the function of released products and updates. However system/product owners are ultimately respon-
sible to ensure that any system update (including but not limited to code changes, configuration file changes, third-
party software updates or patches, hardware change out, and so on) is compatible with the security measures
implemented. The system/product owners must verify that the system and associated products function as expect-
ed in the environment they are deployed.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind
arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from
use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the
contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or dis-
closed only in accordance with the terms of such license. This product meets the requirements specified in EMC Di-
rective 2014/30/EU and in Low Voltage Directive 2014/35/EU.

Trademarks

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2019 by ABB.
All rights reserved.

Table of Contents

About this book

Use of warning, caution, information, and tip ICONSccceereeieririeneeiieneeie e 9
TRITNINOLOZY ..ottt sttt et e st st e st e st e e bt e sabe e beesabeenbeensaeebeenaeesas 10
I DIeTe1 11001 4 LA eT0) 101 115 (o) 1 IR 10

1 - Application interface to Freelance for Windows

L1 OVEIVIBW ...ttt ettt ettt et a et bt et bt e e e bt en e eb e et e eaeenteeaeentesaeenaeenean 13
1.2 Manufacturing message specification ISO 9506 (MMS)cooveevviiriieniienneenieerieeneens 15
1.3 Digimatik message specification (DMS)........cceeiiiririieniiiinieee e 16
1.4 DMS/MMS fUNCHON GIEAS ..ottt st 16
1.5 Freelance addressable ODJECES.ccuivuiriiriieieriieieie sttt s 18
151 Variablesc.couiiiiiiiiiiiiieectcee e 18
1.5.2 ALOCALEA LAZS ..eveenvieneeiieee ettt ettt ettt et et ettt et sae et sbe e te b eneesaeeneeeae 18
1.5.3 SYSLEIM ODJECES..couuieruiieiieriieeieenite ettt ettt ettt e sibe et sate et e sabeebeesbaeenseenanes 19
1.6 Freelance layered communications modelcoceoeververieieininineninenienceerereeenens 19
1.7 DMS/APT INStallationcccocueiiiiiiiiiiiiiiicicicicccc e 20
1.8 Configuring the DMS/API gateway in Freelance Engineeringcccccecceveeveneennne. 21
1.9 Loading the DIMS/APT GAtEWAYcccutirierriiiniieeiieieesteeiee sttt st esieesare e esaresaneens 24
1.9.1 Initial configuration.........c.cceeveiririrenineneneneeteeeeeeee et 24
1.9.2 Re-CONTIGUIATION. ...cuuiiiiiiieiiieiieeiteste ettt sttt st s e eae e e 24
1.10 DMS/APT fUNCHION OVEIVIEWeventieiieiieiiitieiieete et steeae ettt ete s e ee st entesaeeeesaeeaesaes 26

2 - Basic transport application interface (BTR)
2.1 Server functionality (TCPIP).....c..coccoiiiiiiiiniiiirietee ettt 32

3 - DMS client management
3.1 Environment and general management SEIVICES.ccuverrueereerrreereenueenieeneesieesaesnseennns 34

3.1.1 Initializing and terminating @ DMS SeSS10Mccceevuieiererieniinieieeiee e 34

Reference-Manual — DMS / API 5

Table of Contents

3.1.2 Connection MaNAZEMENL.........cecueerreerierieerieenteeieesteereesteesereesseesseesseesseesases 37
3.2 Variable ACCESS SEIVICES ...c.eeruieieriiriiertieienteetesteetenteeeteste e e bt eateeseestesaeebeebeesesaeentesseans 56
B3 CAULION! ..ttt ettt sttt sttt st eae e b s nne i ea 57
3.3.1 DMSAPIL_VLCIEALE.eeueiuieieitieiieiteeie ettt ettt sttt see e e 60
3.3.2 DMSAPI_VLDEIVATcoctriiriniiriniiieieieeetee ettt 71
3.3.3 DMSAPIL_VLCICAcoeiitiiieiiieieetieest ettt sttt st sieas 72
3.3. 4 DMSAPI_VLREAA.ccciririiriiiiieieieeete ettt e 73
3.3.5 DMSAPI_VLREAACYCIEeruieiiiieiiniieeeiiee ettt 75
3.3.6 DMSAPL_StOPCYCIE..uuviiiiiiiieiiesiie ettt ettt sttt et st sanees 78
3.3.7 DMSAPL_VLWIIE ..ottt ettt sttt st 79
3. 3.8 DMSAPI_VLDEIELE.......coeruiriiriiriinieiesienieieieteeeieee sttt 81
3.4 Alarm MANAZEIMENLccueeueetieuieteeeeeteeterteettetestteteeseeteeseetesaeensesseesesseesenseensesseensenne 83
3.4.1 DMSAPI_GetAlarmMSUmMIMATYccocueerieriieerienrieenieeeieenieesreeseesseesseessesnseens 84
3.4.2 DMSAPI_Create ACKALATMLISEovveeeeeeeeeeeeeeeee et eee e e e e 87
3.4.3 DMSAPI_AddACKAIarmByYAddr.......c..coevierienieiiieereneeeeeeeeeeeee e 88
3.4.4 DMSAPI_ClearAcKAIArMLISt.......ccooouvviiiiieiieiee et 89
3.4.5 DMSAPIL_ACKAIAIMLIST ...c.veriieiiriieiinieiieeeie ettt 90
3.4.6 DMSAPI_Delete ACKAIAIMLISE......ccovvviiiiiiiieieeeiecieeeee et 92
3.4.7 DMSAPI_ACKAIArMBYLIST....coouiiiiiiiiiiiieieete ettt 92
3.5 Domain ManagEMENLcc.ceueveueiriruinenenentetetententetesesseesesresaesaesenseneeneeseesessessessenee 95
3.6 Program invocation ManagemMENTtcecueerueerureerieereeriueenieenreerseestesseesseessessseesssessseennes 95
3.7 Receiving/decoding datac..coeeereriirienienienieieieteeee sttt e 98
3.7.1 Structure definitioNS.ccccoeriiereriiriiniett ettt 99
3.7.2 Synchronous fUNCHIONS.ccueiriireeierieeierieetese ettt ebe e 106
3.7.3 DMSAPI_RegiSterCItCBccociiiiiiieiiieniieeieeieerte ettt 107
3.7.4 Callback function (&RECSIIUCE)ceevuiiiiieiiieeieeiieseecre et 109

4 - Name management

4.1 FILE QITE@CLOTY ..ottt ettt ettt ettt ettt b et b e ea et e s e sbeeatesbeeneesaeeneesreeneens 112
4.1.1 DMSAPI_SetProjectDir.......coviiiiiiiieiienieeitesteeie ettt 113
4.1.2 DMSAPI_ChangeProject........ccceeruirierieniieiinieeieeecee ettt 114
4.2 Project infOrmMation..........cocueerieiriienieeiiente ettt ettt ettt et sbe e sbe e bt e sateesbaesaneenee 115
4.2.1 DMSAPI_GetProjectInfo........ccceviiiiiiiiiiieesieeeee et 115

6 Reference-Manual — DMS / API

Table of Contents

4.3 Locking “IName Management”cccueecueerueerieriueeniiesiieesieenueenseesseessessseesssessseesssesnns 116
4.3.1 DMSAPI_LOCKOV ..ottt ettt ettt ettt sste v e ssaeeva s 116
4.3.2 DMSAPI_UNIOCKOV ..ottt ettt ettt s s 117
4.4 Station INFOIMMALIONcccuieeiieiiieeieeteeeteete et e e ie et e stbeesteesteesbeeseessaeeseessseesseesssassseenes 118
4.4.1 DMSAPI_GetFirstResourcelnfocccooceerieriiiniiiiieniiniienieeiceee e, 119
4.4.2 DMSAPI_GetNextReSOUrCEIN O ..c.cceiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 121
4.5 Variable infOrmMationcocuiiiiieriiniieriierte ettt ettt ettt e st e st e bt e satesnbeesanesane 123
4.5.1 DMSAPI_GetFIrstVarInfoooooeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 124
4.5.2 DMSAPI_GetNextVarInfoc.ccoovierieiiiiiniiiienieeecceese e 125
4.6 Tag INTOIMALION ...e.eeeiiieieie ettt ettt ettt esbe et e st e es e be et e see e e e seeenees 127
4.7 Object class poSition INFOIMAtIONeccuerriieriieriieree ettt 132
4.7.1 DMSAPI_GetFirstCmpOfODjJCIaSScc.eeeerierieieeiieieeiesieeieesie e 134
4.7.2 DMSAPI_GetNextCmpOfODbClass.......cocverrveerieriieieenieeieesieeiee e eveeneees 136
4.8 AdAIESS CONVETSION. .. cccuveerieitreeieeeriesreeireesseeeseesseesseesseessseesseesssessseesseesssessseesssesssesses 137
4.8.1 DMSAPI_GetVarNameByOPathccoccoeviiiiiiiiiinieniicieceeeceeeeee, 137
4.8.2 DMSAPI_GetVarInfoBYNAmMEc.coceeiiriiniiiiiirieeeeeeeeeeeee e 139

5 - Server management

6 - DMS utilities

6.1 DMSAPI_GetStringByValUe........c.coceiiiiiiiiieeceeeeee e 143
6.2 DMSAPI_GetValueByStrNgc..ceoviviieiiriiiiiniinienieeiteteeiteste ettt s 144
6.3 DMSAPI_GELVAILEINcoueruiriiriiriiriiieiesietetetee ettt sttt eb et 145
6.4 DMSAPI_DUmpRECDAaco.eeiiiiiiiiiiiiiiietetesceteseee et 145

Appendix A - Variable types and error codes
A1 DMS VaTIiable LYPES .eouveeriiiiieiieeniienieeritesteetteste st stteete et estesbeesatesbeesaeesabeenaeenanas 147
A2 DMS EITOT COUCSuviiirieiieiiiieieecteeeteesteeeteeteesaeeteestseesseesseessseeseessseesseessessnseesseensss 150

Appendix B - Application interface freelance examples

B.1 DMSAPI SAMPIES ...neeviiniiiieiieiieieeiieete ettt ettt ettt et et s it eneesatebesaeenaeeaeenaens 153
B.2 Variable aCCESS SEIVICESuvvviiiierureieeeeieieeeeeeeeiitreeeeeeeiareeeeeestreeeeeeeissereeeeeessseeeeeeninnees 153
B.2.1 One-time read “TEAA.C”uuveiiiieiieeeee et eae e e e eaaees 153

Reference-Manual — DMS / API 7

Table of Contents

B.2.2 Cyclical read “aCyCle.C” ..c.iiviiiiiiieiiieieeeieeteete sttt e 161
B.2.3 ONne-time WIIte “AWIIE.C™ ...iiovieriierieeiiesieeiieseesteereeseeeseeeebeessnessseeseessneenne 171
B.3 Alarm Services “aalarmm.C”........ccocerirrieririinieientetencete ettt 186
B.4 Name SEIrVICES “NAIME™cciuieiieereiiirieniierteesteeeaeesteesseeseesssessseesseessseesseesssesssessssessees 193
B.5 Setting the time “SEtME.C™couveriiiiiieeiieierie ettt ettt sttt ste et sbeebeesaeenbeenaees 203
B.6 Toggle primary/secondary redundancy “toggle.C”cooererrenirienenieneeiee e 205

Appendix C - DMSAPI files

Col dMSEYPR ittt et st sttt 213
C.2dMSAPIN . 238
CLB3 AMSEIT.I oot ettt e et e eta e e e tae e etbeeeeaaeeesaaeeans 254
Index

8 Reference-Manual — DMS / API

About this book

Use of warning, caution, information, and tip icons

This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Electrical warning icon indicates the presence of a hazard which could result in
electrical shock.

Warning icon indicates the presence of a hazard which could result in personal
injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function

< @ O p B

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
comply fully with all Warning and Caution notices.

Reference-Manual — DMS / API 9

About this book

Terminology

The Glossary contains terms and abbreviations that are unique to ABB or have a
usage or definition that is different from standard industry usage. Please make
yourself familiar to that.

You will find the glossary at the end of the Engineering Manual System
Configuration.

Document conventions

The following conventions are used for the presentation of material:

The words in names of screen elements (for example, the title in the title bar of
a window, the label for a field of a dialog box) are initially capitalized.

Capital letters are used for the name of a keyboard key if it is labeled on the
keyboard. For example, press the ENTER key.

Lowercase letters are used for the name of a keyboard key that is not labeled on
the keyboard. For example, the space bar, comma key, and so on.

Press CTRL+C indicates that you must hold down the CTRL key while
pressing the C key (to copy a selected object in this case).

Press ESC, E, C indicates that you press and release each key in sequence (to
copy a selected object in this case).

The names of push and toggle buttons are boldfaced. For example, click OK.

The names of menus and menu items are boldfaced. For example, the File
menu.

— The following convention is used for menu operations: MenuName >
Menultem > CascadedMenultem. For example: select File > New > Type.

— The Start menu name always refers to the Start menu on the Windows
Task Bar.

10

Reference-Manual — DMS / API

About this book

* System prompts/messages are shown in the Courier font, and user
responses/input are in the boldfaced Courier font. For example, if you enter a
value out of range, the following message is displayed:

Entered value is not valid. The value must be 0 to 30.

You may be told to enter the string TIC132 in a field. The string is shown as
follows in the procedure:

TIC132
Variables are shown using lowercase letters.

sequence name

Reference-Manual — DMS / API 11

About this book

12

Reference-Manual — DMS / API

1 Application interface to Freelance for Windows

1 Application interface to Freelance for

Windows

1.1 Overview
DMS/API

stands for Digimatik Message Specification and Application Programmable
Interface.

DMS is a subset of Manufacturing Message Specification, as per ISO 9506 (MMS).

The computer running the application is connected to the Freelance Control Net
(Ethernet) and, under the DMS/API, uses communication facilities in the same way
as Freelance does internally, with all the possibilities that Freelance provides.

DMS/API

Is the application interface for communicating directly with Freelance from a
user program on an external computer (host);

Is a library of functions programmed in “C” that runs under Windows

When linked to a programmed application, provides all necessary higher-level-
language commands for simple and rapid data exchange between the
application and the Freelance system;

Is implemented on the client-server model. The application station appears as a
gateway in the Freelance Engineering, which makes data from the configured
measuring points available for use by the application via the download
function.

The DMS/API setup program is distributed on two diskettes or a CD; its
installation is menu-driven in the same way as that of all Freelance products.

DMS is used in the following Freelance applications:

Freelance Engineering

Freelance Operations

Reference-Manual — DMS / API 13

1 Application interface to Freelance for Windows

* Freelance process stations
* Freelance CSO gateway
* Freelance OPC gateway

External API connections are configured and loaded as gateways in Freelance
Engineering. Thereafter, all Freelance measuring point addresses are available to all
gateway stations.

The DMS/API can be subdivided into the following function areas:

D=API

Management

Server Connedtion Wariahle Marm Mame
M anagement Management M angement Management M angemerit

Flow chart.bmp

14

Reference-Manual — DMS / API

1 Application interface to Freelance for Windows Manufacturing message specification ISO 9506

1.2 Manufacturing message specification ISO 9506 (MMS)

MMS is a standard, designed to eliminate communication difficulties among
computers in industrial automation. MMS was approved as an international norm in
1988. It grew out of an initiative called Manufacturing Automation Protocol (MAP)
started by General Motors in the early 1980s.

MMS fits in the top layer of the OSI 7-layer communications model, the application
layer.

Application layer (MMS)

Presentation layer

Session layer

Transport layer

Network layer

Control layer

Physical layer

Applications:

* Process control technology

* Memory-programmable control applications
* Numeric control applications

* Robots

MMS attempts to formulate the messages and requests that must be exchanged
between the different system components in a heterogeneous computer network in a
standardized vocabulary.

MMS accomplishes this on a client-server model. A client presents a request to a
server. The server processes the request and sends a response back to the client.

The MMS specification describes all requests which a server must understand and
process. For this purpose objects are defined which can be operated. Operations on

Reference-Manual — DMS / API 15

Digimatik message specification (DMS) 1 Application interface to Freelance for Windows

these objects de-scribe what these objects are meant for. There are a total of 16
different types of objects and 79 operations defined under MMS.

1.3 Digimatik message specification (DMS)

DMS is only a partial implementation of MMS. A pragmatic approach was taken in
the creation of DMS:

— What are the communications requirements?
— Which MMS services are required to fulfill them?

Freelance is a classical client-server system. The PC (as engineering station or
operator station) functions as client and sends requests (measurement, open- and
closed- loop control) to the process modules.

A logical communications channel is open between client and server. Both sides
recognize when the connection is broken and when it is reestablished after a
breakdown.

Programs are written on the engineering PC which are translated into executable
code whose contents is to be loaded into cards at the process station.

These downloaded programs are run on the process stations, meaning that they can
be started and stopped from the PC.

The downloaded programs perform measurements, open- and closed- loop control
tasks. The data that this process produces is displayed or archived on the PC.

The user can actively access and change process values.

Limits which are exceeded as the process proceeds will be immediately displayed
on the PC in address form.

1.4 DMS/MMS function areas

Environment and general management services offer services relating to the
administration and handling of connections. In the Freelance system, connection
management has been optimized to the requirements of a distributed control system.

16 Reference-Manual — DMS / API

1 Application interface to Freelance for Windows DMS/MMS function areas

Domain management services are services relating to loading and managing of
program and data areas. The following services are implemented in DMS:

* Download (InitiateDL, DownloadSegment, TerminateDL)

* Upload (InitiateUL, UpLoadSegment, TerminateUpLoad)

* DeleteDomain

Services for domain management are not implemented in the DMS APIL.

Program Invocation Management Services are services relating to the creation,
starting, stopping, resetting and deleting of programs.

The DMS implementation has been spared the services CreatePI and DeletePl.
These func-tions are handled automatically through Download and Domain Delete

(TaskDomains).
e StartPI

* StopPI

* ResetPl]

Variable access services allow reading and writing variables from the process
currently running. DMS has implemented the following variable access services:

. Read
. Write
. Define Named Variable List

* Information report; the server sends this report “without being asked” and
without requiring a DMS-layer acknowledgment. In Freelance the reports are
used for long-term archiving data curves, for disturbance course logs and short-
term updating of value windows/trend curves and all Freelance Operations
graphics.

Event management services offer event-driven services such as alarms and
acknowledgements:

e GetAlarmSummary
* EventNotification

* Acknowledge EventNotification

Reference-Manual — DMS / API 17

Freelance addressable objects 1 Application interface to Freelance for Windows

Journal management is concerned with storing and consulting stored information.
Freelance has the following configurable function blocks for this purpose:

* Trend function block
* Signal sequence log

The information in these function blocks can be read using the variable access
services.

Freelance Name management provides coordinated access to valid variable and tag
names in Freelance as well as transformation to Freelance addresses.

1.5 Freelance addressable objects

1.5.1Variables
* Predefined variables (project independent)
* User-defined variables
* User-defined structure variables
* Curves and disturbance course logs
* Tag variables
All variables are addressed with the following values:
e Station number
* Object number
* Component number
* Type of variable

The transformation of variable names Freelance addresses is handled by the name
management functions.

1.5.2 Allocated tags
. Function blocks

* Sequence control

18 Reference-Manual — DMS / API

1 Application interface to Freelance for Windows System objects

* MSR tasks

* MSR program lists

* MSR IPC programs

Allocated tags are addressed as follows:
— Station number
— Object number

— Class number

1.5.3 System objects

J MSR resources

1.6 Freelance layered communications model

Application layer (DMS)

Layer 6 (not used)

Basis Transport

TCP/UDP

IP-Protocol
CSMA/CD procedure

Physical layer

In Freelance the communications layer is divided into a DMS (Freelance message
specification) layer and a Basis transport (BTR) layer. Communication from a client
application over the network to a server can be depicted as follows:

Client applications -> DMS ->BTR ->TCP/IP ->cable ->TCP/IP ->BTR-> DMS -
> Server

Reference-Manual — DMS / API 19

DMS/API installation 1 Application interface to Freelance for Windows

While the DMS layer is programmed in operating-system-independent C code, the
BTR layer is operating system dependent and available for the following platforms:

« PSOS
* WINDOWS

The various communications tasks are managed in the operating-system-dependent
communications section:

Under PSOS/NT, for example, these are the following tasks:
* ListenTask (only used if the station functions as a server)
e SendTasks (waits on MailBox for send requests)
* ReceiveTasks (waits on Socket for incoming data)
* UDP tasks:
— Send/receive cyclic variable lists
— Time synchronization
— Connection establishment

The operating-system-dependent communications layer is unaware of the structure
of the communications packets, the station numbers and of other information.

To port the system to another operating system, only this layer, together with
memory and se-maphore management functions, need be re-implemented.

1.7 DMS/API installation

The DMS/API is distributed as a setup program on two diskettes; its installation on
the application computer is menu driven, as is that of all Freelance products.

If the DMS/API is to be installed on the same machine as Freelance Engineering,
then the DMS/API must be loaded in the Freelance standard directory.

The DMS/API DLLs must be in the same directory as Freelance.

20

Reference-Manual — DMS / API

1 Application interface to Freelance for Windows Configuring the DMS/API gateway in Freelance

1.8 Configuring the DMS/API gateway in Freelance
Engineering
Every gateway in the project tree must be entered and configured in Freelance

Engineering so that address information will be available.

See Engineering Manual System Configuration.

Projekt Editor Elements Edit System O
LEEVR A& DD X |
Explorer
vl A 1 |
=] 01 demo_acsoof
L= 01 Conf (KONF)
[01 Software (SW
Ppciv (oco)
[¥ 02 ACO (AC 900F)
[¥ 03 PS_1 (EMULATOR)
04 05_1 (VIS)
05 OFC (GWY)
[¥] 06 UFBs (P-FB)
[¥ 07 P-MA (P-MAK)
[02 Hardware (HW)
=] 02 Pool
L@ o1 Macrolib (FGR)

TH Project ﬂ" Libearies

project_tree_us.png

If under Configuration a new DMS/API resource is to be configured, then “Gateway
station” must be chosen as the station type.

Object Selection (=23

Gateway station D-GS

OPC Function block library OFC_FE-LIE
OPC-Server OPC-5

Operator station D-05

Process Portal B Config Server - PPE-CS
Process station D-PS

Redundant gateway station D-GS/RED
Redundant process station D-PS/RED
Systern B00xA Aspect Server - B00XA-AS

ok | [cancel

opject_selection_us.png

Reference-Manual — DMS / API 21

Configuring the DMS/API gateway in Freelance Engineering 1 Application interface to Freelance for

The type of gateway can be set by editing fields in the gateway header dialog box:

DCP gateway

UNI gateway (for own applications using the API)

OPC gateway
TRN gateway

Configuration: Gateway station D-GS
MName: OPCG
Short text:

Version: 20.03.2015 14:32:13
Type of Gateway
Type: OPC-Gateway A

DCP-Gatewa
PortNo: - VI

- OPC-Gateway
Ext. time TRMN-Gateway
71 Fnabla

{

gateway_type_us.png

In the Hardware structure, the gateway is shown as a PC, because, from the point of
view of the Process station, it looks like an Operator station.

K
Cancel
Drawing header
Drawing footer

Access rights ...

1

UNI OoPC
— = B E
=5 = W N
a—— L — —
os1 GEO1 oPC

CONTROL NET w H H

=i

hw_struc_us.png
With which Process stations the gateway is to perform read/write services is
configured after the gateway is entered.

AC9
oll=d

CIONERC L

In addition, the variables and tags for which the gateway is to receive address
information must be laid down in the configuration. Beside the normal view, there

22

Reference-Manual — DMS / API

1 Application interface to Freelance for Windows

Configuring the DMS/API gateway in Freelance

is, associated with the variables and tags, a gateway view is set to read and/or write

flags for each variable and tag.

Configuration: Gateway @
&
Read Write Connectiol -
C111 i] [¥] L
c7 i V] [¥]
B5 i V] [¥]
CR14 i V] [¥] .
T]] 7l Default aw rights
9L i = 7l il for new variablesitags
17 7] 2 Read Write
@ All stations (©) Connected stations only
conf_gateway_us.png
Variable List
Variables * | Tags
ol AT o
Name GEO1 OPC
= [1]
HR7001_A_OUT RW R
HR7001_BEH_OUT R
HR7001_B_OUT RW R
HR7001_CHNR_OUT RW R
HR7001_C_OUT RW R
HR7001_NR_OUT RW R
HR7001_PROD_OU1 RW R
HR7001_PROD_OUZ2 RW R
HR7001_PROD_OU3 RW R
HR7001_REAK_OUT RW R
HR7001_START_IN RW R
HR7001_START_MA RW R

conf_gateway_us.png

Reference-Manual — DMS / API

23

Loading the DMS/API gateway

1 Application interface to Freelance for Windows

Tag List
Variables Tags
B S] -
MName GED1 05_1 OPC
HR [[[|
HR7001_A RW X RW
HR7001_B RW X RW
HR7001_C RW X RW
HR7001_CHMR RW X RW
HR7001_NR RW X RW
HR7001_TEMP RW X RW
HR7002_A RW X RW
HR7002_B RW X RW
HR7002_C RW X RW
HR7002_CHMR RW X RW
HR7002_NR RW X RW
HR7002_TEMP RW X RW

msr_list_us.png

1.9 Loading the DMS/API gateway

1.9.1Initial configuration

1.9.2 Re-configuration

The Process stations should always be loaded before the gateways. Once the Process
stations have been loaded, the Gateway stations are then able to access the Freelance
address information.

When the process stations are reconfigured, the changed objects must be loaded on
Process stations and gateways. The Process station does not know either the variable
names or the tag names, but only the DMS addressing with the object number and

component number.

When re-configuration is performed in an ‘inexpert’ manner it is two possible that
two objects may exchange object numbers (when objects are deleted and re-
inserted). In such cases, write access through the gateway to the process station
(after the process station has been loaded and before the gateway is loaded) can
produce undesirable results.

24

Reference-Manual — DMS / API

1 Application interface to Freelance for Windows Re-configuration

If objects are only being added to a process station or changed, and no objects are
being deleted or moved, then the addresses of the old objects remain unchanged. In
this case the gateway only receives information on new objects. There is no danger
of mal-operation by the gateway.

This should be taken into account when creating a custom DMS/API application
Examples of possible solutions are as follows:

* The DMS/API gateway can be put into configuration mode through user
intervention before the process stations are loaded

» If the DMS/API gateway is re-initialized from within Freelance Engineering
before the process station is loaded, the application that is waiting to perform a
write operation may respond to that.

* Version control can be activated:
— Read accesses are always allowed
— Write accesses are permitted only when the versions are the same.

* After the gateway has been re-configured, the custom database should be
checked and, if necessary, read accesses and Alarm Summary should be re-
applied.

* The DMS/API application is informed by Freelance Engineering through
Callback functions each time the gateway is reconfigured.

Reference-Manual — DMS / API 25

DMS/API function overview

1 Application interface to Freelance for Windows

1.10 DMS/API function overview

Client management, Environment and general management services

Function Description
DMSAPI_Init Initialize a DMS session
DMSAPI_Exit Terminate a DMS session

DMSAPI_ConnectByName

Establish connection to a DMS server

DMSAPI_ConnectByAddr

Establish connection to a DMS server

DMSAPI_ConnectByNo

Establish connection to a DMS server

DMSAPI_Disconnect

Terminate connection to a DMS server

DMSAPI_GetConnectionData

Check connection to a DMS server

DMSAPI_SetSystemTime

Set time in Freelance system

DMSAPI_SetSystemTimeBy-DmsType

Set time in Freelance system

DMSAPI+_SetSystemTimeBy-String

Set time in Freelance system

DMSAPI_RestartResource

station

Variable access services

Function

Description

DMSAPI_VLCreate

Create variable list

DMSAPI_VLAddWriteVarByName

Add write variable

DMSAPI_VLAddReadVarByName

Add read variable

DMSAPI_VLAddWriteVarByAddr

Add write variable

DMSAPI_VLAddReadVarByAddr

Add read variable

DMSAPI_VLChangeValue

Change value within variable list

DMSAPI_VLDelVar

Delete variable from variable list

26

Reference-Manual — DMS / API

Warm start, cold start, or toggle a Freelance

1 Application interface to Freelance for Windows DMS/API function overview

Function Description

DMSAPI_VLCreate Create variable list

DMSAPI_VLClear Delete all variables from a variable list
DMSAPI_VLRead One-time read of variable list
DMSAPI_VLReadCycle Cyclical read of variable list
DMSAPI_VLWrite One-time write to a variable list
DMSAPI_VLStopCycleVar Stop cyclical variable list
DMSAPI_VLDelete Delete variable list

Event Management Services

Function Description

DMSAPI_GetAlarmSummary Request alarm summary of a DMS server. All future
alarms that occur will automatically be sent by this server.

DMSAPI_AckAlarmByList Perform acknowledgment with fully filled out list

Client receive

Function Description

DMSAPI_RegisterClientCB Register user-programmed callback function which will be
called when DMS messages for the client are received.

API_CallbackReceive Callback receive function will be called asynchronously when
DMS messages are received

Reference-Manual — DMS / API 27

DMS/API function overview

1 Application interface to Freelance for Windows

Freelance hame management

Function

Description

DMSAPI_SetProjectDir

Set project path for loading/saving configuration in-
formation

DMSAPI_ChangeProject

Switch to another project

DMSAPI_LockOV

Lock Name Management against re-configuration
by Freelance Engineering

DMSAPI_UnlockOV

Remove the lock

DMSAPI_GetProjectinfo

Get current project version

DMSAPI_GetFirstResourcelnfo

Get configuration information for first station

DMSAPI_GetNextResourcelnfo

Get configuration information for all remaining sta-
tions

DMSAPI_GetFirstVarinfo

Get configuration information for first variable

DMSAPI_GetNextVarlnfo

Get configuration information for all remaining vari-
ables

DMSAPI_GetFirstTaginfo

Get configuration information for first tag

DMSAPI_GetNextTaginfo

Get configuration information for all remaining tags

DMSAPI_GetTagByAddr

Get configuration information for a particular tag

DMSAPI_GetFirstCmpOfObjCls

Get configuration information for the first component
of an object class

DMSAPI_GetNextCmpOfObjCls

Get configuration information for all remaining com-
ponents of an object class

DMSAPI_GetVarnameByOPath

Transform variable name into Freelance address in-
formation

DMSAPI_GetVarinfoByName

Transform Freelance address information into vari-
able name

Reference-Manual — DMS / API

1 Application interface to Freelance for Windows DMS/API function overview

DMS utilities
Function Description
DMSAPI_SetVarCode Set variable transformation formats
DMSAPI_GetValueByString Transform: string DMS value
DMSAPI_GetStringByValue Transform: DMS value string
DMSAPI_GetVarLen Length required by a variable within a variable list
DMSAPI_DumpRecData Outputs the receive data structure to STDOUT

Reference-Manual — DMS / API 29

DMS/API function overview

1 Application interface to Freelance for Windows

30

Reference-Manual — DMS / API

2 Basic transport application interface (BTR)

2 Basic transport application interface (BTR)

The basic transport layer is protocol-independent. It is possible to set up both with
the P protocol (for AC 870P / Melody) and with the Freelance protocol.

This section can be skipped if the DMS/API is running under an operating system in
which the BTR layer is already implemented (PSOS, Windows). On other operating
systems the BTR layer must be implemented from scratch.

The BTR layer must be initialized by the calling applications. (In this case it is the
DMS/API using the application rather than the application using the DMS/API).

The initialization routine is named

BTR_Init

Before it shuts down, the application should call routine:
BTR_EXxit

The BTR layer links a client application with a server application Within the BTR
layer, each connection is identified by a unique ConnectionHandle.

The applications provide the BTR layer with three “Callback functions”:

AbortProc, is called up when a connection is interrupted. The ConnectionHandle
and the reason for the interruption to the connection are passed to the function as
parameters.

KeepAliveProc is called up when no send instruction is received within a timeout.
Along with the ConnectionHandle, the parameters for passing take the form of a
buffer into which the (log-specific) packet for monitoring the connection must be
coded.

ReceiveProc, is called up when data arrive on a connection. Along with the
ConnectionHandle, the parameters for passing take the form of a buffer holding the
data.

Reference-Manual — DMS / API 31

Server functionality (TCPIP) 2 Basic transport application interface (BTR)

2.1 Server functionality (TCPIP)

The server application calls a procedure called “BTR_OpenServer”.

When it does this, the server application passes the three Callback functions to the
BTR layer.

Calling the OpenServer procedure starts a task (PSOS) or thread (Windows) that
waits for a client to try to establish a connection.

Each time a connection is established, two further tasks/threads are started:
e Send

. Receive

32

Reference-Manual — DMS / API

3 DMS client management

3 DMS client management

All functions which initiate an action on the Ethernet or are waiting for an event on

the Ethernet have a SyncFlag and a TimeOut. The procedure returns when the

timeout expires if not before. The SyncFlag can take the following values:

* Synchronous with Receive (if the response does not arrive within the time
interval, then it must be collected using Receive)

* Synchronous with Callback (if the response does not arrive within the time
interval, then the Callback function is called)

* Asynchronous with Receive (the timeout only applies for sending the message)

* Asynchronous with Callback (the timeout only applies for sending the
message)

All procedures with a response are identified by the symbol:

%

-
The responses are described in the section “Receiving/decoding data”.
Many procedures have the following error:
E_DMSAPI_INTERNAL_ERROR

This means that the DMS has encountered an unrecognized error, for example:
* The application has written to data in the DMS with an uninitiated pointer

* For inexplicable reasons the TCPIP is no longer operational.

The application should be exited and re-started in a way that will affect the user data
as little as possible.

Reference-Manual — DMS / API 33

Environment and general management services 3 DMS client management

3.1 Environment and general management services

3.1.1Initializing and terminating a DMS session

The DMSAPI is capable of “multi-projecting”, that is a DMSAPI application can be
entered as a gateway with different resource numbers in more than one Freelance
project. Each Freelance Engineering can download the configuration for “its”
gateway. The DMSAPI application can access the various resources and objects
from the different projects through those projects.

Application

Start

vy

Set Project
Directory

DMSAPI_Init ‘ DMSAPI_Init
Resn

r

DMSAP_Init
Res 1

y

DMSAPI DMSAPI
Management Management Management
Y P \ J h 4
DMSAPI_Exit DMSAPI_Exit DMSAPI_Exit
Res 1 Res 2 Resn

Application

End

ap010us.bmp

34

Reference-Manual — DMS / API

3 DMS client management Environment and general management services

DMSAPI_Init

SYNTAX

DMS_RC DMSAPI_Init (
DMS_RES_NOOwnResNo/* Own Resource No */,
DMS_RES_TYPEOwnResType/* Own Resource Type */,
DMS_INT16 NoOfSrvConn/* Number of ServerConnection */,
DMS_BOOLEANbDStandardServer/* use of StandardServer */

)

Initializes the DMS application layer. The parameters passed are the function’s own
resource number and the number of server connections which exist simultaneously.
If the application to be written by Freelance Engineering is to be provided with the
address information, then the same resource number should be chosen as was
assigned to the gateway in Freelance Engineering. The number of server
connections should be set to 1.

Each resource can only manage one project at a time. If the name management
system of several projects is accessed through the DMSAPI at the same time, then
the initialization routine should be called several times with different resource
numbers. In the various different projects the gateway must then also be configured
with these different resource numbers.

If a custom DMSAPI server application is to be written, the parameter
bStandardServer should be set to FALSE. In this case the procedures from Section
6, DMS utilities must be used.

If there is no requirement for server functionality, NoOfServerConn is set to 0.

In the Environment and general management services section of DMSDEF.H the
following definitions can be found:

— DMSAPI_MAX_ APPLICATION
— DMSAPI_MAX_ CONNECTION
Parameters:

* OwnResNo Resource number of its own station within the Freelance system.
Logical DMS connections always exist between two resources (the value lies

Reference-Manual — DMS / API 35

Environment and general management services 3 DMS client management

between 1 and 255). More than one logical resource can be initialized on a
computer. They must be assigned different resource numbers.

* OwnResType own resource type

— DMS_OS_DIGIVIS

- DMS_OS_DIGITOOL

- DMS_OS_EPROM

— DMS_OS_MSR

— DMS_OS_DDE_GWY

— DMS_OS_P_GWY

— DMS_OS_GWY (this type is generally used for DMSAPI applications)
* NoOfSrvConn Number of possible server connections
* bStandardServer:

— TRUE: Application can be employed as a server for Freelance
Engineering => Freelance Engineering can download the address
information onto the server. Name management is activated by loading.

— FALSE: Application can implement its own server functions

Possible return values:

Function Description

E_DMSAPI_ALREADY_INIT The function was called although the DMS layer
for this resource number was already initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INTERNAL_ERROR Error during initialization of DMS layer.

E_DMSAPI_MAX_CONNECTION The number of server connections exceeds the
number of possible connections.

E_DMSAPI_MAX_APPLICATION The function cannot be called by more than the
maximum number of applications.

36 Reference-Manual — DMS / API

3 DMS client management Connection management

DMSAPI_Exit
SYNTAX
DMS_RC DMSAPI_Exit (
DMS_RES_NO OwnResNo /* Own Resource No */

)

Resource exits the DMS application layer. All DMS objects attached to this resource
(connections, variables,...) are cleared.

Parameters:

* OwnResNo: Resource number of its own station within the Freelance system.
Logical DMS connections always exist between two resources (Value lies
between 1 and 255).

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for
this resource number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INTERNAL_ERROR Error on exiting the DMS layer.

3.1.2 Connection management

Overview of procedure to establish a connection between client and server
station

* Through UDP the client station sends a DMSNameServerRequest to the two IP
addresses passed to it, and a fixed UDP port.

* The two server stations send back a DMSNameServerResponse. The
information contained in this response is as follows:
— Station - primary or secondary
— Station - ControlPortNumber, on which the TCPIP connection can be
established

Reference-Manual — DMS / API 37

Connection management 3 DMS client management

* Client station executes a Connect to the transmitting ControlPort for the (first-
to-respond) primary.

. The server station which has waited at this ControlPort with a “List” causes the
connection to be established.

* The client station sends a DmsInit command on the opened connection, in
which it conveys the following details:
— Port number of the UDP port to which the cyclical variable lists are to be
sent.
— Timeout that is to be used to monitor the connection
— Current DMS version number
— Own resource number

* Inresponse to this DMSInit command the server station sends a DMSInit-
Response
— Own resource number
— Own resource type
— Version number

* The client station checks the returned values and assigns the status to the
application’s Callback functions

Viewing a DMSAPI application on the process station

The Callback functions are called automatically by the DMSAPI layer when a
connection is established or released.

The functional areas Programlnv and Domainmanagement are only used by
Freelance Engineering.

38 Reference-Manual — DMS / API

3 DMS client management

Connection management

D SARI

Connect

Callback

Function
Connect

Wanahle
Management

Alarm
W anagement

Programiny. |
Management |

Dormain '
Management |

Callback

Function
Disconnect

DMSAP |
Disconnect |

ap014us.bmp

DMSAPI_ConnectByAddr

K

Icon.bmp

SYNTAX

DMS_RC DMSAPI_ConnectByAddr(
DMS_RES_NO OwnResNo
DMS_INTI16 nBTRLnk
DMS_UINT32 ullPAddr1

/* Own Res No */,
/* BasicTranspLayer */,

/* 1.JPAddr. Res */,

Reference-Manual — DMS / API

39

Connection management 3 DMS client management

DMS_UINT32 ullPAddr2 /* 2.IPAddr. Res */,

DMS_RES_NO ResNo /* Resource No */,

DMS_RES_TYPE ResType /* Resource Type */,

DMS_UINTI16 uKeepAliveT /* KeepAliveTimeout */,
DMS_CONN_HANDLE*IpConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /* Synchronicity Flag */,
DMS_UINT32 ulProcT /* ProcedureTimeout */,
DMS_UINT32 ulRecConnLen /* Size of storage area referenced to

the pointer */,
DMS_REC_CONN_DATA *RecConn /* RecStruct of Conn. */
)

Establishing a connection to a DMS server station: The return value is a connection
handle that can be used later to identify the connected resource. This enables more
than one connection to be established to a resource. Thus, for instance, one
connection can be used for alarm messages, and another for updating or operation. It
is also possible to perform all the different services on a single connection. If the
server station has been configured with redundancy, then the connection to the
active station will be opened automatically. The connection between client and
server station is monitored. The connection is monitored with the parameter
“KeepAliveTimeout”. If the synchronisation flag is set to DMSAPI_SNYC and if
the connection is established within the declared procedure timeout, then the
connection structure is filled with values.

After an interruption to a connection the connection is re-established automatically.
If the application no longer needs this connection the procedure
DMSAPI_Disconnect should be called.

Parameters
. OwnResNo: Own station's resource number. The DMSAPI_Init must be called.

* nBTRLnk: Shows the BTR layer via which the DMS services are being
transferred.

DMS_BTR_TCPIP (

40

Reference-Manual — DMS / API

3 DMS client management Connection management

DMS_BTR_REDLNK (Redundancy link on process station)
ullPAddr1: IP address of server station
ullPAddr2: 2. IP address of server station if configured with redundancy.

If the server station is not configured with redundancy, 0 is entered here.

ResNo: Resource number of server station. If more than one resource number
is installed on the server station, the connection is established to the correct
SErver.

ResType: Resource type of server station. The following values are valid:
— DMS_OS_DIGIVIS

— DMS_OS_DIGITOOL

— DMS_OS_EPROM

— DMS_OS_MSR (usually connected to this station type)

— DMS_OS_DDE_GWY

- DMS_OS_P_GW

- DMS_OS_GWY

uKeepAliveT: Connection monitoring in seconds/milliseconds between the two
resources, that is an interruption to the connection (e.g. cable problem, failure
of the connected resource etc.) is detected when the timeout expires at the
latest. If the two resources are not sending any data, then within half the
timeout they exchange a KeepAlive packet.

IpConnHandle: After the connection has been established, data exchange on
this connection is addressed via this ConnectionHandle.

nSyncFlag

DMSAPI_SYNCHRON: The procedure waits for the length of time specified by
“Procedure-Timeout” for the connection to be established. If the connection is
established successfully, RecStruct returns valid values. The process of establishing
a connection also continues after the timeout has expired.
DMSAPI_ASYNCHRON: When a connection is established, this is indicated
through the Callback function, or it may be read via the function
DMSAPI_GetConnectionStatus. The procedure timeout is not evaluated.

Reference-Manual — DMS / API 41

Connection management 3 DMS client management

. ulProcT:
DMSAPI_NO_TIMEOUT no timeout value in milliseconds.

DMSAPI_WAIT_FOREVER: Procedure will not return until the task is executed,
or proves impossible to execute.

* ulRecConnlLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used. Then it has the same length as the
structure DMS_REC_CONN_DATA

. RecConn:

typedef struct DMS_REC_CONN_DATA

{DMS_RES_NO OwnResNo; /* Own resource 1D */
DMS_RES_NO ResNo; /* Resource ID of station */
DMS_RES_TYPE ResType; /* Resource type of server station */
DMS_CONN_STATUS ConnStatus; /* Connection status of station */
DMS_UINT32 ullPAddr; /* IP address of conn. station */
DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT32 ulConnFlag; [%/

} DMS_REC_CONN_DATA;

The ConnStatus can take the following values:
DMS_CONN_OK, /* All OK *#/
DMS_CONN_ABORT, /* No connection */
DMS_CONN_INVALID_RES_TYPE, /* Incorrect resource type */
DMS_CONN_INVALID_RES_NO, /* Incorrect resource number */
DMS_CONN_NO_OS, /* No operating system */

DMS_CONN_SECONDARY, /* Only connected to secondary
=> invalid configuration */

DMS_CONN_INVALID_VERSION /* Invalid DMS version */

42 Reference-Manual — DMS / API

3 DMS client management Connection management

The ulBoardType can take the following values:
— DMS_CPU_UNKNOWN
- DMS_CPU_DCP02
— DMS_CPU_DCPI10
- DMS_CPU_PC

The ulConnFlag can take the following values:
DMS_RES_PRIMARY /* Connection to a primary server */
DMS_RES_SECONDARY /* Connection to a secondary server */
DMS_RES_CLIENT /* Connection to a client */

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this
resource number was not initialised.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_TIMEOUT It was not possible to establish a connection within the

specified timeout.

E_DMSAPI_INTERNAL_ERROR Internal error on establishing connection

E_DMSAPI_MAX_CONNECTION The DMS layer does not allow more than the maximum

number of connections.

DMSAPI_ConnectByName

SYNTAX

DMS_RC DMSAPI_ConnectByName (

DMS_RES_NO OwnResNo /* Own Resource No */,
DMS_CHAR *ResName /* Name of resource */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /* Synchronisation flag */,
DMS_UINT?32 ulProcT /* Procedure timeout */,

Reference-Manual — DMS / API 43

Connection management 3 DMS client management

DMS_UINT32 ulRecConnLen /* Size of storage area

referenced to the pointer */,
DMS_REC_CONN_DATA *RecConn /* RecStruct of Conn. */
)

The procedure establishes the connection to a DMS resource. The project loaded by
Freelance Engineering must be accessible to its own resource. Through the name
management functions the resource name is converted to:

e BTRLnk
* [PAddrl
e JPAddr2

* KeepAliveTimeout
* ResourceNo

* ResourceType

Y

%
Icon.bmp
Establishing a connection to a DMS server station: The return value is a connection
handle that can be used later to identify the connected resource. This enables more
than one connection to be established to a resource. Thus, for instance, one
connection can be used for alarm messages, and another for updating or operation. It
is also possible to perform all the different services on a single connection. If the
server station has been configured with redundancy, then the connection to the
active station will be opened automatically. The connection between client and
server station is monitored. The connection is monitored with the parameter
KeepAliveTimeout. If the synchronisation flag is set to DMSAPI_SNYC and if the
connection is established within the declared procedure timeout, then the
connection structure is filled with values.

After an interruption to a connection the connection is re-established automatically.
If the application no longer needs this connection the procedure
DMSAPI_Disconnect should be called.

44

Reference-Manual — DMS / API

3 DMS client management Connection management

Parameters

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* ResName: Name of the target resource as configured in Freelance Engineering.

* IpConnHandle: After the connection has been established, data exchange on
this connection is addressed through this ConnectionHandle.

* nSyncFlag

DMSAPI_SYNCHRON: The procedure waits for the length of time specified by
“ProcedureTimeout” for the connection to be established. If the connection is
established successfully, RecStruct returns valid values. The process of establishing
a connection also continues after the timeout has expired.

DMSAPI_ASYNCHRON: When a connection is established, this is indicated
through the Callback function, or it may be read through the function
DMSAPI_GetConnectionStatus. The procedure timeout has no significance.

. ulProcT:
DMSAPI_NO_TIMEOUT no timeout value in milliseconds.

DMSAPI_WAIT_FOREVER:
Procedure will not return until the task is executed, or proves impossible to execute.

* ulRecConnLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used. Then it has the same length as the
structure DMS_REC_CONN_DATA

. RecConn:

typedef struct DMS_REC_CONN_DATA {
DMS_RES_NO OwnResNo; /* Own station number */

DMS_RES_NO ResNo; /* Station number */
DMS_RES_TYPE ResType; /* Resource type of server station
DMS_CONN_STATUSConnStatus; /* Connection status of station
DMS_UINT32 ullPAddr; /* IP address of conn. station

DMS_UINT32 ulBoardType; /* Board type
DMS_UINT32 ulConnFlag; /* */

Reference-Manual — DMS / API 45

Connection management

3 DMS client management

} DMS_REC_CONN_DATA;

The ConnStatus can take the following values:

DMS_CONN_OK, /* All OK */
DMS_CONN_ABORT, /* No connection */
DMS_CONN_INVALID_RES_TYPE, /* Incorrect resource type */

DMS_CONN_INVALID_RES_NO, /* Incorrect resource */
DMS_CONN_NO_OS, /* No operating system */
DMS_CONN_SECONDARY, /* Only connected to
secondary => invalid
configuration */

DMS_CONN_INVALID_VERSION /* Invalid DMS version */

The ulBoardType can take the following values:

DMS_CPU_UNKNOWN
DMS_CPU_DCPO02
DMS_CPU_DCP10
DMS_CPU_PC

The ulConnFlag can take the following values:

DMS_RES_PRIMARY /* Connection to a primary server */
DMS_RES_SECONDARY /* Connection to a secondary server */
DMS_RES_CLIENT /* Connection to a client */

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer
for this resource number was not initialized.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_INVALID_NO_CONF No project available

46

Reference-Manual — DMS / API

3 DMS client management

Connection management

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer
for this resource number was not initialized.

E_DMSAPI_INVALID_CONF

tion

No information available about the specified sta-

E_DMSAPI_NO_RESOURCE

ing’.

The station cannot be connected at present as
there are still stations with the state ‘disconnect-

E_DMSAPI_TIMEQOUT

It was not possible to establish a connection with-
in the specified timeout.

E_DMSAPI_INTERNAL_ERROR

Internal error on establishing connection

E_DMSAPI_MAX_CONNECTION

The DMS layer does not allow more than the
maximum number of connections.

DMSAPI_ConnectByNo

Y
od

SYNTAX

DMS_RC DMSAPI_ConnectByNo(

DMS_RES_NO
DMS_RES_NO
DMS_CONN_HANDLE

DMS_INT16
DMS_UINT32
DMS_UINT32

DMS_REC_CONN_DATA

)

OwnResNo
ResNo
*]pConnHandle

nSyncFlag
ulProcT

ulRecConnLen

*RecConn

/* Own Resource No */,
/* Resource No */,
/* ConnectionHandle */,

/* Synchronisation flag */,
/* Procedure timeout */,

/* Size of storage area
referenced to the pointer */,

/* RecStruct of Conn. */

Reference-Manual — DMS / API

47

Connection management 3 DMS client management

The procedure establishes the connection to a DMS resource. The project loaded by
Freelance Engineering must be accessible in its own resource. Through the name
management functions the resource number is converted to:

« BTRLnk
* [PAddrl
* [PAddr2

* KeepAliveTimeout
* ResourceNo
* ResourceType

Establishing a connection to a DMS server station: The return value is a connection
handle that can be used later to identify the connected resource. This enables more
than one connection to be established to a resource. Thus, for instance, one
connection can be used for alarm messages, and another for updating or operation. It
is also possible to perform all the different services on a single connection. If the
server station has been configured with redundancy, then the connection to the
active station will be opened automatically. The connection between client and
server station is monitored. The connection is monitored with the parameter
KeepAliveTimeout. If the synchronisation flag is set to DMSAPI_SNYC and if the
connection is established within the declared procedure timeout, then the
connection structure is filled with values.

After an interruption to a connection the connection is re-established automatically.
If the application no longer needs this connection the procedure
DMSAPI_Disconnect should be called.

Parameters

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* ResNo: Number of the target resource as configured in Freelance Engineering.

* IpConnHandle: After the connection has been established, data exchange on
this connection is addressed through this ConnectionHandle.

* nSyncFlag

48

Reference-Manual — DMS / API

3 DMS client management Connection management

DMSAPI_SYNCHRON: The procedure waits for the length of time specified by
“ProcedureTimeout” for the connection to be established. If the connection is
established successfully, RecStruct returns valid values. The process of establishing
a connection also continues after the timeout has expired.

DMSAPI_ASYNCHRON: When a connection is established, this is indicated
through the Callback function, or it may be read through the function
DMSAPI_GetConnectionStatus. The procedure timeout has no significance.

. ulProcT:
DMSAPI_NO_TIMEOUT no timeout
Value in milliseconds

DMSAPI_WAIT _FOREVER: Procedure will not return until the task is executed,
or proves impossible to execute.

* ulRecConnLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used. Then it has the same length as the
structure DMS_REC_CONN_DATA

. RecConn:

typedef struct DMS_REC_CONN_DATA {

DMS_RES_NO OwnResNo; /* Own station number */
DMS_RES_NO ResNo; /* Station number of station */
DMS_RES_TYPE ResType; /* Resource type of server station */
DMS_CONN_STATUS ConnStatus; /* Connection status of station */
DMS_UINT32 ullPAddr; /* TP address of conn. station */
DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT?32 ulConnFlag; /* */

} DMS_REC_CONN_DATA,;

The ConnStatus can take the following values:
DMS_CONN_OK, /% All OK */
DMS_CONN_ABORT, /* No connection */

Reference-Manual — DMS / API 49

Connection management 3 DMS client management

DMS_CONN_INVALID_RES_TYPE, /* Incorrect resource type */

DMS_CONN_INVALID_RES_NO, /* Incorrect resource number */
DMS_CONN_NO_OS, /* No operating system */
DMS_CONN_SECONDARY, /* Only connected to secondary =>

invalid configuration */
DMS_CONN_INVALID_VERSION /* Invalid DMS version */

The ulBoardType can take the following values:
— DMS_CPU_UNKNOWN
- DMS_CPU_DCP02
— DMS_CPU_DCPI10
- DMS_CPU_PC

The ulConnFlag can take the following values:
DMS_RES_PRIMARY/* Connection to a primary server */
DMS_RES_SECONDARY/* Connection to a secondary server */
DMS_RES_CLIENT/* Connection to a client */

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS
layer for this resource number was not initial-
ized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INVALID_NO_CONF | No project available

E_DMSAPI_INVALID_CONF No information available about the specified
station

E_DMSAPI_NO_RESOURCE The station cannot be connected at present
as there are still stations with the state ‘dis-
connecting’.

50

Reference-Manual — DMS / API

3 DMS client management Connection management

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS
layer for this resource number was not initial-
ized.

E_DMSAPI_TIMEOUT It was not possible to establish a connection

within the specified timeout.
E_DMSAPI_INTERNAL_ERROR |Internal error on establishing connection

E_DMSAPI_MAX_CONNECTION | The DMS layer does not allow more than
the maximum number of connections.

DMSAPI_Disconnect

L A
%o

SYNTAX
DMS_RC DMSAPI_Disconnect(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */

)

The function performs a controlled disconnection from the specified resource.
Before a DMS session is terminated, all resources should be re-enabled. The
Connhandle is not enabled immediately after the procedure is completed; this only
takes place after the controlled disconnection. The specified callback functions are
called first, that is the handles are not released until the callback functions have been
called.

Parameters:

ConnHandle: ConnectionHandle which was returned when procedure
DMSAPI_Connect was called.

Reference-Manual — DMS / API 51

Connection management 3 DMS client management

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the
DMS layer was not initialized.

E_DMSAPI_INVALID_CONN_HANDLE |A valid ConnectionHandle has not been
passed.

E_DMSAPI_INTERNAL_ERROR Internal error on disconnection

DMSAPI_GetConnectionData

SYNTAX

DMS_RC DMSAPI_GetConnectionData(
DMS_CONN_HANDLE ConnHandle/* ConnectionHandle */,
DMS_UINT32 ulRecConnLen /* Size of storage area

referenced to the pointer */

DMS_REC_CONN_DATA*RecConn/* ReceiveStructure of Conn.

*/

)

The function returns the connection structure for a valid ConnectionHandle. If the
DMS is installed without any Callback function, this function must be used to check
the connection status of the individual resources.

Parameters:

* ConnHandle: ConnectionHandle which was returned when procedure
DMSAPI_Connect was called.

* ulRecConnLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used. Then it has the same length as the
structure DMS_REC_CONN_DATA

. RecConn:

typedef struct DMS_REC_CONN_DATA {

52

Reference-Manual — DMS / API

3 DMS client management Connection management

DMS_RES_NO OwnResNo; /* Own station number */
DMS_RES_NO ResNo; /* Station number of station */
DMS_RES_TYPE ResType; /* Resource type of server station */
DMS_CONN_STATUSConn Status; /* Connection status of station */
DMS_UINT32 ullPAddr; /* IP address of connected station */
DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT?32 ulConnFlag; [*

} DMS_REC_CONN_DATA;

The ConnStatus can take the following values:

DMS_CONN_OK, /¥ All OK */
DMS_CONN_ABORT, /* No connection */
DMS_CONN_INVALID _RES_TYPE, /* Incorrect resource type */
DMS_CONN_INVALID_RES_NO, /* Incorrect resource number */
DMS_CONN_NO_OS, /* No operating system */
DMS_CONN_SECONDARY, /* Only connected to secondary =>
invalid configuration */
DMS_CONN_INVALID_VERSION /* Invalid DMS version */

The ulBoardType can take the following values:
— DMS_CPU_UNKNOWN
— DMS_CPU_DCP02
— DMS_CPU_DCPI10

— DMS_CPU_PC
The ulConnFlag can take the following values:
DMS_RES_PRIMARY /* Connection to a primary server */
DMS_RES_SECONDARY /* Connection to a secondary server */
DMS_RES_CLIENT /* Connection to a client */

Reference-Manual — DMS / API 53

Connection management

3 DMS client management

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the
DMS layer was not initialized.

E_DMSAPI_INVALID_CONN_HANDLE

A valid ConnectionHandle has not
been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error on establishing con-
nection

DMSAPI_SetSystemTime
SYNTAX
DMS_RC DMSAPI_SetSystemTime(

SYSTEMTIME Time /* Time */[Pointer to GMT])

This function sends the time as displayed to all connected Freelance stations as a
broadcast on the Ethernet. There is no acknowledgement to confirm whether or not

this time packet has arrived at any station.

Under Windows the current time can be queried using the function GetLocal.

Parameter:

* Time: Type is Windows type SYSTEMTIME, which contains the time to be

set.

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS lay-
er for this resource number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid. No times

prior to 1984 are sent (beginning of MMS time).

E_DMSAPI_INTERNAL_ERROR | Internal error on sending time

54

Reference-Manual — DMS / API

3 DMS client management Connection management

DMSAPI_RestartResource
T
-
SYl\pITAX
DMSAPI_RestartResource(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_RESTART_REASONRestartRea/* RestartReason */
)

This procedure performs a cold or warm start on the Freelance process station.

After startup the process station is rebooted, that is the connection is broken and
then re-established.

Parameters:
* Connhandle: ConnectionHandle for this resource
— RestartReason
DMSAPI_RESTART_WARM: Process station warm start
DMSAPI_RESTART_COLD: Process station cold start

DMSAPI_RESTART_TOGGLE: Switches process station over from
primary to secondary. This command can only be sent to a redundant process
station.

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer was not
initialized.

E_DMSAPI_NO_CONNECTION No connection to this station.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

Reference-Manual — DMS / API 55

Variable access services 3 DMS client management

Function Description
E_DMSAPI_NOT_INIT The function was called although the DMS layer was not
initialized.

E_DMSAPI_INVALID_CONN_HANDLE | A valid ConnectionHandle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.2 Variable access services

Using the variable access services, data from a DMS server can be:
* read once

* read cyclically

e written once.

Through the DMSAPI complete variables lists are read and written. For the various
services (read once, write once, read cyclically) empty lists must be set up into
which variables can then be inserted. All variables within a variables list are read or
written at the same time. The effect of these operations being performed at the same
time is that the calculation of loop functions and tasks is interrupted for the duration
of the variables list operation.

Once the read or write operation has been completed, the variables list can be
further used as follows:

==> Deleting existing variables from the variables list
==> Adding new variables to the variables list

==> Changing values within the variables list

==> Deleting all variables from the variables list

==> Deleting the variables list

After this the read/write function can be performed again.

Any variables lists that are no longer required must always be deleted explicitly. The
variables list must also be deleted when the connection to a station is interrupted.
Once a variables list has been deleted, nothing else is received for that list. If the

56

Reference-Manual — DMS / API

3 DMS client management Caution!

deletion of variables lists is “forgotten” by the application, once a certain number of
variables lists have been lost the application cannot create any more new lists.

Cyclical variables lists must be stopped before any changes are made, and can be re-
started afterwards. Likewise, after a variables list has been stopped, nothing more is
received for that list.

Variables lists that are to be read or written once only can only be altered after the
response has been received. (There is little point in deleting variables lists before the
response has been received).

A variables list can only contain variables from the same station.

3.3 Caution!

The reading/writing of variables exerts a load on the DMS server. If the read/write
routines are called cyclically from the API, possibly as quickly as possible, this
results at the process station in a CPU engagement factor of up to 80%. For this
reason the following rules should be observed:

* For cyclical read tasks the function ReadCycleVarList should be used, rather
than using ReadVarList cyclically.

» For reading and writing, as many tasks as possible should be performed in one
variables list rather than perform each variable function in a separate variables
list. Requests for variables should first be collected together and then executed.

During routine operation the process station responds after a time of 20 to
100 milliseconds.

The structure of the variables list is described on Page B-71, Receiving/decoding
data, The procedures for accessing variables lists can be classified as follows:

Creating a variables list DMSAPI_VLCreate
Modifying the variables list: DMSAPI_VLAddWriteVarByName(only for writing)

DMSAPI_VLAddReadVarByName(only for reading)
DMSAPI_VLAddWriteVarByAddr(only for writing)

DMSAPI_VLAddReadVarByAddr(only for reading)

DMSAPI_VLChangeValue (only for writing)

Reference-Manual — DMS / API 57

Caution! 3 DMS client management

DMSAPI_VLDelVar
DMSAPI_VLClear

Simple variable functions: DMSAPI_VLRead
DMSAPI_VLWrite

Cyclical variable functions: DMSAPI_VLReadCycle
Cycl. stop Variables lists ~ DMSAPI_VLStopCycle
Deleting variables lists: DMSAPI_VLDelete

Lifespan of a variables list for read and write functions

Create the variable list

r

Change the variable list

r

Execute the variable services

r

Analyze the answer in Callback

r

Delete the variable list

CLIT

ap015us.bmp

58 Reference-Manual — DMS / API

3 DMS client management

Caution!

Lifespan of a variables list for cyclical read functions

Create the

variable list

F

Change the

varishle list

F

Cryclic read oft

he variable list

y

Analyzethe answer in Callback

F

Display ofthe wariakle in
Grafic ar Databaze

F

Stopthe wariable list

y

“honnole

D elete the variable list

)
)
B
D
}
)
B

ap016us.bmp

Reference-Manual — DMS / API

59

DMSAPI_VLCreate 3 DMS client management

3.3.1 DMSAPI_VLCreate
SYNTAX
DMS_RC DMSAPI_VLCreate(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 nVLService /* Type of VarList Service */,
DMS_HANDLE *lpDmsHandle/* Identifier for Varlist */
)

Through this procedure the storage is set up and a unique DMS-Handle created for a
DMS variables list. Once a variables list has been created, variables may be inserted
into it.

Populated variables lists can be utilised via the Read/ Readcycle/ Write functions.

The storage and DMS-Handle are deleted only via the function
DMSAPI_DeleteVarList.

Parameters:

* Connhandle: ConnectionHandle for this resource

* nVLService:

DMSAPI_VL_SINGLE_READ: reading this variables list once only
DMSAPI_VL_CYCLE_READ: reading this variables list cyclically
DMSAPI_VL_SINGLE_WRITE: writing this variables list once only

* IpDmsHandle Handle for this variables list, through which all further
operations on this variables list are controlled

60 Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLCreate

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer was
not initialized.

E_DMSAPI_NO_RESOURCE No resources (storage/DMSHandles) in order to cre-
ate this variables list.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INVALID_CONN_HANDLE |A valid ConnectionHandle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

DMSAPI_VLAddReadVarByName
SYNTAX
DMS_RC DMSAPI_VLAddReadVarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_CHAR *IpszVarname /* Variable name */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INT16 *pnIndex /* Index in RecVarStruct */

)

This procedure adds one element to an existing variables list. The element is
addressed via the variable name. The procedure converts variable names into DMS
addresses. As a result of this, the procedure requires more calculating time than the
routine

DMSAPI_VLAddVarReadByAddr.

Once a variables list has been filled, the required function can be performed. The
variables list cannot be changed through the add and delete functions until any read
function has been completed (or halted).

Reference-Manual — DMS / API 61

DMSAPI_VLCreate 3 DMS client management

The number of bytes that can be accommodated in a variables list is limited. This
number of bytes determines the number of variables that can be communicated. As
variables of different data types require differing amounts of storage space, it is not
possible to define a constant DMSAPI_MAX_VAR_IN VARLIST. The procedure
DMSAPI_GetVarLen returns the storage requirement of the different variable types
within a variables list. The constant DMSAPI_VL_MAX_BYTES shows the
maximum storage occupied by a variables list. The structure
DMS_REC_VARLIST_DATA always indicates the amount of storage available
within the variables list.

Parameters:

* DmsHandle: Variables list handle for this variables list

* IpszVarname: Name of the variable to be read

* IplpRecVar: Structure of the populated variables list

typedef struct DMS_REC_VARLIST_DATA {
DMS_HANDLEDmsHandle;
DMS_INT16 ActVarNo; /* Current number of variables */
DMS_INT16 MaxVarNo; /* Max. number of variables with

blank entries */

DMS_INTI16 FreeBytes; /* Number of free bytes in the VL */
DMS_REC_VAR *IpVar; /* Actual variables list */

} DMS_REC_VARLIST_DATA;

The structure DMS_REC_VAR:

typedef struct DMS_REC_VAR {

DMS_VAR_STATUS VarStatus; /* Status of the variable */
DMS_VAR_RC VarRc; /* ReturnCode after function */
DMS_OBJ_PATH ObjPath; /* Object path on server */
DMS_CHAR VarName; /* Variable name or NULL */
DMS_UINT32 ValueSize; /* Size of the value buffer */

62

Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLCreate

DMS_VAR_TYPE VarType; /* Type of value */
DMS_VALUE *VarValue; /* Value of the variables or
NULL */

} DMS_REC_VAR;
VarStatus can take the following values:

DMS_VAR_NOT_VALID: After the value has been added and before the function
is executed, or where an error occurred when the function was executed.

DMS_VAR_CHANGED: After a function has been executed

DMS_VAR_DELETED: Variable has been deleted via DMSAPI_VLDelVar but the
entry still exists

VarRc can accept various errors from the server. See DMS error codes on page 150.

The ObjPath has the structure DMS_OBJ_PATH and contains the addressing on the
server.

typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;

VarType can take on various values. (See Appendix A, Variable types and error
codes)

VarValue is a pointer that points to the value of the variable after the read function
has been executed (See DMS variable types on page 147).

* IpnIndex within the IplpRecVar

Reference-Manual — DMS / API 63

DMSAPI_VLCreate

3 DMS client management

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was
not initialized.

E_DMSAPI_NO_RESOURCE

Variables list is full A new variables list must be creat-
ed.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_INVALID_NO_CONF

No project available

E_DMSAPI_INVALID_CONF

No information available about the specified variable

E_DMSAPI_INVALID_DMS_HANDLE

A valid variables list handle has not been passed.

E_DMSAPI_INVALID_CONN_HANDLE

The specified variable is not present on the specified
resource

E_DMSAPI_INTERNAL_ERROR

Internal error

DMSAPI_VLAddWriteVarByName

SYNTAX

DMS_RC DMSAPI_VLAddWrite VarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_CHAR *|pszVarname /* Variable name */,
DMS_VAR_TYPE VarType; /* Type of value */

DMS_VALUE *]pVarValue; /* Value of the variable or

NULL */

DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to

DMS_INT16

RecVarStruct */,

|pnIndex / Index in RecVarStruct */

64

Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLCreate

This procedure adds one element to an existing variables list. The element is
addressed through the variable name. The procedure converts variable names into
DMS addresses. As a result of this, the procedure requires more calculating time
than the routine.

DMSAPI_VLAddVarWriteByAddr.

Once a variables list has been filled, the write function can be performed. After a
write function has been completed the variables list can be edited through the “Add,
Change, Delete” functions.

A variables list can only accommodate a limited number of bytes. This number of
bytes determines the number of variables that are communicated. As variables of
different data types require differing amounts of storage, it is not possible to define a
DMSAPI_MAX_VAR_IN VARLIST constant. The procedure
DMSAPI_GetVarLen returns the storage requirement of the various variable types
within a variables list. The constant DMSAPI_VL_MAX_BYTES shows the
maximum amount of storage occupied by a variables list.

The structure DMS_REC_VARLIST_DATA always shows the amount of storage
available within the variables list.

Parameters:

* DmsHandle: Variables list handle for this variables list

* IpszVarname: Name of the variable to be read

* VarType can take the following values (See DMS variable types on page 147).

* VarValue is a reference to the value of the variable for executing the write
function (See DMS variable types on page 147).

* IplpRecVar: Structure of the populated variables list

* IpnIndex: IpnIndex within the IplpRecVar

Reference-Manual — DMS / API 65

DMSAPI_VLCreate

3 DMS client management

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was
not initialized.

E_DMSAPI_NO_RESOURCE

Variables list is full A new variables list must be cre-
ated.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_INVALID_VARTYP

The variable passed is of the wrong type.

E_DMSAPI_INVALID_NO_CONF

No project available

E_DMSAPI_INVALID_CONF

No information available about the specified variable

E_DMSAPI_INVALID_DMS_HANDLE

A valid variables list handle has not been passed.

E_DMSAPI_INVALID_CONN_HANDLE

The specified variable is not present on the specified
resource

E_DMSAPI_INTERNAL_ERROR

Internal error

DMSAPI_VLAddReadVarByAddr

SYNTAX

DMS_RC DMSAPI_VLAddReadVarByName (
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH IpOPath; /* Object path on server */
DMS_VAR_TYPE VarType; /* Type of value */

DMS_REC_VARLIST_DATA**IplpRecVar /* Pointer to

DMS_INT16

RecVarStruct */,

IpnIndex / Index in
RecVarStruct*/

66

Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLCreate

This procedure adds one element to an existing variables list. The element is
addressed through the object path and the variable type. This procedure offers a time
advantage over the procedure DMSAPI_VLAddReadVarByName as the variable
name does not need to be converted into a DMS address.

Once a variables list has been filled, the required function can be performed. Once a
read function has been completed (or halted) the variables list can be changed
through the Add and Delete functions.

A variables list can only accommodate a limited number of bytes. This number of
bytes determines the number of variables that are communicated. As variables of
different data types require differing amounts of storage, it is not possible to define a
DMSAPI_MAX_VAR_IN VARLIST constant. The procedure
DMSAPI_GetVarLen returns the storage requirement of the various variable types
within a variables list. The constant DMSAPI_VL_MAX_BYTES shows the
maximum amount of storage occupied by a variables list. The structure
DMS_REC_VARLIST_DATA always shows the amount of storage available within
the variables list.

Parameters:
J DmsHandle: Variables list handle for this variables list

* ObjPath has the structure DMS_OBJ_PATH and contains the addressing on the
Server.

typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;
* VarType can take the following values (See DMS variable types on page 147).
* IplpRecVar: Structure of the populated variables list
* Ipnlndex: Ipnlndex within the IplpRecVar

Reference-Manual — DMS / API 67

DMSAPI_VLCreate 3 DMS client management

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS lay-
er was not initialized.

E_DMSAPI_NO_RESOURCE Variables list is full A new variables list must be
created.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INVALID_DMS_HANDLE A valid variables list handle has not been
passed.

E_DMSAPI_INTERNAL_ERROR Internal error

DMSAPI_AddWriteVarByAddr

SYNTAX
DMS_RC DMSAPI_VLAddWriteVarByName(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH 1pOPath; /* Object path on
server */
DMS_VAR_TYPE VarType; /* Type of value */
DMS_VALUE *lpVarValue; /* Value of the variable or
NULL */
DMS_REC_VARLIST_DATA**IplpRecVar/* Pointer to RecVarStruct */,
DMS_INT16 *|pnIndex /* Index in RecVarStruct */
)

This procedure adds one element to an existing variables list. The element is
addressed through the object path and the variable type. This procedure offers a time
advantage over the procedure DMSAPI_VLAddWriteVarByName as the variable
name does not need to be converted into a DMS address.

68 Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLCreate

Once a variables list has been filled, the required function can be performed. After a
write function has been completed the variables list can be edited through the “Add,
Change, Delete” functions.

A variables list can only accommodate a limited number of bytes. This number of
bytes determines the number of variables that are communicated. As variables of
different data types require differing amounts of storage, it is not possible to define a
DMSAPI_MAX_VAR_IN VARLIST constant. The procedure
DMSAPI_GetVarLen returns the storage requirement of the various variable types
within a variables list. The constant DMSAPI_VL_MAX_BYTES shows the
maximum amount of storage occupied by a variables list. The structure
DMS_REC_VARLIST_DATA always shows the amount of storage available within
the variables list.

Parameters:
. DmsHandle: Variables list handle for this variables list

* ObjPath has the structure DMS_OBJ_PATH and contains the addressing on the
server.

typedef struct { DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;
* VarType can take the following values (See DMS variable types on page 147).

* VarValue is a reference to the value of the variable for executing the write
function (See DMS variable types on page 147).

* IplpRecVar: Structure of the populated variables list

* IpnIndex: Index within the IplpRecVar

Reference-Manual — DMS / API 69

DMSAPI_VLCreate

3 DMS client management

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was not
initialized.

E_DMSAPI_NO_RESOURCE

Variables list is full A new variables list must be created.

E_DMSAPI_INVALID_VARTYP

The variable passed is of the wrong type.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_INVALID_DMS_HANDLE

A valid variables list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error

DMSAPI_VLChangeValue

SYNTAX

DMS_RC DMSAPI_VLChangeValue(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INT16 nlndex /* Index in RecVarStruct */,
DMS_VAR_TYPE VarType; /* Type of value */
DMS_VALUE *]pVarValue; /* Value of the variable or

NULL */

DMS_REC_VARLIST_DATA**IplpRecVar /* Pointer to

)

RecVarStruct */,

In an existing variables list this procedure modifies the value that is to be written.
When the procedure is called the variables list is not allowed to wait for the response
to the previous write access.

This procedure is needed if there is a requirement to write to the same variables
several times in succession. There is no need to create the variables list anew each

time.

70

Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLDelVar

Parameters:
. DmsHandle: Variables list handle for this variables list
* nlndex: Index within the IplpRecVar

* VarType can take the following values. (See Appendix A, Variable types and
error codes)

* VarValue is a reference to the value of the variable for executing the write
function (See DMS variable types on page 147).

* IplpRecVar: Structure of the populated variables list

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer was
not initialized.

E_DMSAPI_INVALID_INDEX Invalid index in the variables list.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INVALID_VARTYP The variable passed is of the wrong type.

E_DMSAPI_INVALID_DMS_HANDLE | A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.3.2 DMSAPI_VLDelVar

SYNTAX

DMS_RC DMSAPI_VLDelVar(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INT16 nlndex /* Index in RecVarStruct */,

DMS_REC_VARLIST_DATA**IplpRecVar/* Pointer to
RecVarStruct */,

)

Reference-Manual — DMS / API 71

DMSAPI_VLClear 3 DMS client management

In an existing variables list this procedure deletes the variable that is addressed
through the index. The indexes of the other variables remain unchanged. When new
variables are added to the variables list these gaps are filled up.

This procedure is needed if faceplates can be opened and closed through user
intervention in a graphic.

If a variable is being accessed cyclically for reading, it must be stopped before
variables are deleted.

Parameters:

* DmsHandle: Variables list handle for this variables list
* nlndex: Index within the IplpRecVar

* IplpRecVar: Structure of the populated variables list

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer was not
initialized.

E_DMSAPI_INVALID_INDEX Invalid index in the variables list.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INVALID_DMS_HANDLE | A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.3.3 DMSAPI_VLClear

SYNTAX
DMS_RC DMSAPI_VLDel Var(

DMS_HANDLE DmsHandle /* VarListHandle */,
)

This procedure deletes all variables from an existing variables list. Afterwards, the
variables list can be populated with new variables.

72 Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLRead

Parameter:
. DmsHandle: Variables list handle for this variables list

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer was not
initialized.

E_DMSAPI_INVALID_DMS_HANDLE |A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.3.4 DMSAPI_VLRead

K

Icon.bmp

SYNTAX

DMS_RC DMSAPI_VLRead(
DMS_HANDLE DmsHandle /* VarListHandle */;
DMS_INT16 nCBId /* Callbackld */,
DMS_INT16 nSyncFlag /* Synchronisation flag */,
DMS_UINT32 ulProcT /* Procedure timeout */,
DMS_UINT32 ulRecVarLen * /* Size of storage area

to the pointer */,
DMS_REC_VARLIST_DATA *IpRecVar /* RecStruct of VL */

This procedure executes the simple read function on a populated variables list.
There is a response to this query. Once the response has been received and
evaluated, the variables list can be modified and re-read or completely deleted using
the Delete and Insert procedures.

Reference-Manual — DMS / API 73

DMSAPI_VLRead 3 DMS client management

Parameters:
. DmsHandle: Variables list handle for this variables list

e nCBId: Callbackld, or the variables list is retrieved via the DMSAPI-Receive
function; CBId is assigned the value DMS_NO_CALLBACK

* nSyncFlag
DMSAPI_SYNCHRON: The procedure waits for the specified procedure
timeout for the response from the Read function.

* DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the read access again in cases where insufficient
resources are available.

. ulProcT:
DMSAPI_NO_TIMEOUT no timeout
Value in milliseconds
DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

* ulRecVarLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used.

* IpRecVar: where the structure of the variables list being read is read
simultaneously with the current values (null for asynchronous operation).

Possible return values:

Function Description
E_DMSAPI_NOT_INIT The function was called although the DMS layer was not
initialized.

E_DMSAPI_INVALID_VARMODE The called function does not correspond with the vari-
ables list type set up at the time of its creation.

E_DMSAPI_NO_CALLBACK The specified callback function is not installed.

E_DMSAPI_SMALL_RCV_BUFF The receive buffer advised is too small, only possible in
synchronous operation.

74 Reference-Manual — DMS / API

3 DMS client management DMSAPI_VLReadCycle

Function Description

E_DMSAPI_TIMEOUT The function called has been executed, but the response
requested synchronously has not yet been received. This
error cannot occur if DMSAPI_WAIT_FOREVER is sup-
plied as the timeout.

E_DMSAPI_NO_CONNECTION There is currently no connection to the resource speci-
fied at the time of creation.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_RESOURCE It was not possible at the time to execute the Read func-

tion. More functions are being requested than the server
is capable of processing within a time interval. This error
cannot occur if DMSAPI_WAIT_FOREVER is supplied
as the timeout.

E_DMSAPI_INVALID_DMS_HANDLE | A valid variable list handle has not been passed.
E_DMSAPI_INTERNAL_ERROR Internal error

3.3.5 DMSAPI_VLReadCycle

o

-

SYl\pITAX

DMS_RC DMSAPI_VLReadCycle(
DMS_HANDLE DmsHandle /* VarListHandle */;
DMS_UINT32 ulCycleTime /* Cycle time in ms */,
DMS_INT16 nCBId /* Callbackld */,
DMS_INT16 nSyncFlag /* Synchronisation flag */,
DMS_UINT32 ulProcT /* Procedure timeout */,
DMS_UINT32 ulRecVarLen /* Size of storage area

referenced to the pointer */,

Reference-Manual — DMS / API 75

DMSAPI_VLReadCycle 3 DMS client management

DMS_REC_VARLIST_DATA *IpRecVar /* RecStruct of VL */
)

This procedure executes the cyclical read function on a populated variables list.
There is a response and cyclical variables list messages in response to this query.
The cyclical Read function is stopped via the function DMSAPI_StopCycleVar.
Once it has been stopped, the variables list can be modified and re-read or
completely deleted using the Delete and Insert procedures.

If the variables list is stopped, the new cyclical Read access is not started before the
response from the previous Stop has been received. If the variables list is stopped by
the application before the cyclical function has been executed, then the function is
cancelled.

Parameters:
] DmsHandle: Variables list handle for this variables list

* ulCycleTime: Cycle time in milliseconds; the specified cycle time is rounded to
the nearest number divisible by 200.

e nCBId: Callbackld, or the variables list is retrieved via the DMSAPI-Receive
function; CBId is assigned the value DMS_NO_CALLBACK

* nSyncFlag
DMSAPI_SYNCHRON: The procedure waits for the specified procedure
timeout for the response from the Read function.

* DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the read access again in cases where insufficient
resources are available.

J ulProcT:
DMSAPI_NO_TIMEOUT no timeout
Value in milliseconds
DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

* ulRecVarLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used.

* IpRecVar: when reading is executed synchronously, the structure of the
variables list that is read, along with the current values

76

Reference-Manual — DMS / API

3 DMS client management

DMSAPI_VLReadCycle

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was not
initialized.

E_DMSAPI_INVALID_VARMODE

The called function does not correspond with the variables
list type set up at the time of its creation.

E_DMSAPI_TIMEOUT

The function called has been executed, but the response
requested synchronously has not yet been received. This
error cannot occur if DMSAPI_WAIT_FOREVER is sup-
plied as the timeout.

E_DMSAPI_NO_CALLBACK

The specified callback function is not installed.

E_DMSAPI_SMALL_RCV_BUFF

The receive buffer advised is too small, only possible in
synchronous operation.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the resource specified
at the time of creation.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_RESOURCE

It was not possible at the time to execute the Read func-
tion. More functions are being requested than the server is
capable of processing within a time interval. This error
cannot occur if DMSAPI_WAIT_FOREVER is supplied as
the timeout.

E_DMSAPI_INVALID_DMS_HANDLE

A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error

Reference-Manual — DMS / API

77

DMSAPI_StopCycle

3 DMS client management

3.3.6 DMSAPI_StopCycle

K

Icon.bmp

SYNTAX
DMS_RC DMSAPI_VLStopCycle(

)
This

DMS_HANDLEDmsHandle/* VarListHandle */;

procedure stops a running cyclical variables list. Once a cyclical variables list

has been stopped, nothing more is received for that variables list. This means that if
this procedure is called before the application has received the first values for the
variables list, then it will never be able to receive and evaluate the requested values.
Variables can be removed from and added to a stopped variables list. Subsequently,
this variables list can be read cyclically again.

Parameters:

DmsHandle: Variables list handle for this variables list

nSyncFlag
DMSAPI_SYNCHRON: The procedure waits for the specified procedure
timeout for the response from the Stop function.

DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the Stop access again in cases where insufficient
resources are available.

ulProcT:

DMSAPI_NO_TIMEOUT no timeout

Value in milliseconds

DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

78

Reference-Manual — DMS / API

3 DMS client management

DMSAPI_VLWrite

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer for
this resource number was not initialized.

E_DMSAPI_INVALID_VARMODE

No cyclical Read function is started for this variables
list.

E_DMSAPI_TIMEOUT

The function called has been executed, but the re-
sponse requested synchronously has not yet been re-
ceived. This error cannot occur if DMSAPI_WAIT_-
FOREVER is supplied as the timeout.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the resource speci-
fied at the time of creation => list is stopped automati-
cally.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_RESOURCE

It was not possible at the time to execute the Stop
function. More functions are being requested than the
server is capable of processing within a time interval.
This error cannot occur if DMSAPI_WAIT_FOREVER
is supplied as the timeout.

E_DMSAPI_INVALID_DMS_HANDLE

A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error

3.3.7 DMSAPI_VLWrite

Y
od

SYNTAX

DMS_RC DMSAPI_VLWrite(

DMS_HANDLE
DMS_INT16

DmsHandle
nCBId

/* VarListHandle */;
/* CallbackId */,

Reference-Manual — DMS / API

79

DMSAPI_VLWrite

3 DMS client management

DMS_INT16 nSyncFlag /* Synchronisation flag */,
DMS_UINT32 ulProcT /* Procedure timeout */,
DMS_UINT32 ulRecVarLen /* Size of storage area

referenced to the pointer */,
DMS_REC_VARLIST_DATA *IpRecVar /* RecStruct of VL */
)

This procedure executes the Write function on a populated variables list. There is a
response to this query. Once the response has been received, the variables list can be
modified, re-written or completely deleted using the Modify Values, Delete and Add
procedures.

Parameters:

DmsHandle: Variables list handle for this variables list

nCBId: Callbackld, or the variables list is retrieved via the DMSAPI-Receive
function; CBId is assigned the value DMS_NO_CALLBACK

nSyncFlag

DMSAPI_SYNCHRON: The procedure waits for the specified procedure
timeout for the response from the Write function.

DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the write access again in cases where insufficient
resources are available.

ulProcT:

DMSAPI_NO_TIMEOUT no timeout

Value in milliseconds

DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

ulRecVarLen: only used when the synchronisation flag
DMSAPI_SYNCHRON is being used.

IpRecVar: when writing is executed synchronously, the structure of the
variables list that is read, along with the current values

80

Reference-Manual — DMS / API

3 DMS client management

DMSAPI_VLDelete

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was not
initialized.

E_DMSAPI_INVALID_VARMODE

The called function does not correspond with the variables
list type set up at the time of its creation.

E_DMSAPI_TIMEOUT

The function called has been executed, but the response
requested synchronously has not yet been received. This
error cannot occur if DMSAPI_WAIT_FOREVER is sup-
plied as the timeout.

E_DMSAPI_NO_CALLBACK

The specified callback function is not installed.

E_DMSAPI_SMALL_RCV_BUFF

The receive buffer advised is too small, only possible in
synchronous operation.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the resource specified
at the time of creation.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_RESOURCE

It was not possible at the time to execute the Write func-
tion. More functions are being requested than the server is
capable of processing within a time interval. This error can-
not occur if DMSAPI_WAIT_FOREVER is supplied as the
timeout.

E_DMSAPI_INVALID_DMS_HANDLE

A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error

3.3.8 DMSAPI_VLDelete
SYNTAX

DMS_RC DMSAPI_VLDelete(

DMS_HANDLE
)

DmsHandle /* VarListHandle */

Reference-Manual — DMS / API

81

DMSAPI_VLDelete

3 DMS client management

This procedure deletes an existing variables list. Even if the variables list is being
read cyclically at the time, it is automatically stopped and deleted. Once it has been
deleted the Callback function is not called up for that variables list again.

Parameter:

. DmsHandle: Variables list handle for this variables list

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_INVALID_DMS_HANDLE

A valid variable list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error

82

Reference-Manual — DMS / API

3 DMS client management Alarm management

3.4 Alarm management

Starting acquisition of alarms after a connection has been established.

Callback
Function
Connect

DMEAPL Get

AlarmSummary

Application
AIarmDatahase

Callback |
Alarms |

Application
Alarm receipt

Callback | Dl SAPI-
Ackdlarms . Acknan.AIarm

Callback
Function
. Disconnect 4

ap017us.bmp

After the GetAlarmSummary function has been started, the Callback function for
alarms is called automatically each time a new alarm is received. The application
stores these alarms in an alarms database, and can acknowledge them if required.
There is a response to each alarm acknowledgement. The Callback function for

AcknowledgeAlarms is called.

Reference-Manual — DMS / API 83

DMSAPI_GetAlarmSummary 3 DMS client management

3.4.1 DMSAPI_GetAlarmSummary

K

Icon.bmp

SYNTAX

DMS_RC DMSAPI_GetAlarmSummary(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 nCBId /* Callbackid */,
DMS_INT16 nSyncFlag /* Synchronisation flag */,
DMS_UINT32 ulProcT /* Procedure timeout */,
DMS_UINT32 ulRecAlalen /* Size of storage area

referenced to the pointer */,
DMS_REC_ALARMLIST_DATA*IpAlarmRec /* Pointer to AlarmListStruct */
)

After a GetAlarmSummary all alarms at the process station as well as all alarms
arriving from this point in time on are sent to the client. Following interruption of
the connection this function must be requested again.

Parameters:
. Connhandle: ConnectionHandle for this resource

e nCBId: Callbackld, or the alarms are retrieved via the DMSAPI-Receive
function; CBId is assigned the value DMS_NO_CALLBACK

* nSyncFlag
DMSAPI_SYNCHRON:The procedure waits for the specified procedure
timeout for the first response from the GetAlarmSummary function.
DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the write access again in cases where insufficient
resources are available.

. ulProcT:
DMSAPI_NO_TIMEOUT no timeout

84

Reference-Manual — DMS / API

3 DMS client management DMSAPI_GetAlarmSummary

Value in milliseconds
DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

* ulRecAlalen: is only used when the synchronisation flag
DMSAPI_SYNCHRON is used, and contains the length of the next storage
area in sequence.

* IpAlarmRec: when the structure of the GetAlarmSummary is received
synchronous with approximately the first 43 alarms

typedef struct DMS_REC_ALARMLIST_DATA {
DMS_ALARM_LIST_TYPE ListType;
DMS_INT16 ActAlarmNo; /* Current number of alarms */
DMS_REC_ALARM *IpAlarm; /* Alarm list */

} DMS_REC_ALARMLIST_DATA;

The element ListType can take the following values:

DMS_ALARM_GAS old alarms which were requested through a
GetAlarmSummary. There are more old alarms to follow.

DMS_ALARM_LAST_GAS: all the old alarms requested through
GetAlarmSummary have arrived.

DMS_ALARM_EVENTS: list containing currently arising alarms
The element IpAlarm is the following alarm list with ActAlarmNo entries.

typedef struct DMS_REC_ALARM {

DMS_DT TransitionTime; /* Alarm time */
DMS_OBJNO Objectld; /* ObjNumber */
DMS_WORDI16 AlarmIndex; /* Alarm index */
DMS_ALARM_TYPE AlarmType; /* Alarm type */
DMS_OBJNO ObjectClass; /* Object class */

DMS_ALARM_STATUS CurrAlarmStatus; /* Curr. alarm stat. */
DMS_ALARM_STATUS PrevAlarmStatus; /* Old alarm st. */

Reference-Manual — DMS / API 85

DMSAPI_GetAlarmSummary 3 DMS client management

DMS_ALARM_PRIO Priority;
DMS_BOOLEAN NotificationLost;

DMS_RC IC;
DMS_UINT32 ValueSize;
DMS_VAR_TYPE AlarmValType;
DMS_VALUE *AlarmValue;

} DMS_REC_ALARM,;

/* Alarm prio */
/* Alarm burst */
/* Alarm error */
/* Size A-value */
/* Data type */

/* Alarm value */

Alarm type can take values through which the text for the system messages can be

identified.

CurrAlarmStatus and PrevAlarmStatus can take the following values:

Function Description

DMS_ALARM_INACT_INACTNACKED | Inactive/NotAcknowledged

DMS_ALARM_ACT_ACTNACKED Active/Active_NotAcknowledged

DMS_ALARM_INACT_INACTACKED | Inactive/Inactive_Acknowledged

DMS_ALARM_ACT_ACTACKED Active/Acknowledged

DMS_ALARM_INACT_ACTNACKED Inactive/Active_NotAcknowledged

DMS_ALARM_AP_DELETED Alarm point has been deleted

AlarmValType can take the different values for the various different data types (See

DMS variable types on page 147).

The alarm value is a reference to the value of the alarm point (See DMS variable

types on page 147).

86 Reference-Manual — DMS / API

3 DMS client management

DMSAPI_CreateAckAlarmList

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_INVALID_CONN_HANDLE

A valid ConnectionHandle has not been passed.

E_DMSAPI_TIMEOUT

The function called has been executed, but the re-
sponse requested synchronously has not yet been re-
ceived. This error cannot occur if DMSAPI_WAIT_FOR-
EVER is supplied as the timeout.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the specified re-
source.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_CALLBACK

The specified callback function is not installed.

E_DMSAPI_SMALL_RCV_BUFF

The receive buffer advised is too small, only possible in
synchronous operation.

E_DMSAPI_NO_RESOURCE

It was not possible at the time to execute GetAlarm-
Summary. More functions are being requested than the
server is capable of processing within a time interval.
This error cannot occur if DMSAPI_WAIT_FOREVER is
supplied as the timeout.

E_DMSAPI_INTERNAL_ERROR

Internal error

3.4.2 DMSAPI_CreateAckAlarmList
DMSAPI_CreateAckAlarmList(ConnHandle, &DmsHandle);

Through this procedure the storage is set up and a unique DMS-Handle created for a
DMS acknowledgement alarm list. Once this list has been created, alarm
acknowledgements can be added to it.

Populated acknowledgement lists can be sent to the server through Acknowledge
Alarm. After its receipt, the acknowledgement list can be cleared using the Clear
function, and new acknowledgement messages can then be added.

Reference-Manual — DMS / API

87

DMSAPI_AddAckAlarmByAddr 3 DMS client management

The storage and DMS-Handle are deleted only through the function
DMSAPI_DeleteAckAlarmList.

Parameters:
. Connhandle: ConnectionHandle for this resource

* DMS_Handle: Handle for this acknowledgement list, through which all further
operations on the list are controlled

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_NO_RESOURCE No resources (storage/DMSHandles) in order to create

this acknowledgement list.

E_DMSAPI_INVALID_CONN_HANDLE | A valid ConnectionHandle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.4.3 DMSAPI_AddAckAlarmByAddr

DMSAPI_AddAckAlarmByAddr (DmsHandle, AlarmPoint, AlarmStatus,
&AlarmIndex,)

This procedure adds one element to an existing acknowledgement list. The element
is described by the alarm point and the alarm status.

Once an acknowledgement list has been populated, the acknowledgement function
can be performed. Once the acknowledgements have been evaluated, the list can be
cleared and used again.

Parameters:

* Dmshandle: Handle for the alarm acknowledgement list
* Alarm point of the alarm to be acknowledged

e Alarm status of the alarm to be acknowledged

* Alarm index within the RecStruct being returned

88

Reference-Manual — DMS / API

3 DMS client management DMSAPI_ClearAckAlarmList

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer was not
initialized.

E_DMSAPI_NO_RESOURCE Acknowledgement list is full It must first be uploaded. Fol-
lowing this, the other alarms can be acknowledged.

E_DMSAPI_INVALID_ARG The parameter passed is invalid.

E_DMSAPI_INVALID_DMS_HANDLE | A valid handle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.4.4 DMSAPI_ClearAckAlarmList
DMSAPI_ClearAckAlarmList(DmsHandle)

This procedure clears all the acknowledgements from an existing alarm
acknowledgement list. The procedure cannot be called if an acknowledgement for
the list concerned is running at the time.

Parameter:
* Dmshandle: Handle for this alarm acknowledgement list.

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_INVALID_DMS_HANDLE |A valid handle has not been passed.

E_DMSAPI_SERVICE_IN_USE The response to the acknowledgement for this list has
not yet been received from the server.
E_DMSAPI_INTERNAL_ERROR Internal error

Reference-Manual — DMS / API 89

DMSAPI_AckAlarmList 3 DMS client management

3.4.5 DMSAPI_AckAlarmList

K

Icon.bmp

DMSAPI_AckAlarmList(DmsHandle, CBId,SyncMode, Timeout,&RecStruct);

This procedure executes the Acknowledge function on a populated alarm
acknowledgement list. There is a response to this query. Once the response has been
received and evaluated, the list can be modified and re-acknowledged or completely
deleted using the Delete and Insert procedures.

Parameters:

Dmshandle: Handle for this acknowledgement list

CBId: Callbackld, or the acknowledgement is retrieved via the DMSAPI-
Receive function; CBId is assigned the value DMS_NO_CALLBACK

SyncFlag/ProcTimeOut
DMSAPI_SYNCHRON: The procedure waits for the specified procedure
timeout for the response from the acknowledgement.

DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the Write access again in cases where insufficient
resources are available.

ProcTimeOut:

0 no timeout

Value in milliseconds

DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

RecStruct: when calling is executed synchronously, the structure of the
acknowledgement list that is read, along with the current values.

90

Reference-Manual — DMS / API

3 DMS client management

DMSAPI_AckAlarmList

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was
not initialized.

E_DMSAPI_TIMEOUT

The function called has been executed, but the re-
sponse requested synchronously has not yet been re-
ceived. This error cannot occur if DMSAPI_WAIT_FOR-
EVER is supplied as the timeout.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the resource speci-
fied at the time of creation.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_CALLBACK

The specified callback function is not installed.

E_DMSAPI_SMALL_RCV_BUFF

The receive buffer advised is too small, only possible in
synchronous operation.

E_DMSAPI_NO_RESOURCE

It was not possible at the time to execute the Acknowl-

edge function. More functions are being requested than
the server is capable of processing within a time inter-

val. This error cannot occur if DMSAPI_WAIT_FOREV-
ER is supplied as the timeout.

E_DMSAPI_INVALID_DMS_HANDLE

A valid list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR

Internal error

Reference-Manual — DMS / API

91

DMSAPI_DeleteAckAlarmList 3 DMS client management

3.4.6 DMSAPI_DeleteAckAlarmList

L A
o

DMSAPI_DeleteAckAlarmList(DmsHandle);

This procedure deletes an existing alarm acknowledgement list. If the response for
the acknowledgement task has not yet been received, then when it does arrive it will
not be forwarded to the application.

Parameter:
* Dmshandle: Handle for this alarm acknowledgement list

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer
was not initialized.

E_DMSAPI_INVALID_DMS_HANDLE | A valid handle has not been passed.
E_DMSAPI_INTERNAL_ERROR Internal error

3.4.7 DMSAPI_AckAlarmByList

%

o

SYNTAX

DMS_RC DMSAPI_ AckAlarmByList(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_HANDLE *pDmsHandle /* Identifier for Acklist */,
DMS_INTI16 nCBId /* CallbackId */,
DMS_INT16 ActAlarmNo /* Current number of alarms to be

acknowledged */,

92 Reference-Manual — DMS / API

3 DMS client management DMSAPI_AckAlarmBylList

DMS_REC_ACKALARM *IpAlarmAck /* Pointer to AlarmAckStruct */

DMS_INT16 nSyncFlag /* Synchronisation flag */,
DMS_UINT32 ulProcT /* Procedure timeout */,
)

This procedure executes the Acknowledge function on a transferred alarm
acknowledgement list that has been filled by the application itself. There is a
response to this query. Once the response has been received and evaluated, the list is
automatically cleared, i.e. the DmsHandle is invalid. If the response to this request is
synchronous, then the error codes for the individual acknowledgements are coded
into the transferred list.

Parameters:
J ConnHandle: Connectionhandle for this resource
* IpDmsHandle: Handle for this acknowledgement list

* nCBId: Callbackld, or the acknowledgement is retrieved through the DMSAPI-
Receive function; CBId is assigned the value DMS_NO_CALLBACK

* ActAlarmNo: Number of alarms to be acknowledged that have been transferred
IpAlarmAck: populated list containing alarms which are to be acknowledged

The element IpAlarm is the following alarm list with ActAlarmNo entries.

typedef struct DMS_REC_ACKALARM {

DMS_OBJNO Objectld; /* ObjNumber */

DMS_WORD16 AlarmlIndex; / * AlarmIndex */

DMS_ALARM_STATUS AlarmStatus; /* Curr. AlarmSt. */
DMS_RC Ic; /* Alarm error */

} DMS_REC_ACKALARM;

The alarm status can take the following values:
DMS_ALARM_INACT_INACTNACKED: Inactive/not acknowledged
DMS_ALARM_ACT_ACTNACKED: Active/Active_Not acknowledged

Reference-Manual — DMS / API 93

DMSAPI_AckAlarmBylList 3 DMS client management

DMS_ALARM_INACT_INACTACKED: Inactive/Inactive_Acknowledged
DMS_ALARM_ACT_ACTACKED: Active/Acknowledged
DMS_ALARM_INACT_ACTNACKED: Inactive/Active_NotAcknowledged
DMS_ALARM_AP_DELETED: Alarm point has been deleted

* nSyncFlag

DMSAPI_SYNCHRON: The procedure waits for the specified procedure timeout
for the response from the alarm acknowledgement.

DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used to
automatically send the alarm acknowledgement again in cases where insufficient
resources are available.

. ulProcT:
DMSAPI_NO_TIMEOUT no timeout
Value in milliseconds

DMSAPI_WAIT_FOREVER: Procedure will not return until the task is executed,
or proves impossible to execute.

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer was not
initialized.

E_DMSAPI_TIMEOUT

The function called has been executed, but the re-
sponse requested synchronously has not yet been re-
ceived. This error cannot occur if DMSAPI_WAIT_FOR-
EVER is supplied as the timeout.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the resource speci-
fied at the time of creation.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_CALLBACK

The specified callback function is not installed.

94

Reference-Manual — DMS / API

3 DMS client management Domain management

Function Description

E_DMSAPI_SMALL_RCV_BUFF The receive buffer advised is too small, only possible in
synchronous operation.

E_DMSAPI_NO_RESOURCE It was not possible at the time to execute the Acknowl-

edge function. More functions are being requested than
the server is capable of processing within a time inter-
val. This error cannot occur if DMSAPI_WAIT_FOREV-
ER is supplied as the timeout.

E_DMSAPI_INVALID_DMS_HANDLE | A valid list handle has not been passed.

E_DMSAPI_INTERNAL_ERROR Internal error

3.5 Domain management

Domain management is used for exchanging significant volumes of configuration
data between DMS-client and DMS-server. These volumes of data are known as
domains. A client can request the following domain functions on the server:

. Download domains onto the server
* Upload domains from the server
. Delete domains on the server

This domain management can only be performed by Freelance Engineering. The
procedures are therefore not enabled and described for the DMSAPI applications.

3.6 Program invocation management

The management system for program invocation is currently only implemented and
enabled for Freelance Engineering. Name management for the DMSAPI application
does not at present hold any configuration information for implementing the task
names on the process station for DMS address.

Reference-Manual — DMS / API 95

Program invocation management 3 DMS client management

DMSAPI_StartPI

L A
o

DMSAPI_StartPIByName (CBId, PIName, PILen, PI-Parameter, & DMS_Handle,
SyncMode, Timeout,&PIMsg)

DMSAPI_StartPIByAddr (ConnHandle, CBId, ObjNo, PILen, PI-Parameter,
&DMS_Handle, SyncMode, Timeout,&PIMsg)

This procedure executes a “StartProgramlnvocation” function on a DMS server
station. The “ProgramInvocation” is either identified by its name or by object
number and connection.

Parameters:
. Connhandle: ConnectionHandle for this resource

e CBId: Callbackld, or the alarms are retrieved via the DMSAPI-Receive
function; CBId is assigned the value DMS_NO_CALLBACK

* PIName: Name of the PI object that is to be started. DMS name management
must be activated.

* ObjNo: Object number of the PI object that is to be started
* PILen: Length of the PI parameters

* PI-Parameters: Parameters that are transferred to the PI

* Dmshandle: Handle for this acknowledgement list

* CBId: Callbackld, or the acknowledgement is retrieved via the DMSAPI-
Receive function; CBId is assigned the value DMS_NO_CALLBACK

* SyncFlag / ProcTimeOut
DMSAPI_SYNCHRON: The procedure waits for the specified procedure
timeout for the response from PI Start.

* DMSAPI_ASYNCHRON: The response is not waited for. The timeout is used
to automatically send the PI start access again in cases where insufficient
resources are available.

96

Reference-Manual — DMS / API

3 DMS client management

Program invocation management

. ProcTimeOut:

0 no timeout

Value in milliseconds
DMSAPI_WAIT_FOREVER: Procedure will not return until the task is
executed, or proves impossible to execute.

* RecStruct: When the procedure is called synchronously, the structure of the PI
response is contained therein with the current values

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer for this re-
source number was not initialized.

E_DMSAPI_TIMEOUT

The function called has been executed, but the response re-
quested synchronously has not yet been received. This error
cannot occur if DMSAPI_WAIT_FOREVER is supplied as the
timeout.

E_DMSAPI_NO_CONNECTION

There is currently no connection to the specified resource.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_CONF

No project available

E_DMSAPI_INVALID_CONF

There is no information in name management on the speci-
fied PI object

E_DMSAPI_NO_CALLBACK

The specified callback function is not installed.

E_DMSAPI_SMALL_RCV_BUFF

The receive buffer advised is too small, only possible in syn-
chronous operation.

E_DMSAPI_NO_RESOURCE

It was not possible at the time to execute the StartProgramin-
vocation function. More functions are being requested than
the server is capable of processing within a time interval. This
error cannot occur if DMSAPI_WAIT_FOREVER is supplied
as the timeout.

E_DMSAPI_INTERNAL_ERROR

Internal error

Reference-Manual — DMS / API

97

Receiving/decoding data 3 DMS client management

DMSAPI_StopPI

L A
o

DMSAPI_StopPI (ConnHandle, PIName, PILen, PI-Parameter, &DMS_Handle,
SyncMode, Timeout,&PIMsg)

DMSAPI_ResetPI

Y
o

DMSAPI_ResetPI (ConnHandle, PIName, PILen, PI-Parameter, &DMS_Handle,
SyncMode, Timeout,&PIMsg)

3.7 Receiving/decoding data

In the DMS-API applications have three options for receiving messages from the
server station:

* In the procedure that issues the request it is possible to wait for the response
synchronously. In this case the application provides the storage area into which
the message is coded. The messages for the cyclical variables lists must
continue to be received.

* The application can retrieve the responses actively via the DMSAPI_Receive
function. In this case the application provides the storage area into which the
message is coded.

* The application can obtain information on arriving messages through the
Callback function. The storage location in which the message is coded belongs
to the DMS-API. Once the Callback function is completed, the storage location
ceases to be valid.

98 Reference-Manual — DMS / API

3 DMS client management

Structure definitions

3.7.1 Structure definitions

When messages are received from the server station, the application is informed. It
receives details for the following incoming messages.

==> Connecting/disconnecting: Connection structure

==> Variable functions: Variable structure

==> InformationReport: Information Report structure, the
further definition of
structures application-dependent
Freelance defines the structure for
curves and disturbance course logs

=> Alarm functions: Alarm structure

=> Alarm acknowledgement function Alarm acknowledgement

structure

==> Download functions Download structure

==> ProgramInvocation functions ProgramInvocation structure

==> Version changes: Version structure

In the section DMS-Ultilities there is a global function for these structures which

outputs their content for debug purposes:

DMSAPI_DumpRecData

Length of the next buffer in se-
quence. In the case of synchro-
nous calling or synchronous re-
ceiving of data with the
DMSAPI-Receive function, this
buffer must be large enough.

Data type Component Range of value
DMS_RC rc
DMS_CONN_HANDLE |ConnHandle: Handle for the
connection
DMS_INT32 BuffLen:

Reference-Manual — DMS / API

99

Structure definitions 3 DMS client management

Data type Component Range of value

DMS_INT32 BuffType DMS_REC_CONN_STATION_TYPE
DMS_REC_VARLIST_TYPE
DMS_REC_INFO_REPORT_TYPE
DMS_REC_ALARMLIST_TYPE
DMS_REC_ALARMACK_LIST_TYPE
DMS_REC_PI_TYPE
DMS_REC_DOM_TYPE
DMS_REC_VERS_TYPE

DMS_REC_UNION IpRecBuff: Union through all
receive structures

Connection structure

When a connection is being established, the ReturnCode can take the following
values:

« E_DMSAPI_OK: All OK

« E_DMSAPI_INVALID_STATION_TYPE: Invalid station type
. E_DMSAPI_INVALID_STATION_NO: Invalid station number
» E_DMSAPI_NO_OS: No operating system

When disconnecting, the ReturnCode can only take the following value:

100 Reference-Manual — DMS / API

3 DMS client management Structure definitions

. E_DMSAPI_ABORT: Connection aborted

Data type Component Range of values
DMS_INT32 IBoardType: DMS_CPU_UNKNOWN
Type of CPU board DMS_CPU_DCP02
DMS_CPU_DCP10
DMS_CPU_PC
DMS_CPU_HK80
DMS_INT32 IOSType: DMS_OSVERSION_EPROM
Type of operating system DMS_OSVERSION_MSR
DMS_OSVERSION_GWY
DMS_INT32 IGwySubType DMS_SUBTYPE_UNKN_GWY
Subtype of gateway DMS_SUBTYPE_P_GWY
DMS_SUBTYPE_DDE_GWY
DMS_UINT32 ullPAddress
DMS_INT32 OwnStationNo: Own station

number is required only if the
station is operating as a server
station.

DMS_INT32 IRedFlag DMS_STATION_PRIMARY
DMS_STATION_SECONDARY

Variable structure

The variable structure is called with the following return codes:
« E_DMSAPI_OK: All OK

. E_DMSAPI_ABORT: Connection aborted

Data type Component
DMS_HANDLE D MSHandle
DMS_INT16 MaxNoOfVar: Maximum number of variables

Reference-Manual — DMS / API 101

Structure definitions

3 DMS client management

Data type Component
DMS_INT16 ActNoOfVar: Number of assigned variables
DMS_INT16 FreeBytes: Number of free bytes in list

DMS_VAR_ELEM

DMSVarElem: A table with MaxNoOfVar entries,
of which ActNoOfVar are valid.

The structure of DMS_VAR_ELEM

Data type

Component

Range of values

DMS_OBJPATH

DMS-Addressing: ObjNumber Cmp-
Number

DMS_CHAR VarName Variable name or NULL
DMS_UINT32 ValueSize
DMS_VAR_RC VarRc: ReturnCode for this 1 variable

DMS_VAR_TYPE

VarType: Type of variable

DMS_VAR_TYPE_WORD16
DMS_VAR_TYPE_WORD32

DMS_VAR_STATUS |VarStatus DMS_NOT_VALID
DMS_CHANGED
DMS_NOT_CHANGED DMS_DE-
LETED
DMS_VALUE VarValue If the variable is invalid or deleted,
a NullPointer is passed here.
102 Reference-Manual — DMS / API

3 DMS client management

Structure definitions

Information report structure

The variable structure is only called with the following return code:

Data type Component Range of values
DMS_INT32 IRId MSR supports:
- DMSAPI_CP_ID
- DMSAPI_SAP_ID
DMS_INT32 Buffer (application-dependent)
The structure for DMSAPI_CP_ID and DMSAPI_CP_ID
Data type Component Range of values
DMS_INT16 NoOfVar: Number of variable elements
DMS_OBJNO ObjNumber Object number of block
DMS_VAR_TYPE VarType[6] Data types of variables
DMS_INT16 ContentLen Length of data
DMS_DT StartEventTime for archiving
DMS_BYTE Data: DMS_DT
- NoOfVar Time stamp
- Data

Alarm structure

The alarm structure is only called with the following return code:

» E_DMSAPI_OK: All OK

Data type Component

DMS_INT32 NoOfAlarm Number of alarm elements

DMS_ALARM_ELEM |DMSAlarmElem

Reference-Manual — DMS / API

Structure definitions 3 DMS client management

The structure of DMS_ALARM_ELEM

Data type Component
DMS_APATH DMS-Addressing:

* ObjNumber

e AlarmNumber
DMS_DT Alarm time
DMS_WORD16 Alarm type
DMS_ASTATCurr AlarmStatus
DMS_ASTATPrev AlarmStatus
DMS_BOOLEAN NotificationLost
DMS_VALUE IpMsgValue

Alarm acknowledgement structure

The alarm structure is called with the following return codes:
« E_DMSAPI_OK: All OK

. E_DMSAPI_ABORT: Connection aborted

Data type Component
DMS_INT32 NoOfAckAlarm: Number of acknowledged alarms
DMS_ALARM_ACK_ELEM |DMSAlarmElem

The structure of DMS_ALARM_ELEM

Data type Component

DMS_APATH DMS-Addressing: ObjNumber and AlarmNumber
DMS_ASTAT CurrAlarmStatus

DMS_RC rc: Return code for individual acknowledgement

104 Reference-Manual — DMS / API

3 DMS client management

Structure definitions

Download structure

The download structure is called with the following return codes:

E_DMSAPI_OK: All OK

W_DMSAPI_DL_IS_RUNNING: Download still running

E_DMSAPI_ABORT: Connection is aborted
E_DMSAPI_DOWNLOAD_ABORT: Server has aborted the download
E_DMSAPI_INVALID CONF: Server was unable to install/delete domain

Data type Component Range of values
DMS_INT32 DMSHandle
DMS_INT32 Percent: Download status in percent 0-100

Program invocation structure

The “program invocation” structure is called with the following return codes:
E_DMSAPI_OK: All OK
E_DMSAPI_ABORT: Connection is aborted

Version structure

E_DMSAPI_INVALID_CONF: Server could not find PI

E_DMSAPI_PI_IN_USE: Server was unable to execute PI as it is just being

executed

Data type

Component

DMS_INT32

DMSHandle

The version structure is only called with the following return code:

E_DMSAPI_OK: All OK

Each time a reconfiguration is carried out, every Callback function is informed for
which resource a reconfiguration has been performed. After reconfiguration, name

Reference-Manual — DMS / API

105

Synchronous functions 3 DMS client management

management has new values. The situation can arise where the current variables lists
are invalid, or refer to different variables.

Data type Component
DMS_INT32 ResourceNo
DMS_CHAR Project name
DMS_INT32 MajorVersionNo
DMS_INT32 MinorVersionNo
DMS_INT32 PatchVersionNo
DMS_INT32 MaxObjN

3.7.2 Synchronous functions

All functions which perform an action on the server and thus occasion the server to
send a response can be called synchronously. The function only returns when the
response is present. The response buffer is made available by the application. The
response is returned in the transfer structure.

DMSAPI_Receive (ReceiveTimeOut,&RecStruct)

All functions which perform an action on the server and thus occasion the server to
send a response can be called asynchronously. The function returns immediately
after sending. If no Callback function is installed for the function (CBId set to
DMS_NO_CALLBACK), then the response must be retrieved via the
DMSAPI_Receive function. The response buffer is made available by the
application. The response is returned in the transfer structure.

106

Reference-Manual — DMS / API

3 DMS client management DMSAPI_RegisterCltCB

3.7.3 DMSAPI_RegisterCItCB

SYNTAX
DMS_RC DMSAPI_RegisterCItCB(
DMS_INT16 nCBId /* Callbackld */,
DMS_REC_DATA_PROC CallBackProc/* Callbackfunction */
);

This procedure registers a callback function with a specific Callbackld. The
registered Callback function is called when data are received. On connecting and
disconnecting all registered Callback functions are called.

Registration of the various Callback functions ought to/must be carried out before
DMSAPI_Init is called. Immediately after initialisation the DMS is active and from
that point on can be connected with client stations.

These connections are also displayed to the applications through the connection
structure in the Callback functions.

Parameters:
* nCBId: Callbackld for which the following procedure is installed.

* CallBackProc: Callback function that is called up when data for the CBID are
received. If NULL is passed as a parameter, then the Callback function is de-
installed.

typedef DMS_RC (* DMS_REC_DATA_PROC)
(DMS_REC_DATA *DmsRec);

Possible return values:

Function Description

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CALLBACK The specified callback function is not in-
stalled.

E_DMSAPI_DUPLICATE_CALLBACK | A function is already installed for the spec-
ified Callbackld.

Reference-Manual — DMS / API 107

DMSAPI_RegisterCItCB 3 DMS client management

Function Description

E_DMSAPI_NO_RESOURCE The maximum number of Callback func-
tions is registered.

E_DMSAPI_INTERNAL_ERROR Internal error

DMSAPI_RegisterFreeCItCB (&CBID, (*DMSRC) (Fnc(&RecStruct)))

This procedure registers a Callback function and returns a free Callbackld. The
registered Callback function is called when data are received. On connecting and
disconnecting all registered Callback functions are called.

Registration of the various Callback functions ought to/must be carried out before
DMSAPI_Init is called. Immediately after initialization the DMS is active and from
that point on can be connected with client stations.

These connections are also displayed to the applications through the connection
structure in the Callback functions.

Parameters:
* CBId: Callbackldentification for which the following procedure is installed.

e Fnc: Callback function that is called up when data for the CBId are received. If
NULL is passed as a parameter, then the Callback function is de-installed.

Possible return values:

Function Description

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CALLBACK The specified callback function is not in-
stalled.

E_DMSAPI_DUPLICATE_CALLBACK | A function is already installed for the
specified Callbackld.

E_DMSAPI_NO_RESOURCE The maximum number of Callback func-
tions is registered.
E_DMSAPI_INTERNAL_ERROR Internal error

108

Reference-Manual — DMS / API

3 DMS client management Callback function (&RecStruct)

3.7.4 Callback function (&RecStruct)

If the DMS facility is called for a Callback function, the response is passed to the
Callback function. After the Callback function is completed, the data range is
invalid. If the Callback function produces a return code other than null, then the
connection is aborted and then re-established.

In multitasking (or multithreading) environments the Callback function can be
called “simultaneously” from different task contexts. In this function it is also
possible to await the arrival of events. However, the event in question must not be
the receipt of further data on the same connection. Only the other connections
continue to be used.

When connecting and disconnecting, all Callback functions are always called. The
connection to Freelance Engineering is then also indicated.

Likewise, each time a change is made to the configuration, all Callback functions
are called. Now the application itself must decide what needs to be done. For
example, which functions have just failed to perform correctly because of the
incorrect configuration, and can now be repeated. Or again, which variables need to
be re-read because the internal Freelance address details have changed.
Configuration changes can be prevented by locking the object library. In this case
Freelance Engineering announces that the downloads cannot be carried out.

Reference-Manual — DMS / API 109

Callback function (&RecStruct) 3 DMS client management

110 Reference-Manual — DMS / API

4 Name management

4 Name management

Name management is only available on stations that have been configured and
loaded as gateways in Freelance Engineering. The receipt of the files (domains) to
be loaded by Freelance Engineering takes place through the server procedures of
domain management. The domains are coded in binary.

Name management applies only to one resource, i.e. if the DMSAPI is being run for
several resources simultaneously, those resources will have different address spaces.

E.g.:
Resource 1 manages Projectl
Resource 2 manages Project2

The re-configuration of Freelance Engineering can be prevented if the object library
is locked. For this purpose the following functions are provided: DMSAPI_LockOV
and DMSAPI_UnlockOV.

Name management has access to the following information:

* Version information: Freelance Engineering checks whether or not the version
of the connected gateway corresponds with the configured version.

. Station information - including, amongst other details, IP addresses and
versions - for all the stations in a Freelance project.

J Variable information on all variables for which read or write access has been
configured in Freelance Engineering.

* Tag information on all tags for which read or write access has been configured
in Freelance Engineering.

* Information on Freelance object classes, with all the component names for the
addressable variables in a block.

Reference-Manual — DMS / API 111

File directory

4 Name management

4.1 File directory

Before the DMSAPI is initialized the application can define a gateway directory,
under which a directory tree is created. Under this directory a separate directory is
set up for each resource. The directory is assigned the name Res<OwnResNo>. In
this directory a file is stored with the name “Proj.dom”, containing the project used
most recently for the resource. Under that directory a separate directory is set up for
each project, called by the project name. The following files are downloaded from
Freelance Engineering and stored in the directory:

» vers.dom: File containing details of its own project version

* ov.dom: File containing information on the size of the object library and the
load status of the separate objects

» stat.dom: File containing details of the various resources

* version.dom: File containing version information on the various resources.
* tag.dom: File containing details of the tags

* var.dom: File containing details of the variables

e fb<Num>.dom: File containing details relating to the different object classes
such as function blocks, SFC and user-defined structures.

In the example below, in Windows Explorer a gateway directory is set up under
<Freelance\proj>. Under this directory 2 gateways have been set up with the
resource numbers 88 and 123. Resource 88 has been loaded by Freelance
Engineering with projects projA and projB, while resource 123 has been loaded by a
different Freelance Engineering with projects projl, proj2 and proj3.

112

Reference-Manual — DMS / API

4 Name management DMSAPI_SetProjectDir

E‘l Explonng - D:\freelance\proj
File Edit “iew Toolz Help

| & Folders

_ F- Windowes
Elag Scsi_2 (D)
EI{:I freelance
=3 proj

-7 Program Files

ap018us.bmp

4.1.1 DMSAPI_SetProjectDir
SYNTAX
DMS_RC DMSAPI_SetProjectDir(

DMS_CHAR * szProjectDir

);
If the DMSAPI is run on a computer with a hard disk and if the gateway
configuration is downloaded on that computer, then the gateway directory can be set
using the function DMSAPI_SetProjectDir. The result of this (setting) operation is
that all Freelance domains are installed under this directory. If the project directory
is changed through calling this function, connections to all client stations (generally
Freelance Engineering) are automatically aborted. The project directory is set to the

same directory for all resources. Freelance Engineering cannot load a configuration
until the project directory is set.

Parameter:

* szProjectDir: validdirectory

Reference-Manual — DMS / API 113

DMSAPI_ChangeProject 4 Name management

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS
layer for this resource number was not ini-
tialised.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_INVALID_DIR The directory cannot be accessed

E_DMSAPI_CONFIGURING Freelance Engineering is currently loading the
configuration

E_DMSAPI_INTERNAL_ERROR | Internal error

4.1.2 DMSAPI_ChangeProject

SYNTAX

DMSAPI_ChangeProject(
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_CHAR *szProjectName /* Project name */

)

If the DMSAPI is run on a computer with a hard disk and if the gateway
configuration is downloaded on that computer, then the gateway directory can be set
using the function DMSAPI_ChangeProject. The result of this (setting) operation is
that all Freelance domains are installed under this directory. If the project directory
is changed through calling this function, connections to all client stations (generally
Freelance Engineering) are automatically aborted. If the specified project is not
available, then the name management functions do not return any values. During
initialization and Load Entire Station Freelance Engineering automatically sets the
project directory to the Freelance Engineering project name.

Parameters:
. OwnResNo: Own station's resource number. The DMSAPI_Init must be called.

* szProjectname: The project name must be a valid file name

114 Reference-Manual — DMS / API

4 Name management Project information

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this re-
source number was not initialised.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_CONFIGURING Freelance Engineering is currently loading the configuration.

E_DMSAPI_INVALID_DIR The directory cannot be accessed

E_DMSAPI_INTERNAL_ERROR |Internal error

4.2 Project information

4.2.1DMSAPI_GetProjectinfo

SYNTAX
DMS_RC DMSAPI_GetProjectInfo(
DMS_RES_NO OwnResNo /* Own resources */,
DMS_VERSION_DATA* IpVersionData /* Version data */
);

The following information is provided if the DMSAPI was initialised using the
function DMSAPI_Init. Each time there is a download from Freelance Engineering
all registered Callback functions automatically receive these details.

Parameters:

. OwnResNo: Own station's resource number. The DMSAPI_Init must be called.

IpVersionData:
typedef struct DMS_VERSION_DATA {
DMS_CHAR *ProjName; /* Project name */
DMS_WORDI16 wMajorVersion; /* Major version number */
DMS_WORD16 wMinorVersion; /* Minor version number */

Reference-Manual — DMS / API 115

Locking “Name management” 4 Name management

DMS_WORDI16 wPatchVersion; /* Patch version number */
} DMS_VERSION_DATA;

The project name can be changed using the function DMSAPI_ChangeProject. If
the current project name is different from the project that Freelance Engineering is
processing and if the gateway station is loaded from Freelance Engineering, the
gateway station is automatically allocated a project name and subsequent version
numbers from Freelance Engineering.

The major version number changes each time “Load - entire station” is run from
Freelance Engineering. The old value is incremented.

The minor version number changes with each object that is downloaded by
Freelance Engineering. The old value is incremented.

The patch version number does not change at the gateway. It remains constant at 0.

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this re-
source number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.
E_DMSAPI_INTERNAL_ERROR Internal error

4.3 Locking “Name management”

4.3.1DMSAPI_LockOV

SYNTAX
DMS_RC DMSAPI_LockOV(

DMS_RES_NO OwnResNo /* Own resources */
);

116 Reference-Manual — DMS / API

4 Name management DMSAPI_UnlockOV

If the aim is to prevent Freelance Engineering being reconfigured over a specific
period of time, this can be achieved by locking the object library. Freelance
Engineering then indicates that a configuration cannot be loaded to this gateway.

Parameter:

J OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_ALREADY_DONE Object library is already locked

E_DMSAPI_INTERNAL_ERROR Internal error

4.3.2 DMSAPI_UnlockOV

SYNTAX
DMSAPI_UnlockOV
DMS_RES_NO OwnResNo /* Own resources */
)

If reconfiguration by Freelance Engineering is to be allowed again after the object
library has been locked, this procedure should be called up.

Parameter:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

Reference-Manual — DMS / API 117

Station information 4 Name management

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this re-
source number was not initialized.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_ALREADY_DONE Locking of OL has already been cancelled

E_DMSAPI_INTERNAL_ERROR Internal error

4.4 Station information

The following 2 binary domains are received via the server procedures of domain
management:

Stationname |IP-Address 1 |IP-Address 2 | StatNo StatType |TimeOut
DPS1 172.16.1.2 172.16.1.3 2 RED_MSR |45
DPS2 172.16.1.4 0.0.0.0 3 MSR 120
GWY1 172.16.1.5 0.0.0.0 4 GWY 15
StationNo | MajorVersion MinorVersion PatchVersion
2 142 340 0
3 10 223 2
Access to this station information is controlled through the following two
procedures:
* DMSAPI_GetFirstResourelnfo
e DMSAPI_GetNextResourcelnfo
118 Reference-Manual — DMS / API

4 Name management DMSAPI_GetFirstResourcelnfo

When these functions are used on multitasking operating systems, care should be
taken in the application to ensure that suitable locking mechanisms are provided.
This means that if the GetNext function is called from two tasks alternately, then
both tasks do not receive all the elements from the station domain, but rather they
receive the next elements from the domain alternately.

After this station domain is reconfigured by Freelance Engineering, the GetFirst
procedure must always be called again. Otherwise the GetNext routine will return
an error.

4.4.1 DMSAPI_GetFirstResourcelnfo

SYNTAX

DMS_RC DMSAPI_GetFirstResourcelnfo(
DMS_RES_NO OwnResNo /* Own ResNum */,
DMS_UINT32 *lpulNoOfRes /* Number of resources */,
DMS_UINT32 ResNameLlen /* Max. length resname */,
DMS_CHAR *IpResName /* Res name */,
DMS_NAME_RESOURCE_DATA *IpResInfo /* Res info */

);

This procedure returns the details of the first resource in the resource domain.
Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* lpulNoOfRes: The number of available resources is returned

* ResNameLen: Length of the next buffer in sequence
(DMS_MAX_RESNAME_LEN)

* IpResName: Buffer for resource name

Reference-Manual — DMS / API 119

DMSAPI_GetFirstResourcelnfo

4 Name management

* IpResInfo: Resource information
typedef struct DMS_NAME_RESOURCE_DATA {
DMS_WORD32 dwIPAddrl;

DMS_WORD32 dwIPAddr2;
DMS_RES_NO ResNo;
DMS_RES_TYPE ResType;
DMS_UINTI16 wTimeOut; /* in sec. */
DMS_UINT16 wMajorVersionNo;
DMS_UINTI16 wMinor VersionNo;
DMS_UINT16 wPatch VersionNo;

} DMS_NAME_RESOURCE_DATA;

The ResType can take the following values:
DMS_OS_DIGIVIS
DMS_OS_DIGITOOL
DMS_OS_EPROM
DMS_OS_MSR
DMS_OS_DDE_GWY
DMS_OS_P_GWY
DMS_OS_GWY

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer for

this resource number was not initialized.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_CONF

No project available

120

Reference-Manual — DMS / API

4 Name management

DMSAPI_GetNextResourcelnfo

Function

Description

E_DMSAPI_SMALL_RCV_BUFF

The buffer passed is too small.

E_DMSAPI_EMPTY_CONF

No station available in the project

E_DMSAPI_INTERNAL_ERROR

Internal error

4.4.2 DMSAPI_GetNextResourcelnfo

SYNTAX

DMS_RC DMSAPI_GetNextResourcelnfo(
DMS_RES_NO OwnResNo /* Own res number */,
DMS_UINT32 ResNamelLen /*Max. length resname */,
DMS_CHAR *IpResName /* Res name */,

DMS_NAME_RESOURCE_DATA *IpResInfo /* Res info */

);

This procedure returns the details of the other resources in the resource domain.
Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* ResNameLen: Length of the next buffer in sequence

* IpResName: Buffer for resource name

* IpResInfo: Resource information

typedef struct DMS_NAME_RESOURCE_DATA {
DMS_WORD32 dwIPAddrl;
DMS_WORD32 dwlPAddr2;
DMS_RES_NO ResNo;
DMS_RES_TYPE ResType;

DMS_UINT16 wTimeOut; /* in sek. */

Reference-Manual — DMS / API 121

DMSAPI_GetNextResourcelnfo

4 Name management

DMS_UINT16 wMajorVersionNo;

DMS_UINTI16 wMinor VersionNo;

DMS_UINT16 wPatchVersionNo;
} DMS_NAME_RESOURCE_DATA;

The ResType can take the following values:
DMS_OS_DIGIVIS
DMS_OS_DIGITOOL
DMS_OS_EPROM
DMS_OS_MSR
DMS_OS_DDE_GWY
DMS_OS_P_GWY
DMS_OS_GWY

Parameters:

. OwnResourceNo: Own station’s resource number. The DMSAPI_Init must be

called.

» StationNameLen: Length of the next buffer in sequence

» IpStationName: Buffer for station name

* IpStationInfo: Station information

Possible return values:

Function

Description

E_DMSAPI_NOT_INIT

The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_NO_CONF

No project available

E_DMSAPI_NO_ACCESS

Function: GetFirst was not called

E_DMSAPI_SMALL_RCV_BUFF

The buffer passed is too small.

122

Reference-Manual — DMS / API

4 Name management Variable information

Function Description
E_DMSAPI_EMPTY_CONF No other stations available in the project
E_DMSAPI_INTERNAL_ERROR Internal error

4.5 Variable information

The following binary domain is received via the server procedures of domain
management:

Variable name |Data type Access |StatNo |ObjNo |CompNo
ANA_E DIGI_FLOAT3 2 R 1 131 1
BIN_A1 DIGI_BOOLEAN R/W 2 131 2

Access to this variable information is controlled through the following two
procedures:

. DMSAPI_GetFirstVarlnfo
. DMSAPI_GetNextVarInfo

When these functions are used on multitasking operating systems, care should be
taken in the application to ensure that suitable locking mechanisms are provided.
This means that if the GetNext function is called from two tasks alternately, then
both tasks do not receive all the elements from the variable domain, but rather they
receive the next elements from the domain alternately.

After this station domain is reconfigured by Freelance Engineering, the GetFirst
procedure must always be called again. Otherwise the GetNext routine will return
an error.

Reference-Manual — DMS / API 123

DMSAPI_GetFirstVarinfo 4 Name management

4.5.1 DMSAPI_GetFirstVarinfo

SYNTAX

DMS_RC DMSAPI_GetFirstVarInfo(
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_UINT32 *IpulNoOfVar /* Number of var */,
DMS_UINT32 VarNamelLen /*Max. length var name */,
DMS_CHAR *IpVarName /* Variable name */,
DMS_NAME_VAR_DATA*IpVarlnfo /* Variable Info */);

This procedure returns the details of the first variable in the variable domain.

Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* lpulNoOfVar: The number of available variables is returned

* VarNameLen: Length of the next buffer in sequence
(DMS_MAX_VARNAME_LEN)

e IpVarlnfo: Variable information

typedef struct DMS_NAME_VAR_DATA {
DMS_WORD32 dwAccessRights;
DMS_VAR_TYPE VarType;
DMS_RES_NO ResNo;
DMS_OBJ_PATH Opath;

} DMS_NAME_VAR_DATA;

dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

VarType can take various different values. (see Appendix DMS Variable Types)

124 Reference-Manual — DMS / API

4 Name management DMSAPI_GetNextVarlnfo

Opath
typedef struct {
DMS_OBJNOObjNo;
DMS_CMPNOCmpNo}
DMS_OBJ_PATH;

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this re-
source number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_SMALL_RCV_BUFF | The buffer passed is too small.

E_DMSAPI_EMPTY_CONF No variables available in the project

E_DMSAPI_INTERNAL_ERROR |Internal error

4.5.2 DMSAPI_GetNextVarinfo

SYNTAX

DMS_RC DMSAPI_GetNextVarInfo(
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_UINT32 VarNameLen /* Max. length var name */,
DMS_CHAR *IpVarName /* Variable name */,
DMS_NAME_VAR_DATA*IpVarlnfo /* Variable info */);

This procedure returns the details of the other variables in the variable domain.

Parameters:

J OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

Reference-Manual — DMS / API 125

DMSAPI_GetNextVarlnfo 4 Name management

* VarNameLen: Length of the next buffer in sequence
(DMS_MAX_VARNAME_LEN)

* IpVarName: Buffer for variable name

e IpVarlnfo: Variable information

typedef struct DMS_NAME_VAR_DATA {
DMS_WORD32dwAccessRights;
DMS_VAR_TYPE VarType;
DMS_RES_NO ResNo;
DMS_OBJ_PATH Opath;

} DMS_NAME_VAR_DATA;

dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

VarType can take various different values (See Appendix A, Variable types and error
codes).

Opath is the DMS addressing on the server:
typedef struct {
DMS_OBJNOObjNo;
DMS_CMPNOCmpNo}
DMS_OBJ_PATH;

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this re-
source number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

126

Reference-Manual — DMS / API

4 Name management Tag information

Function Description

E_DMSAPI_NO_ACCESS Function: GetFirst was not called
E_DMSAPI_SMALL_RCV_BUFF | The buffer passed is too small.
E_DMSAPI_EMPTY_CONF No other variables available in the project
E_DMSAPI_INTERNAL_ERROR |Internal error

4.6 Tag information

The following binary domain is received through the server procedures of domain

management:
MSR name |ResNo |Access |Object class ObjNo CmpNo
ANA_Z1 1 R DIGI_ANA_Z(267) 2689 0
BinOver 1 RwW DIGI_BINOV(279) 2788 0
StructTst 2 RW Structured var (520) 131 12

Access to this tag information is controlled through the following two procedures:
*» DMSAPI_GetFirstTagInfo
* DMSAPI_GetNextTaglnfo

When these functions are used on multitasking operating systems, care should be
taken in the application to ensure that suitable locking mechanisms are provided.
This means that if the GetNext function is called from two tasks alternately, then
both tasks do not receive all the elements from the tag domain, but rather they
receive the next elements from the domain alternately.

Reference-Manual — DMS / API 127

Tag information 4 Name management

After this tag domain is reconfigured by Freelance Engineering, the GetFirst
procedure must always be called again. Otherwise the GetNext routine will return
an error.

DMSAPI_GetFirstTaginfo
SYNTAX
DMSAPI_GetFirstTagInfo(
DMS_RES_NO OwnResNo /* Own resource number */,

DMS_UINT32 *lpulNoOfTag/* Number of tags */,
DMS_UINT32 TagNameLen/* Max. length tag name */,
DMS_CHAR *|pTagName /* Tag name */,

DMS_NAME_TAG_DATA*lpTagInfo /* Tag info*/
);
This procedure returns the details of the first tag in the tag domain.
Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* IpulNoOfTag: The number of available tags is returned

* TagNameLen: Length of the next buffer in sequence
(DMS_MAX_TAGNAME_LEN)

* lpTagName: Buffer for tag name

* IpTaglnfo: Tag information

typedef struct DMS_NAME_TAG_DATA {
DMS_WORD32 dwAccessRights;
DMS_RES_NO ResNo;
DMS_OBJNO ObjClass;

128 Reference-Manual — DMS / API

4 Name management Tag information

DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;
} DMS_NAME_TAG_DATA,;
dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

Possible return values

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_SMALL_RCV_BUFF The buffer passed is too small.

E_DMSAPI_EMPTY_CONF No tags available in the project

E_DMSAPI_INTERNAL_ERROR Internal error

DMSAPI_GetNextTaginfo

SYNTAX

DMSAPI_GetNextTagInfo(
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_UINT32 TagNameLen/* Max. length tag name */,
DMS_CHAR *|pTagName /* Tag name */,
DMS_NAME_TAG_DATA*1pTagInfo /* Tag info*/

);

This procedure returns the details of all other tags in the tag domain.

Parameters:

Reference-Manual — DMS / API 129

Tag information 4 Name management

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* TagNameLen: Length of the next buffer in sequence
(DMS_MAX_TAGNAME_LEN)

* IpTagName: Buffer for tag name
* IpTaglnfo: Tag information
typedef struct DMS_NAME_TAG_DATA {

DMS_WORD32 dwAccessRights;
DMS_RES_NO ResNo;
DMS_OBJNO ObjClass;
DMS_OBJNO ObjNo;

DMS_CMPNO CmpNo;
} DMS_NAME_TAG_DATA;
dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this
resource number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_EMPTY_CONF No other tags available in the project

E_DMSAPI_SMALL_RCV_BUFF The buffer passed is too small.

E_DMSAPI_NO_ACCESS Function: GetFirst was not called

E_DMSAPI_INTERNAL_ERROR Internal error

130 Reference-Manual — DMS / API

4 Name management Tag information

DMSAPI_GetTagByAddr
CGEXPORT DMS_RC DMSAPI_GetTagByAddr (

DMS_RES_NO OwnResNo /* Own resource number */,
DMS_RES_NO ResNo /* Res number */,
DMS_OBJNO ObjNo /* Object path */,
DMS_UINT32 TagNameLen /* Max. length tag name */,
DMS_CHAR *|pTagName /* Tag name */,

DMS_NAME_TAG_DATA*lpTagInfo /* Tag info*/
);
The procedure returns the details of a “tag”, which is addressed through resource
number and object number.

Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

¢ ResNo: Resource number of server station.
* ObjNo: Object number of object being searched for

* TagNameLen: Length of the next buffer in sequence
(DMS_MAX_TAGNAME_LEN)

* IpTagName: Buffer for tag name
* IpTaglnfo: Tag information

typedef struct DMS_NAME_TAG_DATA {

DMS_WORD32 dwAccessRights;
DMS_RES_NO ResNo;
DMS_OBJNO ObjClass;
DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

Reference-Manual — DMS / API 131

Object class position information 4 Name management

dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for this re-
source number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_SMALL_RCV_BUFF |The buffer passed is too small.

E_DMSAPI_INVALID_CONF No tags available for the address in the project

E_DMSAPI_INTERNAL_ERROR |Internal error

4.7 Object class position information

Several binary domains are received through the server procedures of domain
management:

Analog counter: Object class 267

Variable name |Access Data type Component Number
Enable RW DIGI_BOOLEAN 1
Input R DIGI_FLOAT32 2

132 Reference-Manual — DMS / API

4 Name management Object class position information

Binary monitor: Object class 279

Variable name |Access Data type Component Number
Enable R DIGI_BOOLEAN 1

Data block: Object class 510 (names are defined by the user)

Variable name |Access Data type Component Number
Struct1 RW Data block 510 1
Struct2 R Data block 510 n

Data block: Object class 520 (names are defined by the user)

Variable name |Access Data type Component Number
Elem1 RW DIGI_BOOLEAN 1
Elem2 R DIGI_FLOAT32 2
Elemn RW DIGI_INT32 n

In the example, data block 520 represents multi-level addressing:

The multi-level addressing through variable name may thus be as follows:
StructTst/Struct2/Elem2

The component number is then calculated:

Component number of StructTst +

Component number of Struct2 +

Component number of StrucElem?2.

Any depth of nesting is possible. Recursion is absolutely not permitted.

Reference-Manual — DMS / API 133

DMSAPI_GetFirstCmpOfObjClass 4 Name management

* DMSAPI_GetFirstCmpOfObjClass
* DMSAPI_GetNextCmpOfObjClass

When these functions are used on multitasking operating systems, care should be
taken in the application to ensure that suitable locking mechanisms are provided.

This means that if the GetNext function is called from two tasks alternately, then

both tasks do not receive all the elements from the object class domain, but rather
they receive the next elements from the domain alternately.

m
After this station domain is reconfigured by Freelance Engineering, the GetFirst

procedure must always be called again. The GetNext routine will return an error.

4.7.1 DMSAPI_GetFirstCmpOfObjClass
SYNTAX
DMS_RC DMSAPI_GetFirstCmpOfObjClass(
DMS_RES_NO OwnResNo /* Own resource number */,

DMS_OBJNO ObjClass /* Object class */,
DMS_UINT32 *IpulNoOfCmp /* Number of components */,
DMS_UINT32 CmpNameLen /* Max. length comp. name */,
DMS_CHAR *[pCmpName /* Component name */,
DMS_NAME_OBJ_DATA*1pObjInfo /* Object info */

);

This procedure returns the details of the first component in the specified object

class.

134 Reference-Manual — DMS / API

4 Name management DMSAPI_GetFirstCmpOfObjClass

Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* ObjClass: Object number of sought object class
* IpulNoOfCmp: The number of available components is returned

* CmpNameLen: Length of the next buffer in sequence
(DMS_MAX_COMPNAME_LEN)

* IpCmpName: Buffer for component name
* IpObjInfo: Information on the first component in the object class
typedef struct DMS_NAME_OBIJ_DATA {
DMS_WORD16 nRWFlag;
DMS_CMPNO CmpNo;
DMS_VAR_TYPE VarType;
DMS_WORDI16 Reserved;
} DMS_NAME_OBJ_DATA,;
dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for
this resource number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_EMPTY_CONF No object class of this type available

Reference-Manual — DMS / API 135

DMSAPI_GetNextCmpOfObjClass 4 Name management

Function Description
E_DMSAPI_SMALL_RCV_BUFF The buffer passed is too small.
E_DMSAPI_INTERNAL_ERROR Internal error

4.7.2 DMSAPI_GetNextCmpOfObjClass

SYNTAX

DMS_RC DMSAPI_GetNextCmpOfObjClass(
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_OBJNO ObjClass /* Object class */,
DMS_UINT32 CmpNameLen/* Max. length comp. name */,
DMS_CHAR *lpCmpName /* Component name */,
DMS_NAME_OBIJ_DATA*1pObjlnfo /* Object info */

);

This procedure returns the details of all other components in the specified object
class.

Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* ObjClass: Object number of sought object class

* CmpNameLen: Length of the next buffer in sequence
(DMS_MAX_COMPNAME_LEN)

* IpCmpName: Buffer for component name
* *]pObjlnfo Information on the first component in the object class
typedef struct DMS_NAME_OBIJ_DATA {
DMS_WORD16 nRWFlag;
DMS_CMPNO CmpNo;
DMS_VAR_TYPE VarType;

136 Reference-Manual — DMS / API

4 Name management Address conversion

DMS_WORDI6 Reserved;
} DMS_NAME_OBIJ_DATA,;
dwAccessRights can take the following values:
DMS_READ_ONLY
DMS_READ_WRITE

Possible return values:

Function Description
E_DMSAPI_NOT_INIT The function was called although the DMS layer for
this resource number was not initialized.
E_DMSAPI_INVALID_ARG The parameters passed are invalid.
E_DMSAPI_NO_CONF No project available
E_DMSAPI_SMALL_RCV_BUFF The buffer passed is too small.
E_DMSAPI_EMPTY_CONF No further information available on this object class
E_DMSAPI_INTERNAL_ERROR Internal error

4.8 Address conversion

In addition to these basic functions there is the opportunity to convert “variable
names” to “Freelance object path” and vice versa.

4.8.1 DMSAPI_GetVarNameByOPath

SYNTAX

DMS_RC DMSAPI_GetVarnameByOPath (
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_RES_NO ResNo /* Res number */,
DMS_OBJ_PATH *IpOPath /* Object path */,
DMS_UINT32 VarNameLen /* Max. length var name */,

Reference-Manual — DMS / API 137

DMSAPI_GetVarNameByOPath 4 Name management

DMS_CHAR *IpVarName /* Variable name */);
The procedure converts an object path into a variable name.
Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* ResNo: Resource number of server station.
* IpOPath: Object path of the variable being searched for
typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;

* VarNameLen: Length of the next buffer in sequence
(DMS_MAX_VARNAME_LEN)

* IpVarName: Buffer for variable name

Possible return values:

Function Description
E_DMSAPI_NOT_INIT The function was called although the DMS layer for
this resource number was not initialized.
E_DMSAPI_INVALID_ARG The parameters passed are invalid.
E_DMSAPI_NO_CONF No project available
E_DMSAPI_SMALL_RCV_BUFF The buffer passed is too small.
E_DMSAPI_INVALID_CONF No information available about the variable
E_DMSAPI_INTERNAL_ERROR Internal error

138 Reference-Manual — DMS / API

4 Name management DMSAPI_GetVarinfoByName

4.8.2 DMSAPI_GetVarinfoByName

SYNTAX

DMS_RC DMSAPI_GetVarInfoByName (
DMS_RES_NO OwnResNo /* Own resource number */,
DMS_CHAR *lpVarName /* Variable name */,
DMS_RES_NO *IpResNo /* Res number */,
DMS_OBJ_PATH *IpOPath /* Object path */,
DMS_VAR_TYPE *lpVarType /* DigiType */,

DMS_WORD32 * IpAccessRights /* Access Rights */

);

The procedure converts a variable name into an “object path”. Variable name in this

situation does not have to refer to a variable received through functions GetFirstVar

and GetNextVar, it can also refer to a variable composed of “date” and component
name.

Parameters:

. OwnResNo: Own station’s resource number. The DMSAPI_Init must be
called.

* IpVarName: Name of the variable being searched for
* IpResNo: Resource number of server station.
* IpOPath: Object path of the variable being searched for
typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;

* IpVarType can take various different values (See DMS variable types on page
147).

* IpAccessRights can take the following values:

Reference-Manual — DMS / API 139

DMSAPI_GetVarinfoByName 4 Name management

DMS_READ_ONLY
DMS_READ_WRITE

Possible return values:

Function Description

E_DMSAPI_NOT_INIT The function was called although the DMS layer for
this resource number was not initialized.

E_DMSAPI_INVALID_ARG The parameters passed are invalid.

E_DMSAPI_NO_CONF No project available

E_DMSAPI_INVALID_CONF No information available about the variable

E_DMSAPI_INTERNAL_ERROR Internal error

140 Reference-Manual — DMS / API

5 Server management

5 Server management

There are pre-defined functions that can be used to perform the server management

required by Freelance Engineering:

* Storing the configuration domain for name management on disk

* Starting/stopping the DMS during a reconfiguration

* Reading the version information.

Freelance
Engineering

1

Server
hWanagement

—_—

Connection “Yersion

Management Supervisian

Application
Callback

Function

Server Management.bmp

Configuration
hWanagement

Application

Callback
Function

Reference-Manual — DMS / API

141

5 Server management

142 Reference-Manual — DMS / API

6 DMS utilities DMSAPI_GetStringByValue

6 DMS utilities

6.1 DMSAPI_GetStringByValue

SYNTAX
DMS_RC DMSAPI_GetStringByValue (

DMS_UINT32 ulStrLen /* Size of storage area referenced to the pointer
*/

DMS_CHAR *]pszString /* Storage for string */,
DMS_VAR_TYPEVarType /* Variable type */,
DMS_VALUE *lpvVarValue /* Value of variable*/

);

The procedure converts a Freelance value into a printable string.

Parameters:

* ulStrlen: Maximum length of buffer

* lpszString: Buffer for string

e Vartype: Type of value

* IpvVarValue: Freelance value

Possible return values:

Function Description
E_DMSAPI_INVALID_ARG The parameters passed are invalid.
E_DMSAPI_SMALL_RCV_BUFF Buffer too small
E_DMSAPI_INTERNAL_ERROR Internal error

Reference-Manual — DMS / API 143

DMSAPI_GetValueByString

6 DMS utilities

6.2 DMSAPI_GetValueByString

SYNTAX

DMS_RC DMSAPI_GetValueByString(

DMS_UINT32

DMS_VALUE

ulValLen /* Size of storage area referenced to

the pointer */,

|pvVarValue/ Storage for value of variable */,

DMS_VAR_TYPEVarType /* Variable type */,

DMS_CHAR
);

lpszString / Value as a string */

The procedure converts a string that has been read in into a Freelance value.

Parameters:

* ulValLen: Maximum length of buffer

* IpvVarValue: Buffer for value

* Vartype: Type of value

e IpvVarValue: Freelance value as a string

Possible return values:

Function

Description

E_DMSAPI_INVALID_ARG

The parameters passed are invalid.

E_DMSAPI_SMALL_RCV_BUFF

Buffer too small

E_DMSAPI_INTERNAL_ERROR

Internal error

144

Reference-Manual — DMS / API

6 DMS utilities DMSAPI_GetVarlLen

6.3 DMSAPI_GetVarLen

SYNTAX
int DMSAPI_GetVarLen (
DMS_VAR_TYPE VarType /* Variable type */
);
The procedure returns for a Freelance data type the amount of storage required in a
variables list by a variable of that type.

Parameters:

* VarType can take various different values. (See DMS variable types on page
147)

Possible return values:

The length of the data type in bytes, or -1 if an invalid data type is passed.

6.4 DMSAPI_DumpRecData

SYNTAX
void DMSAPI_DumpRecData (
DMS_REC_DATA * DmsRecData /* */
);
The procedure passes (dumps) the structure of a receive structure to standard output.
Parameter:

. RecData: Receive data

Reference-Manual — DMS / API 145

DMSAPI_DumpRecData 6 DMS utilities

146 Reference-Manual — DMS / API

Appendix A Variable types and error codes

Appendix A Variable types and error codes

A.1 DMS variable types

In the DMSAPI, variables always consist of a type and a value. The variable types
can take the following values:

Definition of variable type

Value for variable
type

Typedef in UNION DMS_VALUE

DMS_VAR_TYPE_BOOLEAN |0x01 DMS_BOOLEAN Boolean;

typedef unsigned char DMS_BOOLEAN
DMS_VAR_TYPE_CHAR 0x02 DMS_CHAR Char;

typedef char DMS_CHAR
DMS_VAR_TYPE_BYTE 0x03 DMS_BYTE Byte;

typedef unsigned char DMS_BYTE
DMS_VAR_TYPE_INT8 0x04 DMS_INTS8 Int8; typedef char DMS_INT8
DMS_VAR_TYPE_WORD16 |0x05 DMS_WORD16 Word16;

typedef unsigned short DMS_WORD16
DMS_VAR_TYPE_UINT16 0x06 DMS_UINT16 Uint16;

typedef unsigned short DMS_UINT16
DMS_VAR_TYPE_INT16 0x07 DMS_INT16 Int16;

typedef short DMS_INT16
DMS_VAR_TYPE_WORD32 |0x08 DMS_WORD32 Word32;

typedef unsigned long DMS_UINT32
DMS_VAR_TYPE_UINT32 0x09 DMS_UINT32 Uint32;

typedef unsigned long DMS_UINT32
DMS_VAR_TYPE_INT32 O0x0A DMS_INT32 Int32;

typedef long DMS_INT32

Reference-Manual — DMS / API

147

Appendix A Variable types and error codes

Value for variable
type
DMS_VAR_TYPE_FLOAT32 0x0B DMS_FLOAT32 Float32;
typedef float DMS_FLOAT32

DMS_VAR_TYPE_TIME 0x0C DMS_TIME DmsTime;
typedef long DMS_INT32

DMS_VAR_TYPE_DT 0x0D DMS_DT DmsDT;
/* ms since 1.1.1970 0.00 hrs GMT */
typedef struct {
DMS_WORD32 dwMSecondsHigh;
DMS_WORD32 dwMSecondsLow;
} DMS_DT

DMS_VAR_TYPE_STRING8 |OxOE DMS_STRING8 Strings;

typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[10];

} DMS_STRINGS8

DMS_VAR_TYPE_STRING16 |O0xOF DMS_STRING16 String16;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[18];
} DMS_STRING16

DMS_VAR_TYPE_STRING32 |0x10 DMS_STRING32 String32;
typedef struct {

DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[34];

} DMS_STRING32

Definition of variable type Typedef in UNION DMS_VALUE

148 Reference-Manual — DMS / API

Appendix A Variable types and error codes

Definition of variable type

Value for variable
type

Typedef in UNION DMS_VALUE

DMS_VAR_TYPE_STRING64

0x11

DMS_STRING64 String64;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[66];
} DMS_STRING64

DMS_VAR_TYPE_STRING128

0x12

DMS_STRING128 String128;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[130];
} DMS_STRING128

DMS_VAR_TYPE_STRING256

0x13

DMS_STRING256 String256;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[258];
} DMS_STRING256

DMS_VAR_TYPE_OBJNO

0x2C

DMS_OBJNO ObjNo;
typedef unsigned long DMS_UINT16

DMS_VAR_TYPE_CMPNO

0x2D

DMS_CMPNO CmpNo;
typedef unsigned long DMS_UINT16

Reference-Manual — DMS / API

149

DMS error codes

Appendix A Variable types and error codes

A.2 DMS error codes

Definition of error

Value for error

Description of error

E_DMSAPI_OK 0x00000000 No error

E_DMSAPI_NOT_INIT 0x00000001 The DMSAPI is not initialized for the
specified resource

E_DMSAPI_INVALID_CONF 0x00000002 No configuration available for specified
names

E_DMSAPI_INVALID_ARG 0x00000003 Function was called with an invalid pa-
rameter

E_DMSAPI_SMALL_RCV_BUFF 0x00000004 | The buffer passed is too small.

E_DMSAPI_EMPTY_CONF 0x00000005 No information is available for the spec-
ified name management class

E_DMSAPI_INTERNAL_ERROR 0x00000006 | An internal DMS error has occurred.
For reasons of safety the application
should be closed as quickly as possible,
and with the minimum possible data
loss.

E_DMSAPI_ACCESS_ERROR 0x00000007 | The specified station or variable cannot
be accessed.

E_DMSAPI_NO_CONF 0x00000008 No configuration is available for the
specified resource.

E_DMSAPI_INVALID_DMS_HANDLE |0x00000009 |The DMS-Handle passed is invalid

E_DMSAPI_INVALID_CONN_HANDLE | 0x0000000a | The ConnectionHandle passed is inval-
id

E_DMSAPI_NO_RESOURCE 0x0000000b | The DMS does not have any resources
at present. The situation can occur
where resources cannot be returned
because Callback functions are block-
ing the application.

E_DMSAPI_VARLIST_IN_USE 0x0000000c A variable list cannot be modified while

a function is not yet completed.

150

Reference-Manual — DMS / API

Appendix A Variable types and error codes

DMS error codes

Definition of error

Value for error

Description of error

E_DMSAPI_NO_CALLBACK 0x0000000d No Callback function is specified for the
Callbackld passed.
E_DMSAPI_DUPLICATE_CALLBACK |0x0000000e A callback function has already been
logged under the specified Callbackld.
E_DMSAPI_INVALID_INDEX 0x00000000f | There is no valid variable in the vari-
ables list under the specified variable.
E_DMSAPI_INVALID_VARTYPE 0x00000010 | The value of the variable type is invalid
E_DMSAPI_INVALID_VARMODE 0x00000011 The variables list was created for a
function, and is now to be used for a dif-
ferent function.
E_DMSAPI_NO_CONNECTION 0x00000012 No connection to the specified station
E_DMSAPI_ALREADY_INIT 0x00000013 | The DMSAPI has already been initial-
ized for this station
E_DMSAPI_MAX_APPLICATION 0x00000014 | The DMSAPI can only be initialized for
a specific number of resources
E_DMSAPI_MAX_CONNECTION 0x00000015 | The DMSAPI can only establish con-
nections to a specific number of re-
sources.
E_DMSAPI_TIMEOUT 0x00000016 | The function could not be executed
within the specified timeout
E_DMSAPI_INVALID_DIR 0x00000017 | The specified directory does not exist.

Reference-Manual — DMS / API

151

DMS error codes Appendix A Variable types and error codes

152 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Variable access services

Appendix B Application interface freelance
examples

B.1 DMSAPI samples

When the DMSAPI is installed, the samples will be copied under the designated
Freelance directory (for example, c:\Freelance) by Setup as follows:

... \dmsapi\ - incluce
- lib

- samples

B.2 Variable access services

B.2.10ne-time read “read.c”
/>X<
*/

#if O

FILENAME $Workfile: read.c $
VERSION $Revision: 1.0 $(0)
HISTORY

HISTORY_END

/* $Log: read.c_v $§

*/

#endif

Reference-Manual — DMS / API 153

Variable access services Appendix B Application interface freelance examples

/*
Demo program for DMSAPI-communication (Windows):
— Calling convention: dmsard <OwnStationNo> <Variablename>
— Init of DMSAPI
— Register of a Callback-Function
— Connect to a Station
— Create a VariableList

— In aloop the Variable given as argument will be read once with async and
once with sync option

*/

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

#include <time.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

int StationConnect=0;

int ReadFlag=0;

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {
/* Callback-function called by DMSAPI

Attention: this function is called in the context of a communication thread

154 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Variable access services

which has a higher priority than the main thread
you have to protect your data and code!
*/
DMS_REC_VARLIST_DATA *lpVarList;
int i;
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
/* DMSAPI calls Callback every time a station connects or
disconnects */
if (!lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;
break;
case DMS_REC_VARLIST_TYPE:
/* case value for a received variable value */
DMSAPI_DumpRecData(lpDmsRec);
ReadFlag=1;
IpVarList = lpDmsRec->SrvBuff.IpVarList;
for (i = 0; i < IpVarList->Max VarNo; i++)
{
if (IpVarList->lpVar[i]. VarStatus!= DMS_VAR_DELETED)
{
if (IpVarList->IpVar[i]. VarRc)
{
/* DMSAPI reports an error in Read Operation */

Reference-Manual — DMS / API 155

Variable access services Appendix B Application interface freelance examples

} else

if (IpVarList->IpVar[i]. VarStatus!= DMS_VAR_NOT_VALID)
{

/* Read was successful :

Datatype in lpVarList->IpVar[i]. VarType,

Value in IpVarList->IpVarl[i].VarValue

*/

break;
default:

printf (“unexpected Case\n”);

return(0);

/*

If there is no valid config in c:\digimat\gwy\resxxx

this function waits for config from Freelance Engineering
you can change the ProjectDir by SetProjectDir

before calling DMSAPI_Init

*/
void WaitForConfig(DMS_RES_NO OwnResNo) {
DMS_CHAR Resname[10];

DMS_UINT32 NoOfRes;

DMS_NAME_RESOURCE_DATA ReslInfo;

156 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Variable access services

if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,
&ResInfo)) {

printf (“No Config for GWY-1d %d: Configure from Control Builder F and
press any key to continue\n”,

OwnResNo);
for (;) {
Sleep(100);
if (kbhit()) {
getch();
break;

}
int wmain (int argc, TCHAR ** argv) {

DMS_HANDLE nVLHandle=-1;
DMS_RC Ic;

DMS_RES_NO OwnStationNo=37;
DMS_RES_NO StationNo=5;

DMS_CONN_HANDLE ConnHandle;
DMS_REC_VARLIST_DATA *IpRecVar;

DMS_INT16 Index;
DMS_INT16 OwnCallBackld=1;
char szAscStation[20];

char szAscVarName[20];
BOOL fUnicodeError=FALSE;

Reference-Manual — DMS / API 157

Variable access services Appendix B Application interface freelance examples

DMS_OBJ_PATH Path;
DMS_VAR_TYPE Dtype; /* DigiTyp */
DMS_WORD?32 Access;
char Temp[3500];
DMS_REC_DATA RecData;
/* Sessionstart */
if (argc!=3) {
printf (“Calling Convention: dmsadr <iOwnStationNo> <VarName>");
return(0);
}
wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);
WideCharToMultiByte(CP_ACP ,0,argv[1],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);
sscanf(szAscStation,"%d",&OwnStationNo);
WideCharToMultiByte(CP_ACP ,0,argv[2],-1,
(LPSTR)szAscVarName,20,NULL,&fUnicodeError);
/* init with standard GWY */
if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)

printf (“Error in DMSAPI_Init : %x\n”);
goto _LBL_FNC_XIT;
}
/* register CallBack - Function */
rc=DMSAPI_RegisterCltCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf(“Fehler beim Register Proc \n”);

158 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Variable access services

goto _LBL_FNC_XIT;
}
/* check, if there is a valid config */
WaitForConfig(OwnStationNo);
/* look for variable in configuration */
rc=DMSAPI_GetVarlnfoByName(OwnStationNo,szAscVarName,
&StationNo,&Path,&Dtype,&Access);
if (rc){
printf(““Variable not found in configuration \n”);
goto _LBL_FNC_XIT;
}
else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",
szAscVarName,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,
(int)Dtype,(int)Access);
/* Connecting to Station */
if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf("Fehler beim Connect %08l1x to Station %d\n",rc,StationNo);
goto _LBL_FNC_XIT;
}
while (!StationConnect) {
Sleep(100);
printf (“trying to connect to Station %d ..\n”,StationNo);
if (kbhit()) goto _LBL_FNC_XIT;
}

printf ("Station connected\n");

Reference-Manual — DMS / API 159

Variable access services Appendix B Application interface freelance examples

/* create VarList */

if (rc=DMSAPI_VLCreate
(ConnHandle, DMSAPI_VL_SINGLE_READ,&nVLHandle))!=E_DMSAPI_OK)

{
printf("Error in VLCreate %Ix\n",rc);
goto _LBL_FNC_XIT;
}
/* build VarListe*/
if (rc=DMSAPI_VLAddReadVarByName (nVLHandle,szAscVarName,
&lpRecVar,&Index))!=E_ DMSAPI_OK) {
printf(“Error in AddVar : %Ix\n”,rc);
goto _LBL_FNC_XIT;
}
for (;) {
/* Async Read Loop */
if
((rc=DMSAPI_VLRead(nVLHandle,OwnCallBackld, DMSAPI_STD_ASYNCQC))!=
E_DMSAPI_OK) {
printf(“Error in VLRead %Ix\n”rc);

/* Antwort auswerten */
while (ReadFlag) {
Sleep(10);
if (kbhit()) goto _LBL_FNC_XIT;
}
ReadFlag=0;
IpRecVar=(DMS_REC_VARLIST_DATA *) Temp;

160 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Cyclical read “acycle.c”

if
((rc=DMSAPI_VLRead(nVLHandle,0,DMSAPI_SYNCHRON,1000,3500,lpRecV

ar))
I=E_DMSAPI_OK) {
printf("Fehler beim VLRead sync %Ix\n",rc);

goto _LBL_FNC_XIT;

}
RecData.SrvType=DMS_REC_VARLIST_TYPE;

RecData.SrvBuff.lpVarList=IpRecVar;
DMSAPI_DumpRecData(&RecData);
}
_LBL_FNC_XIT:

/* Disconnect */

if (rtc=DMSAPI_VLDelete(nVLHandle))!=E_DMSAPI_OK)
printf(“Error in VLDelete %lx\n”,rc);
DMSAPI_Disconnect(ConnHandle);
while (StationConnect) {
Sleep(100);
if (kbhit()) break;

/* DMS_Ende */
DMSAPI_Exit(OwnStationNo);
return(0);

}

B.2.2 Cyclical read “acycle.c”
/*

Reference-Manual — DMS / API 161

Cyclical read “acycle.c” Appendix B Application interface freelance examples

*/

#if 0
FILENAME acycle.c

HISTORY

1 deu create
HISTORY_END
#endif

/*
DMSAPI-demo showing the use of the ReadCyclic call

— Init of DMSAPI

— Register of a Callback-Function
— Connect to a Station

— Create a VariableList

— Inaloop the Variable given as argument will be read cyclic

*/

#include <windows.h>
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>

#include <string.h>

162 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Cyclical read “acycle.c”

#include <ctype.h>
#include <conio.h>
#include <time.h>
#include “dmstyp.h”
#include “dmsapi.h”
#include “dmserr.h”
int StationConnect=0;

int ReadFlag=0;

/%
If there is no valid config in c:\digimat\gwy\resxxx
this function waits for config from Control Builder F
you can change the ProjectDir by SetProjectDir
before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];

DMS_UINT32 NoOfRes;

DMS_NAME_RESOURCE_DATA Reslnfo;

if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,
&ResInfo)) {

printf (“No Config: Configure from Control Builder F and press any key to
continue\n”);

Reference-Manual — DMS / API 163

Cyclical read “acycle.c” Appendix B Application interface freelance examples

for (5) {
Sleep(100);
if (kbhit()) {
getch();
break;

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {

/* Callback-function called by DMSAPI
Attention: this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code!
*/
DMS_REC_VARLIST_DATA *lpVarList;
inti;
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
if (lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;

break;

Reference-Manual — DMS / API

Appendix B Application interface freelance examples Cyclical read “acycle.c”

case DMS_REC_VARLIST _TYPE:
ReadFlag=1;
DMSAPI_DumpRecData(lpDmsRec);

IpVarList = IpDmsRec-
>SrvBuff.lpVarList;

for (i = 0; i < IpVarList->Max VarNo;
i++)

{

if (IpVarList-
>lpVarl[i]. VarStatus!= DMS_VAR_DELETED)

{
if (IpVarList->lpVar[i]. VarRc)
{

/*
DMSAPI reports an error in Read Operation */

} else
if (IpVarList->lpVarl[i].VarStatus!= DMS_VAR_NOT_VALID)
{

/* Read was successful:
Datatype in lpVarList->lpVar[i]. VarType,
Value in IpVarList->IpVar[i]. VarValue
*/

break;
default:

Reference-Manual — DMS / API 165

Cyclical read “acycle.c” Appendix B Application interface freelance examples

printf (“unknown case\n”);

return(0);

int wmain (int argc, TCHAR ** argv) {

DMS_HANDLE nVLHandle=-1;
DMS_RC Ic;

DMS_RES_NO OwnStationNo=37;
DMS_RES_NO StationNo=5;

DMS_CONN_HANDLE ConnHandle;
DMS_REC_VARLIST_DATA *IpRecVar;

DMS_INT16 Index;

DMS_INT16 OwnCallBackld=1;
DMS_INT16 i

char szAscStation[20];

char szAscVarName[20];

BOOL fUnicodeError=FALSE;
DMS_OBJ_PATH Path;
DMS_VAR_TYPE Dtype; /* DigiTyp */
DMS_WORD32 Access;

/* session start */

166 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Cyclical read “acycle.c”

if (arge<3) {

printf (“Calling Convention: dmsacyc <OwnStationNo> <VarName>
<VarName>");

return(0);

}
wprintf (L“%s %s %s\n”,argv[0],argv[1],argv[2]);

WideCharToMultiByte(CP_ACP ,0,argv[1],-1,
(LPSTR)szAscStation, 10, NULL,&fUnicodeError);

sscanf(szAscStation,“%d”,&OwnStationNo);

if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
goto _LBL_FNC_XIT;

/* register CallBack - Funktion */

rc=DMSAPI_RegisterClItCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf(“Error in Register Proc \n”);
goto _LBL_FNC_XIT,;
}
WaitForConfig(OwnStationNo);

/* Connecting to Station */

WideCharToMultiByte(CP_ACP ,0,argv[2],-1,
(LPSTR)szAscVarName,20,NULL,&fUnicodeError);

Reference-Manual — DMS / API 167

Cyclical read “acycle.c” Appendix B Application interface freelance examples

rc=DMSAPI_GetVarlnfoByName(OwnStationNo,szAscVarName,
&StationNo,&Path,&Dtype,&Access);

if (rc) {
printf(“not found %s \n”,szAscVarName);
goto _LBL_FNC_XIT;

}

if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf(“Error in Connect %081x\n”,rc);

goto _LBL_FNC_XIT;

while (!StationConnect) {
Sleep(100);
if (kbhit()) goto _LBL_FNC_XIT;
}
printf (“Station connected\n”);
/* create VariablenList */

if (rc=DMSAPI_VLCreate
(ConnHandle, DMSAPI_VL_CYCLE_READ,&nVLHandle))!=E_DMSAPI_OK) {

printf(“Error in VLCreate %Ix\n”,rc);
goto _LBL_FNC_XIT;

/* build VariableList */

168 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Cyclical read “acycle.c”

for (i=2;i<argc;i++) {
WideCharToMultiByte(CP_ACP ,0,argv[i],-1,
(LPSTR)szAscVarName,20,NULL,&fUnicodeError);
rc=DMSAPI_GetVarlnfoByName(OwnStationNo,szAscVarName,
&StationNo,&Path,&Dtype,&Access);
if (rc) printf(“Var not found in config %s \n”,szAscVarName);
else printf (“%s : Station %d Path %d - %d Type %d Access %d\n”,
szAscVarName,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,
(int)Dtype,(int)Access);
if ((rc=DMSAPI_VLAddReadVarByName (nVLHandle,szAscVarName,
&lpRecVar,&Index))!=E_DMSAPI_OK) {
printf(“Error in AddVar :%Ix\n” rc);
goto _LBL_FNC_XIT;

for (;;) {

/* read cyclic */
if (rc=DMSAPI_VLReadCycle(nVLHandle,1000,0wnCallBackld,
DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf(“Error in VLRead %Ix\n”,rc);
goto _LBL._FNC_XIT;

Reference-Manual — DMS / API 169

Cyclical read “acycle.c” Appendix B Application interface freelance examples

printf (“Readcycle\n”);

/* check response */

while (ReadFlag) {
Sleep(1);
if (kbhit()) goto _LBL_FNC_XIT;

if ((rc=DMSAPI_VLStopCycle(nVLHandle))!=E_DMSAPI_OK) {
printf(“Fehler beim VLStop %Ix\n”,rc);
goto _LBL_FNC_XIT;
}
ReadFlag=0;

_LBL_FNC_XIT:

/* Disconnect */

Sleep(1000);

if (rc=DMSAPI_VLDelete(nVLHandle))!=E_DMSAPI_OK)
printf(“Error in VLDelete %Ix\n” rc);

DMSAPI_Disconnect(ConnHandle);

while (StationConnect) {

Sleep(100);

170 Reference-Manual — DMS / API

Appendix B Application interface freelance examples

One-time write “awrite.c”

if (kbhit()) break;

/* the end */

DMSAPI_Exit(OwnStationNo);
return(0);

}

B.2.3 One-time write “awrite.c”

/*
*/
#if 0
FILENAME awrite.c
#endif
#if 0
HISTORY
1 deu create
HISTORY_END
#endif
/*

Demo program for DMSAPI-communication (Windows):

Reference-Manual — DMS / API

171

One-time write “awrite.c”

Appendix B Application interface freelance examples

— Calling convention : dmsawrt <OwnStationNo>

— Init of DMSAPI

— Register of a Callback-Function

— look for the first float variable in the config.

— Connect to the Station with this variable

— In aloop the Variable will be written

*/

#include <windows.h>

#include “cgen.h”
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>
#include <time.h>
#include “digityp.hg”
#include “dmstyp.h”
#include “dmsapi.h”
#include “dmserr.h”
int
int
int
int
int

int

StationConnect = 0;

WriteFlag = 0;

ListNo = 0;

RespNo = 0;
success=0;

failed=0;

172

Reference-Manual — DMS / API

Appendix B Application interface freelance examples One-time write “awrite.c”

/ *
DMSAPI-Callback
*/
DMS_RC OwnDMSAPICallback(DMS_REC_DATA *
IpDmsRec)
{

/* Callback-function called by DMSAPI
Attention: this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code!
*/
DMS_REC_VARLIST_DATA *lpVarList;
DMS_INTI6 i;

switch (IpDmsRec->SrvType)
{
case DMS_REC_CONN_TYPE:
/* DMSAPI calls Callback every time a station connects or disconnects */
if (lpDmsRec->DmsRc)
StationConnect = 1;
else

{

StationConnect = 0;

}

Reference-Manual — DMS / API 173

One-time write “awrite.c” Appendix B Application interface freelance examples

break;

case DMS_REC_VARLIST_TYPE:

/* case value for a received variable value or a write conf. */
IpVarList = lpDmsRec->SrvBuff.lpVarList;
for (i = 0; i < IpVarList->MaxVarNo; i++)

{
if (IpVarList->lpVar[i]. VarStatus != DMS_VAR_DELETED)

{

if (IpVarList->IpVar[i].VarRc)

{

/* error occured writing the value ! */

failed++;

else

{

/* write was successful®/

success++;

}
WriteFlag = 1;
ListNo++;
RespNo++;
break;
default:

174

Reference-Manual — DMS / API

Appendix B Application interface freelance examples

One-time write “awrite.c”

printf(“‘unexpected Case\n”);

return (0);

[*

Main-Programm

int

*/

wmain(int argc, TCHAR ** argv)

{

DMS_HANDLE nVLHandle =-1;

DMS_
DMS_
DMS_

int

DMS_CONN_HANDLE ConnHandle = -1;

RC Ic;
RES_NO OwnStationNo = 123;
RES_NO StationNo =5;

i, TempStationNo;

DMS_REC_VARLIST_DATA *IpRecVar;

DMS_
DMS_
DMS_
DMS_

INT16 Index;

INT16 OwnCallBackld = 1;
VALUE DmsValue;
FLOAT32 AddConst;

DMS_UINT32 NoOfVar;
DMS_NAME_VAR_DATA Varlnfo;

Reference-Manual — DMS / API

175

One-time write “awrite.c” Appendix B Application interface freelance examples

DMS_CHAR Name[50];
DMS_CHAR szAscStation[50];

BOOL fUnicodeError = FALSE;
DMS_INT16 j» ActVarNo, NoAnswer = 0;
DWORD dwOldTicks = GetTickCount();

/*

If station no. is handed over, it will be converted

*/

if (argc <=1)
{

printf(“Calling Convention: dmsawrt
<iOwnStationNo>");

return (0);
}
if (argc > 1)
{
WideCharToMultiByte(CP_ACP, 0, argv[1], -1,

(LPSTR) szAscStation, 10, NULL,
&fUnicodeError);

sscanf(szAscStation, “%d”, &TempStationNo);
OwnStationNo = (DMS_RES_NO) TempStationNo;

[*

DMSAPI-Init
*/

176 Reference-Manual — DMS / API

Appendix B Application interface freelance examples One-time write “awrite.c”

/* init with standard GWY */

if ((rc = DMSAPI_Init(OwnStationNo, DMS_OS_GWY, 1, TRUE))
'=E_DMSAPI_OK)

{
printf(“Error DMSAPI_Init %08Ix \n”, rc);
goto _LBL_FNC_XIT;

/>l<
Setting CallBack - Function
*/
rc = DMSAPI_RegisterCItCB(OwnCallBackld,
OwnDMSAPICallback);
if (rc)
{
printf(“Error DMSAPI_Register Proc %08Ix \n”, rc);
goto _LBL_FNC_XIT;
}
/>X<

Read first variable of datatype Float
*/

rc = DMSAPI_GetFirstVarInfo(OwnStationNo, &NoOfVar, 50,
Name, & Varlnfo);

Reference-Manual — DMS / API 177

One-time write “awrite.c” Appendix B Application interface freelance examples

if (rc)

printf(“No Config for GWY-Id %d : Configure from
Control Builder F and press any key to continue\n”,

OwnStationNo);
for (53)
{
Sleep(100);
if (kbhit())
{
getch();
break;
}
}

rc = DMSAPI_GetFirstVarInfo(OwnStationNo,
&NoOfVar, 50, Name, & VarInfo);

if (rc)
{
printf(“Error DMSAPI_GetFirstVarIlnfo %081x \n”, rc);
goto _LBL_FNC_XIT;

for (;;)

178

Reference-Manual — DMS / API

Appendix B Application interface freelance examples One-time write “awrite.c”

if (VarInfo.VarType == DIGI_FLOAT?32)
break;
rc = DMSAPI_GetNextVarIlnfo(OwnStationNo, 50, Name, & VarInfo);
if (rc)
{

printf(“Error
DMSAPI_GetNextVarlnfo %081x \n”, rc);

goto _LBL_FNC_XIT;

/*
Connect to corresponding station
*/
StationConnect = 0;
if ((rc = DMSAPI_ConnectByNo(OwnStationNo, VarInfo.ResNo,
&ConnHandle,

DMSAPI_STD_ASYNC))!=E_DMSAPI_OK)
{
printf(“Error DMSAPI_ConnectByNo %081x\n”);
goto _LBL_FNC_XIT;
}

while (!StationConnect)

{

Reference-Manual — DMS / API 179

One-time write “awrite.c” Appendix B Application interface freelance examples

Sleep(100);
if (kbhit())
goto _LBL_FNC_XIT;

/*

Creating VariableList

*/

if ((rc = DMSAPI_VLCreate(ConnHandle,
DMSAPI_VL_SINGLE_WRITE, &nVLHandle))!= E_ DMSAPI_OK)

{

printf(“Fehler beim VLCreate %lx\n”, rc);
goto _LBL_FNC_XIT;

/*

Adding Variable to List

we are filling the List with 280 variables (always the same)
*/
DmsValue.Float32 = (DMS_FLOAT32) 0.0;
AddConst = (DMS_FLOAT32) 1.0;

for (ActVarNo = 0; ActVarNo < 280; ActVarNo++)
{
if ((rc = DMSAPI_VLAddWriteVarByName(nVLHandle, Name, DIGI_FLOAT32,
&DmsValue, &lpRecVar, &Index))!= E_DMSAPI_OK)

180 Reference-Manual — DMS / API

Appendix B Application interface freelance examples One-time write “awrite.c”

printf(“Error
DMSAPI_VLAddWriteVarByName: %Ix\n”, rc);

break;

}
ActVarNo--;
printf(“Anzahl der Var %d\n”, ActVarNo);

/*

Loop: writes 1.Var from 0.0 to 1000.0, then from

1000.0 to 0.0
*/

for (3)
{
if (DmsValue.Float32 == (DMS_FLOAT?32) 0.0)
AddConst = (DMS_FLOAT32) 1.0;
else
if (DmsValue.Float32 == (DMS_FLOAT?32) 1000.0)
AddConst = (DMS_FLOAT32) - 1.0;

/>X<

Write VariableList

*/

rc = DMSAPI_VLWrite(nVLHandle, OwnCallBackld, DMSAPI_STD_ASYNCO);
if (rc)
{

Reference-Manual — DMS / API 181

One-time write “awrite.c” Appendix B Application interface freelance examples

printf(“Error in VLWrite %08Ix\n”, rc);

if ((rc =
DMSAPI_VLClear(nVLHandle)) != E_DMSAPI_OK)

{
printf(“Error VLClear

%lx\n”, rc);
goto _LBL_FNC_XIT;
}
}
/*
Wait for Answer
*/
else
{
1=0;
while (!WriteFlag)
{
i++;
if (kbhit())

goto _LBL_FNC_XIT;
if (i > 10000)
{

NoAnswer++;

if ((rc = DMSAPI_VLDelete(nVLHandle)) != E_DMSAPI_OK)

182 Reference-Manual — DMS / API

Appendix B Application interface freelance examples One-time write “awrite.c”

printf(“Error VLDelete %Ilx\n”, rc);
if ((rc = DMSAPI_VLCreate(ConnHandle,

DMSAPI_VL_SINGLE_WRITE, &nVLHandle))!= E_DMSAPI_OK)

printf(“Fehler beim VLCreate %Ix\n”, rc);
goto _LBL_FNC_XIT;

[*

Adding Variable to List
*/

DmsValue.Float32 = (DMS_FLOAT32) 0.0;
AddConst = (DMS_FLOAT32) 1.0;

for (j = 0; j < ActVarNo; j++)

{
if ((rc = DMSAPI_VLAddWriteVarByName(nVLHandle, Name, DIGI_FLOAT32,

&DmsValue, &lpRecVar, &Index)) = E_DMSAPI_OK)
{

printf(“Error DMSAPI_VLAddWriteVarByName:%lx\n”, rc);

Reference-Manual — DMS / API 183

One-time write “awrite.c” Appendix B Application interface freelance examples

goto _LBL_FNC_XIT;

break;

}

printf(“Received WriteRequests: %d LostWriteNo %d
write failed %d VarsPerSec %d\r”,

RespNo, NoAnswer,failed, (RespNo * ActVarNo *
1000) / (GetTickCount() - dwOldTicks));

RespNo = 0;
dwOldTicks = GetTickCount();
WriteFlag = 0;

[*

Change Value for next Write

*/

DmsValue.Float32 += AddConst;

for j = 0; j < ActVarNo; j++)
{

184

Reference-Manual — DMS / API

Appendix B Application interface freelance examples One-time write “awrite.c”

rc =
DMSAPI_VLChangeValue(nVLHandle, j,

DIGI_FLOAT32, &DmsValue, &lpRecVar);
if (rc)
{

printf(“Error
DMSAPI_VLChangeValue Index% d %081x\n”, j, rc);

goto _LBL_FNC_XIT,;

_LBL_FNC_XIT:

/*

Deleting VariableList
*/

if ((rc = DMSAPI_VLDelete(nVLHandle)) != E_DMSAPI_OK)
printf(“Error VLDelete %Ix\n”, rc);
/*

Disconnecting Station

*/

Sleep(2000);

Reference-Manual — DMS / API 185

Alarm services “aalarm.c” Appendix B Application interface freelance examples

if (ConnHandle !=-1)
DMSAPI_Disconnect(ConnHandle);

while (StationConnect)
{
Sleep(100);
if (kbhit())
break;

/*
DmsApi-Exit
*/

DMSAPI_Exit(OwnStationNo);
printf(“Exit done\n”);

return (0);

B.3 Alarm services “aalarm.c”
/*
*/
#if 0
FILENAME aalarm.c
HISTORY
1 deu create
HISTORY_END
#endif

186 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Alarm services “aalarm.c”

/*
DMSAPI-Demo showing the use of the message function calls
Init DMSAPI

— Register a Callback-Function

— Connect a Station

— call to GetAlarmSummary

— receive the messages

— AutoAcknowledge of all non acknowledged messages
*/
#include “cgen.h”
#include <windows.h>
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>
#include <time.h>
#include “dmstyp.h”
#include “dmsapi.h”
#include “dmserr.h”
#define ESCAPE goto _LBL_FNC_XIT;

DMS_INT16 OwnCallBackld=1;

/*

If there is no valid config in c:\digimat\gwy\resxxx

this function waits for config from Control Builder F

Reference-Manual — DMS / API 187

Alarm services “aalarm.c” Appendix B Application interface freelance examples

you can change the ProjectDir by SetProjectDir
before calling DMSAPI_Init

*/
void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ReslInfo;

if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,
&ReslInfo)) {

printf (“No Config: Configure from Control Builder F and press any key to
continue\n”);

for (;;) {
Sleep(100);
if (kbhit()) {
getch();
break;

}
DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI

188 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Alarm services “aalarm.c”

Attention: this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code !
*/
DMS_RC rcloc;
DMS_REC_ACKALARM AckAL[DMSAPI_MAX_ALARM_IN_ACKAL]J;
DMS_REC_ALARMLIST_DATA *IpRecAL;
int i;
DMS_INT16 Ackno=0;
DMS_HANDLE DmsHandle;

DMSAPI_DumpRecData(lpDmsRec);
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
if (!lpDmsRec->DmsRc) {
if (IpDmsRec->SrvBuff.lpConn->ulConnFlag != DMS_RES_CLIENT) {
/* every time a station connects, a getAlarmsummary should be called */
rcloc=DMSAPI_GetAlarmSummary(lpDmsRec->ConnHandle,
OwnCallBackld, DMSAPI_STD_ASYNC);
if (rcloc) {
printf(“GetAlarmSummary %081x\n”,rcloc);

}
break;

case DMS_REC_ALARMLIST_TYPE:

Reference-Manual — DMS / API 189

Alarm services “aalarm.c” Appendix B Application interface freelance examples

/* this case is for the messages */
IpRecAL=IpDmsRec->SrvBuff.IpAlarmList;
for (i=0;i<lpRecAL->ActAlarmNo;i++) {

if (IpRecAL-
>lpAlarm[i].CurrAlarmStatus==DMS_ALARM_INACT_INACTNACKED ||

IpRecAL-
>lpAlarm[i].CurrAlarmStatus==DMS_ALARM_ACT_ACTNACKED |

IpRecAL-
>lpAlarm[i].CurrAlarmStatus==DMS_ALARM_INACT_ACTNACKED) {

AckAL[Ackno].Objectld=IpRecAL->IpAlarml[i].Objectld;
AckAL[Ackno].AlarmIndex=IpRecAL->IpAlarm[i]. AlarmIndex;
AckAL[Ackno].AlarmStatus=IpRecAL->IpAlarm[i].CurrAlarmStatus;
AckAL[Ackno].rc=E_DMSAPI_OK;

Ackno++;

}
if (Ackno) {
/* there are some messages to acknowledge */

rcloc=DMSAPI_AckAlarmByList(IlpDmsRec-
>ConnHandle,&DmsHandle,

OwnCallBackld,Ackno,AckAL,DMSAPI_STD_ASYNC);
if (rcloc) printf (“Error in Alarmacknowledge %08Ix\n”,rcloc);
else printf (“Acknowledge %d\n”,Ackno);

}
break;
default:
break;

190 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Alarm services “aalarm.c”

return(0);

int main (int argc, char * * argv) {

DMS_RC rc;

DMS_RES_NO OwnStationNo=88;
DMS_RES_NO StationNo=5;
DMS_CONN_HANDLE ConnHandle;

if (argc!=3) {
printf (“Calling Convention: dmsala <OwnStationNo> <MsrStationNo>");

return(0);

sscanf(argv[1],“%d”,&OwnStationNo);
sscanf(argv([2],“%d”,&StationNo);

/* DMSAPI-Init */
if
((rc=DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE))!=E_DMSAPI_OK)
{

printf(“Error DMSAPI_Init %08Ix \n”,rc);
goto _LBL_FNC_XIT;

Reference-Manual — DMS / API 191

Alarm services “aalarm.c” Appendix B Application interface freelance examples

rc=DMSAPI_RegisterCltCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf(“Error DMSAPI_Register Proc %08Ix \n”,rc);
goto _LBL_FNC_XIT;

WaitForConfig(OwnStationNo);

if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf(“Error DMSAPI_ConnectByNo %081x\n”);
goto _LBL_FNC_XIT;
}
for (;;) {
/* nothing to do here, it all happens in the callback function */
Sleep(100);
if (kbhit()) {
getch();
goto _LBL_FNC_XIT;

_LBL_FNC_XIT:

/* Disconnect */

rc=DMSAPI_RegisterCItCB(OwnCallBackld,NULL);

192 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Name services “‘name”

DMSAPI_Disconnect(ConnHandle);

Sleep(1000);

/* DMS_Ende */
DMSAPI_Exit(OwnStationNo);
printf("Exit erreicht\n");

return(0);

B.4 Name services “name”

/%
*/
#if 0

Projekt: Freelance
FILENAME name.c $
COMMENT
DMSAPI - Demo showing the use of the name management

COMMENT_END

VERSION $Revision: 1.0 $ (0)

HISTORY
HISTORY_END

Reference-Manual — DMS / API 193

Name services “name” Appendix B Application interface freelance examples

/* $Log: name.c_v $

*/
#endif

/*
[*

DMSAPI - Demo showing the use of the name management

— Init of DMSAPI
— register a Callback-Function
— Output of all informations the name management can give

— conversion routines for the variable names

*/

#include <windows.h>
#include “dmstyp.h”
#include “dmsapi.h”
#include “dmserr.h”
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <malloc.h>

#include <conio.h>

194 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Name services “‘name”

#include <time.h>

int StationConnect=0;

/>X<

DMS-API-Callback

*/

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI
Attention: this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code!
*/
DMSAPI_DumpRecData(lpDmsRec);
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
if (lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;
break;
default:

printf (“unknown case\n”);

Reference-Manual — DMS / API 195

Name services “name” Appendix B Application interface freelance examples

return(0);

/5
If there is no valid config in c:\digimat\gwy\resxxx
this function waits for config from Control Builder F
you can change the ProjectDir by SetProjectDir
before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ReslInfo;

if (DMSAPI_GetFirstResourcelnfo(OwnResNo,&NoOfRes,10,Resname,
&ResInfo)) {

printf (“No Config: Configure from Control Builder F and press any key to
continue\n”);

for (;;) {
Sleep(100);
if (kbhit()) {
getch();
break;

196 Reference-Manual — DMS / API

Appendix B Application interface freelance examples

Name services “‘name”

/*

main-Programm

*/

int main (int argc, char * * argv) {

DMS_RC
DMS_RES_NO
DMS_RES_NO
DMS_VAR_TYPE
DMS_WORD32
DMS_UINT32
DMS_UINT32
DMS_CHAR
DMS_CHAR

IC;

StationNo=1;
OwnStationNo=19;
Dtype; /* DigiTyp */
Access;
j»1,NoOfVar;
NoOfCmp;
Name[50] ;
CmpName[50];

DMS_NAME_RESOURCE_DATA StatlInfo;
DMS_NAME_VAR_DATA Varlnfo;
DMS_NAME_TAG_DATA Taglnfo;
DMS_NAME_OBJ_DATA Objlnfo;

DMS_INT16
DMS_OBJ_PATH
[

OwnCallBackld=1;

Path;

Reference-Manual — DMS / API

197

Name services “‘name”

check para

*/

if (arge>1) |
sscanf(argv([1],“%d”,&OwnStationNo);

else

{

printf(“Calling Convention: dmsnam <iOwnStationNo> \n\n");

return (0);

/*
start a session
*/
rc=DMSAPI_Init(OwnStationNo,DMS_OS_MSR,1,TRUE);
if (rc) {

printf(“Error in Init %x\n”,rc);

goto _LBL_FNC_XIT;

/*

Set CallBack function

*/

rc=DMSAPI_RegisterCItCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {

printf(“Error in Register %x \n”,rc);

goto _LBL_FNC_XIT;

198

Reference-Manual — DMS / API

Appendix B Application interface freelance examples

Appendix B Application interface freelance examples Name services “‘name”

}
WaitForConfig(OwnStationNo);
/ %

get the info about the configured stations

*/

printf("Stations:\n");

rc=DMSAPI_GetFirstResourceInfo(OwnStationNo,&NoOfVar,50,Name, & StatInfo
);
if (Irc) {
for (i=0;i<NoOfVar-1;i++) {
printf(“%s\n”,Name);
rc=DMSAPI_GetNextResourceInfo(OwnStationNo,50,Name,&StatInfo);
if (rc) printf (“Error %081x\n”,rc);
}

printf(“%s\n”,Name);

}
else printf (“Error %081x\n” rc);

[*

get the info about the configured variables

*/
printf(“Variables:\n");
rc=DMSAPI_GetFirstVarInfo(OwnStationNo,&NoOfVar,50,Name,& Varlnfo);
if (Irc) {

for (i=0;i<NoOfVar-1;i++) {

Reference-Manual — DMS / API 199

Name services “name” Appendix B Application interface freelance examples

printf(“%s/DigVal 3 0.22\n”,Name, (int) VarInfo.OPath.ObjNo,

(int) VarInfo.OPath.CmpNo);
rc=DMSAPI_GetNextVarInfo(OwnStationNo,50,Name,& VarInfo);
if (rc) printf (“Error %08Ix\n”,rc);

}
printf(“%s\n”,Name,(int) VarInfo.OPath.ObjNo,
(int) VarInfo.OPath.CmpNo);

}
else printf (“Error %081x\n” rc);

/*
get the info about the configured tags

for every found Tag : get info about the tag (all pins and parameter)

*/

printf(“Tags:\n");
rc=DMSAPI_GetFirstTaginfo(OwnStationNo,&NoOfVar,50,Name,& TagInfo);
if (!rc) {
for (i=0;i<NoOfVar;i++) {
printf (“Tag %s : %d\n”,Name,(int)TagInfo.ObjClass);
rc=DMSAPI_GetFirstCmpOfObjClass(OwnStationNo, TagInfo.ObjClass,
&NoOfCmp,50,CmpName,&Objlnfo);
if (Irc) {
for (j=0;j<NoOfCmp-1;j++) {
if (Irc) {
printf(“%s/%s\n” ,Name,CmpName);
}

else printf (- Error”);

200 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Name services “‘name”

rc=DMSAPI_GetNextCmpOfObjClass(OwnStationNo, TagInfo.ObjClass,
50,CmpName,&Objlnfo);
}
if (Ire) {
/* if (ObjInfo.nRWFlag)*/
printf(“%s/%s\n” ,Name,CmpName);
}

else printf (“- Error \n”);

}

else

printf(“No components %081x\n”,rc);

if (i<NoOfVar-1) {
rc=DMSAPI_GetNextTagInfo(OwnStationNo,50,Name,& TagInfo);
if (rc) printf (“Error %08Ix\n”,rc);

}
else printf (“Error %081x\n”,rc);

/>X<
now showing the conversion routine DMSAPI_GetVarInfoByName

*/

printf(“now showing the conversion routine DMSAPI_GetVarInfoByName\n”);

for (;;) {

Reference-Manual — DMS / API 201

Name services “name” Appendix B Application interface freelance examples

printf(“give a name of a Variable (quit with ‘q’)\n”);
scanf(“%s” ,Name);
if (Name[0]=='q"' && strlen(Name)==1) goto _LBL_FNC_XIT;

else {

rc=DMSAPI_GetVarlnfoByName(OwnStationNo,Name,&StationNo,&Path,&Dty

pe,
&Access);
if (rc) printf(‘“‘variable not found \n”);
else printf (“%s : Station %d Path %d - %d Type %d Access %d\n”,
Name,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,
(int)Dtype,(int)Access);
}
}
_LBL_FNC_XIT:
/*
the end

*/
DMSAPI_Exit(OwnStationNo);

return (0);

202 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Setting the time “settime.c”

B.5 Setting the time “settime.c”
,*
*/
#if O
FILENAME settime.c

HISTORY

1 deu create
HISTORY_END
#endif
[

DMSAPI-demo showing the use of the DMSAPI_SetRemoteTimeByString
call

-Calling convention: dmstime dd.mm.yyyy hh:mm:ss
- Init
- DMSAPI_SetRemoteTimeByString
- Exit DMS

*/

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

Reference-Manual — DMS / API 203

Setting the time “settime.c” Appendix B Application interface freelance examples

#include <time.h>
#include “dmstyp.h”
#include “dmsapi.h”
#include “dmserr.h”
int main (int argc, char ** argv) {
DMS_RES_NO OwnStationNo=187;
char Time[100];
DMS_RC rc;
if (arge<3) {
printf (“Calling Convention: dmstime dd.mm.yyyy hh:mm:ss
on a system with german local settings\n”);
printf (“Calling Convention: dmstime mm/dd/yyyy hh:mm:ss
on a system with english local settings\n”);
return(0);
}
if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
goto _LBL_FNC_XIT;
sprintf(Time,*“%s %s”, argv[1],argv[2]);

/* the DMSAPI will only accept strings which have the correct syntax
corresponding to the

settings in your Registry (--> control panel -> international)
*/
if ((rc =DMSAPI_SetSystemTimeByString(Time))!= E_DMSAPI_OK)

printf (“Error in SetSystemTime %x : \n”,rc);

_LBL_FNC_XIT:

204 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Toggle primary/secondary redundancy

DMSAPI_Exit(OwnStationNo);

return(0);

B.6 Toggle primary/secondary redundancy “toggle.c”
/*
*/
#if O
FILENAME toggle
HISTORY
1 deu create
HISTORY_END
#endif
/*

DMSAPI-demo showing the use of the ReadCyclic call
— Init of DMSAPI
— Register of a Callback-Function
— Connect to a Station
— issue a RestartResource with Toggle_cmd
— sleep given time
— toggle again in loop

*/

#include <windows.h>
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>

#include <string.h>

Reference-Manual — DMS / API 205

Toggle primary/secondary redundancy “toggle.c” Appendix B Application interface freelance

#include <ctype.h>
#include <conio.h>
#include <time.h>

#include “dmstyp.h”
#include “dmsapi.h”
#include “dmserr.h”

int StationConnect=0;

int PIRecv=0;

#define MAX_DMS_VL 10
/5

If there is no valid config in c:\digimat\gwy\resxxx
this function waits for config from Control Builder F
you can change the ProjectDir by SetProjectDir
before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ReslInfo;
if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,
&ReslInfo)) {

printf (“No Config: Configure from Control Builder F and press any key to
continue\n”);

for (5;) {
Sleep(100);

206 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Toggle primary/secondary redundancy

if (kbhit()) {
getch();
break;

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI
Attention: this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code!
*/
printf(“OwnCallback\n”);
DMSAPI_DumpRecData(lpDmsRec);
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
if (lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;
break;
default:
printf (“Was ist das?\n”);

Reference-Manual — DMS / API 207

Toggle primary/secondary redundancy “toggle.c” Appendix B Application interface freelance

break;
}

return(0);

int wmain (int argc, TCHAR ** argv) {

DMS_RC Ic;

DMS_RES_NO OwnStationNo=37;
DMS_RES_NO StationNo=5;
DMS_CONN_HANDLE ConnHandle;
DMS_INT16 OwnCallBackld=1;
DMS_INT16 i

char szAscStation[20];

BOOL fUnicodeError=FALSE;
int TimeCount,PISnd=0;

/* session start*/

if (arge<4) {

printf (

“Calling Convention: dmsatog <OwnStationNo> <StationNo> <ToggleTime

Sec>");

return(0);

}
wprintf (L“%s %s %s\n”,argv[0],argv[1],argv[2]);

WideCharToMultiByte(CP_ACP ,0,argv[1],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);

sscanf(szAscStation,“%d”,&OwnStationNo);

208

Reference-Manual — DMS / API

Appendix B Application interface freelance examples Toggle primary/secondary redundancy

WideCharToMultiByte(CP_ACP ,0,argv[2],-1,
(LPSTR)szAscStation, 10, NULL,&fUnicodeError);

sscanf(szAscStation,“%d”,&StationNo);

WideCharToMultiByte(CP_ACP ,0,argv[3],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);
sscanf(szAscStation,“%d”,&TimeCount);

if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
goto _LBL_FNC_XIT;

/* register CallBack - Function */

rc=DMSAPI_RegisterCItCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {

printf(“Error in Register Proc \n”);

goto _LBL_FNC_XIT;
}

/* check if config available */

WaitForConfig(OwnStationNo);
/* Connecting to Station */
if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf(“Error in Connect %081x\n”,rc);

Reference-Manual — DMS / API 209

Toggle primary/secondary redundancy “toggle.c” Appendix B Application interface freelance

goto _LBL_FNC_XIT;

while (!StationConnect) {
Sleep(100);
if (kbhit()) goto _LBL_FNC_XIT;

}

printf (“Station connected\n”);

for (;) {

printf (“issue toggle command to station %d\n”,StationNo);

/* issue a Red-Toggle on the process station */

DMSAPI_RestartResource(ConnHandle, DMS_RESTART_TOGGLE);
for (i=0;i<TimeCount;i++) {
Sleep(1000);
if (kbhit()) goto _LBL._FNC_XIT;

}
_LBL_FNC_XIT:
/* Disconnect */

Sleep(1000);

210 Reference-Manual — DMS / API

Appendix B Application interface freelance examples Toggle primary/secondary redundancy

DMSAPI_Disconnect(ConnHandle);

while (StationConnect) {

Sleep(100);

if (kbhit()) break;

/* the end */

DMSAPI_Exit(OwnStationNo);

return(0);

Reference-Manual — DMS / API 211

Toggle primary/secondary redundancy “toggle.c” Appendix B Application interface freelance

212 Reference-Manual — DMS / API

Appendix C DMSAPI files

Appendix C DMSAPI files

C.1 dmstyp.h
/*
COMMENT

s sk she she she she she st st sie st sfe sfe sfe sfe she she she she sk sie s sie ste sfe sfe sfe she she she she she she sl siesie st sfe sfe sfe sfe she she sk she sk sesieste st sfe sfe sfe sk sk sheoskeoskeoskokokoteieokokoskok
*

DMS-API

Digimatik Message Specification Application Interface
Communication Protocol for Freelance Process Level

Type and other Definitions

> sfe sfe she she sk she sk st sie sfe sfe sfe sfe sfe sfe sfe she she sk sk e e sie sfe sfe sfe sfe she sfe she she sfe sk e sie sie sfe sfe sfe sfe sfe sfe she she sk sk st sie sie sfe sfe sfe sfe sfe s sheskeoskokokoieoiokokokosk
*

COMMENT_END
FILENAME $Workfile: dmstyp.h $
VERSION $Revision: 1.7.1.1 $ (0)

HISTORY
HISTORY_END

Reference-Manual — DMS / API 213

Appendix C DMSAPI files

[t st ste st s s e shesheste st s s se ke shesteste st s s ke sheshesfe st st s s ke sfesfeste st s sk sfesfesteste s stk ke st stestestestoloskoskostotokosiokokoskokololokok
deskeskeskokokokok f

$Log: dmstyp.h_v $

st sfe sfe sfe sfe s sk ske sk s sk st st sfe sfe sfe sfe sfe she sk sk sk sk sk sie sfe st sfe sfe sfe sfe she she sk sk sk sk ske st sfe sfe sfe sfe sfe she sk sk sk sk sk st sfe sfe sfe sfe sfe sfe s s skoskeskeskeoteke sk
stttk /

#if __cplusplus
extern “C” {

#endif

#ifndef _DMSAPI_TYP_H
#define _DMSAPI_TYP_H

/*

FREELANCE Basic-Datatypes
*/

typedef unsigned short DMS_WORDI16;

typedef unsigned long DMS_WORD?32;

typedef float DMS_FLOAT32;
typedef signed char DMS_INTS;

214

Reference-Manual — DMS / API

Appendix C DMSAPI files

typedef short DMS_INT16;

typedef long DMS_INT32;

typedef DMS_WORD16 DMS_UINT16;

typedef DMS_WORD32 DMS_UINT32;

typedef char DMS_CHAR;

typedef unsigned char DMS_BYTE,;

typedef unsigned char DMS_BOOLEAN;

typedef DMS_UINT16 DMS_OBINO;

typedef DMS_UINT16 DMS_CMPNO;

typedef DMS_INT32 DMS_TIME;

typedef struct

{

DMS_WORD32 dwMSecondsHigh; /* ms since 1.1.1970 0.00 Uhr GMT (high)
*/

DMS_WORD32 dwMSecondsLow; /* ms since 1.1.1970 0.00 Uhr GMT (low)
*/

Reference-Manual — DMS / API 215

Appendix C DMSAPI files

} DMS_DT;
/*

FREELANCE String-Datatypes

*/

#define DMS_STRING_ALGN 2 /* 2 Bytes Allignement at the end of each
String */

f s DMS_STRINGS - Typ #55% %/

#define DMS_STRING8_LENGTH 8

typedef struct {
DMS_WORDI16 wMaxStringlen; /* max Len of String */

DMS_CHAR Content[DMS_STRINGS8_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRINGS;

typedef DMS_STRINGS * LPDMS_STRINGS;

/¥ ##%k% STRINGL6 - Typ *##%* */
#define DMS_STRING16_LENGTH 16
typedef struct {
DMS_WORDI16 wMaxStringlen; /* max Len of String */

DMS_CHAR Content[DMS_STRING16_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRING16;

216 Reference-Manual — DMS / API

Appendix C DMSAPI files

typedef DMS_STRING16 * LPDMS_STRING6;
= #sx STRING32 - Typ #5 /

#define DMS_STRING32_LENGTH 32

typedef struct {
DMS_WORDI16 wMaxStringl.en; /* max Len of String */

DMS_CHAR Content[DMS_STRING32_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRING32;

typedef DMS_STRING32 * LPDMS_STRING32;
[* #*Fx% DMS_STRING64 - Typ *#*%%* */
#define DMS_STRING64_LENGTH 64
typedef struct {
DMS_WORD16 wMaxStringlen; /* max Len of String */

DMS_CHAR Content[DMS_STRING64_LENGTH+DMS_STRING_ALGN];
/* content */

} DMS_STRING64;

typedef DMS_STRING64 * DMS_LPSTRING64;

/¥ #EEE DMS_STRING128 - Typ ####% */

#define DMS_STRING128_LENGTH 128

Reference-Manual — DMS / API 217

Appendix C DMSAPI files

typedef struct {
DMS_WORDI16 wMaxStringl.en; /* max Len of String */

DMS_CHAR
Content[DMS_STRING128_LENGTH+DMS_STRING_ALGN]; /* Content */

} DMS_STRING128;

typedef DMS_STRING128 * LPDMS_STRING128;
/% ##xx DMS_STRING256 - Typ *##% %/

#define DMS_STRING256_LENGTH 256

typedef struct {
DMS_WORDI16 wMaxStringl.en; /* max Len of String */

DMS_CHAR
Content[DMS_STRING256_LENGTH+DMS_STRING_ALGN]; /* content */

} DMS_STRING256;

typedef DMS_STRING256 * LPDMS_STRING256;
[

FREELANCE Datatype-Union
*/

typedef union {
DMS_WORDI16 Wordl6;
DMS_WORD32 Word32;

218 Reference-Manual — DMS / API

Appendix C DMSAPI files

DMS_FLOAT32 Float32;
DMS_INTS Int8;
DMS_INT16 Intl6;
DMS_INT32 Int32;
DMS_UINT16 Uintl6;
DMS_UINT32 Uint32;
DMS_CHAR Char;
DMS_BOOLEAN Boolean;
DMS_BYTE Byte;
DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;
DMS_TIME DmsTime;
DMS_DT DmsDT;
DMS_STRINGS Strings8;
DMS_STRING16 Stringl6;
DMS_STRING32 String32;
DMS_STRING64 String64;
DMS_STRINGI128 String128;
DMS_STRING256 String256;

} DMS_VALUE;

/>X<

maximale Stringl.aengen

*/

#define DMS_MAX_RESNAME_LEN 10
#define DMS_MAX_VARNAME_LEN 40

Reference-Manual — DMS / API 219

Appendix C DMSAPI files

#define DMS_MAX_TAGNAME_LEN 15
#define DMS_MAX_COMPNAME_LEN 15

/*
DMS Resource number and type

*/
typedef unsigned short DMS_RES_NO;
typedef unsigned short DMS_RES_TYPE;

/*

DMS variable types

*/

typedef unsigned short DMS_VAR_TYPE,;

#define DMS_VAR_TYPE_BOOLEAN 0x01
#define DMS_VAR_TYPE_CHAR 0x02
#define DMS_VAR_TYPE_BYTE 0x03
#define DMS_VAR_TYPE_INT8 0x04
#define DMS_VAR_TYPE_WORD16 0x05
#define DMS_VAR_TYPE_UINT16 0x06
#define DMS_VAR_TYPE_INT16 0x07
#define DMS_VAR_TYPE_WORD?32 0x08
#define DMS_VAR_TYPE_UINT32 0x09
#define DMS_VAR_TYPE_INT32 0x0A
#define DMS_VAR_TYPE_FLOAT32 0x0B
#define DMS_VAR_TYPE_TIME 0x0C

220

Reference-Manual — DMS / API

Appendix C DMSAPI files

#define

#define
#define
#define
#define
#define
#define
#define
#define

[*

DMS_VAR_TYPE_DMSTIME

DMS_VAR_TYPE_STRINGS8
DMS_VAR_TYPE_STRING16
DMS_VAR_TYPE_STRING32
DMS_VAR_TYPE_STRING64
DMS_VAR_TYPE_STRING128
DMS_VAR_TYPE_STRING256
DMS_VAR_TYPE_OBJNO
DMS_VAR_TYPE_CMPNO

0x0D

0xOE /* Strings
0xOF /* Strings
0x10 /* Strings
Ox11 /* Strings
0x12 /* Strings
0x13 /* Strings
0x2C
0x2D

DMS var error type

*/

typedef unsigned long DMS_VAR_RC;

[*

DMS error

*/

typedef unsigned long DMS_RC;

[*

DMS ConnectionHandle

*/

*/
*/
*/
*/

*/
*/

Reference-Manual — DMS / API

221

Appendix C DMSAPI files

typedef int DMS_CONN_HANDLE;
#define DMSAPI_HANDLE_MIN_NO 0
#define DMSAPI_HANDLE_MAX_NO 150
#define DMSAPI_NO_HANDLE -1

/*
DMS Service Handle

*/
typedef short DMS_HANDLE;
/*

DMS Variable ObjPath
*/

typedef struct {

DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;

} DMS_OBJ_PATH;

/*

DMS - Client Receive Services

*/

#define DMSAPI_SYNCHRON 1
#define DMSAPI_ASYNCHRON 2
#define DMSAPI_WAIT_FOREVER Oxffffffff

222 Reference-Manual — DMS / API

Appendix C DMSAPI files

#define DMSAPI_NO_TIMEOUT 0

#define DMSAPI_STD_ASYNC DMSAPI_ASYNCHRON,
DMSAPI_WAIT_FOREVER, 0, NULL

typedef enum {

DMS_REC_CONN_TYPE,
DMS_REC_VARLIST_TYPE,
DMS_REC_INFO_REPORT_TYPE,
DMS_REC_ALARMLIST _TYPE,
DMS_REC_ACKALARMLIST_TYPE,
DMS_REC_PROGRAM_INVOCATION_TYPE,
DMS_REC_DOMAIN_TYPE,
DMS_REC_VERSION_TYPE

} DMS_REC_SERVICE_TYPE;

[*

Connection management

*/

typedef enum {
DMS_CONN_OK, /* o.k.*/
DMS_CONN_ABORT, /* no connection */

Reference-Manual — DMS / API 223

Appendix C DMSAPI files

DMS_CONN_INVALID_RES_TYPE, /* wrong resource type */

DMS_CONN_INVALID_RES_NO, /* wrong resource number */

DMS_CONN_NO_OS, /* no operation system */

DMS_CONN_SECONDARY, /* remote station is secondary =>
cannot connect */

DMS_CONN_INVALID_VERSION /* wrong DMS_ Version */

} DMS_CONN_STATUS;

/*
values for nBTRLnk in connect- routines

*/

#define DMS_BTR_TCPIP 1 /* Standard BTR using TCPIP */
#define DMS_BTR_REDLNK 2 /* BTR only for redundant resource */

/%

values for connection flag

*/

#define DMS_RES_PRIMARY 1 /* connection to a primary server */
#define DMS_RES_SECONDARY 2 /* connection to a secondary server */
#define DMS_RES_CLIENT 3 /* connection to a client */

/*

224

Reference-Manual — DMS / API

Appendix C DMSAPI files

values for the cpu board type

*/

#define DMS_CPU_UNKNOWN 0 /*.. */
#define DMS_CPU_DCP02 1 /*CPU_O1,960CA/CF */
#define DMS_CPU_DCP10 2 /*CPU_02, 960Hx */
#define DMS_CPU_PC 3 /*PC */

/>l<
values for OS_RES_TYPE
*/

#define DMS_OS_DIGIVIS 1
#define DMS_OS_DIGITOOL 2
#define DMS_OS_EPROM 3
#define DMS_OS_MSR 4
#define DMS_OS_DDE_GWY 5
#define DMS_OS_P_GWY 6
#define DMS_OS_GWY 7

typedef struct DMS_REC_CONN_DATA {

DMS_RES_NO OwnResNo; /* Own Resource 1d */
DMS_RES_NO ResNo; /* remote resource Id */
DMS_RES_TYPE ResType; /* OS Types */

DMS_CONN_STATUS ConnStatus; /* connection state */

Reference-Manual — DMS / API 225

Appendix C DMSAPI files

DMS_UINT32 ullPAddr; /* IP-adresse of remote resource */
DMS_UINT32 ulBoardType; /* cpu board type */
DMS_UINT32 ulConnFlag; /* ConnectionFlag */

} DMS_REC_CONN_DATA;

typedef enum {
DMS_RESTART_WARM,
DMS_RESTART_COLD,
DMS_RESTART_FATAL,
DMS_RESTART_TOGGLE

} DMS_RESTART_REASON;

/*

Variable mangement

*/

#define DMSAPI_VL_SINGLE_READ 1
#define DMSAPI_VL_CYCLE_READ 2
#define DMSAPI_VL_SINGLE_WRITE 3

#define DMSAPI_NOACCESS 0x00

#define DMSAPI_READONLY 0x01
#define DMSAPI_WRITEONLY 0x02
#define DMSAPI_READWRITE 0x03

typedef enum {

226 Reference-Manual — DMS / API

Appendix C DMSAPI files

DMS_VAR_NOT_VALID,
DMS_VAR_NOT_CHANGED,
DMS_VAR_CHANGED,
DMS_VAR_DELETED

} DMS_VAR_STATUS;

typedef struct DMS_REC_VAR {

DMS_VAR_STATUS VarStatus;

DMS_VAR_RC VarRc;

DMS_OBJ_PATH ObjPath;

DMS_CHAR * VarName;

DMS_UINT32 ValueSize; /* Size of ValueBuffer */
DMS_VAR_TYPE VarType;

DMS_VALUE *VarValue;

} DMS_REC_VAR;

typedef struct DMS_REC_VARLIST_DATA {

DMS_HANDLE DmsHandle;

DMS_INT16 ActVarNo; /* actual amount of variables */

DMS_INT16 MaxVarNo; /* max. amount of variables */
DMS_INT16 FreeBytes; /* amount of free bytes in the VL */

Reference-Manual — DMS / API 227

Appendix C DMSAPI files

DMS_REC_VAR * IpVar;

} DMS_REC_VARLIST_DATA;

/*

Version data

*/

typedef struct DMS_VERSION_DATA {

DMS_CHAR *ProjName; /* Projectname */
DMS_WORD16 wMajorVersion;
DMS_WORDI16 wMinorVersion;
DMS_WORDI16 wPatchVersion;

} DMS_VERSION_DATA;

typedef struct DMS_REC_VERSION_DATA {

DMS_CHAR *ProjName; /* Projectname */
DMS_WORDI16 wMajorVersion;
DMS_WORD16 wMinorVersion;
DMS_WORDI16 wPatchVersion;
DMS_OBJNO ObjClass;

DMS_OBJNO ObjNo;

228 Reference-Manual — DMS / API

Appendix C DMSAPI files

} DMS_REC_VERSION_DATA;

/>X<

Alarmmanagement

*/

typedef DMS_WORD16 DMS_ALARM_TYPE;

typedef enum {
DMS_ALARM_PRIO_0,
DMS_ALARM_PRIO_1,
DMS_ALARM_PRIO_2,
DMS_ALARM_PRIO_3,
DMS_ALARM_PRIO_4,
DMS_ALARM_PRIO_5,

} DMS_ALARM_PRIO;

typedef enum {

DMS_ALARM_INACT_ACTNACKED, /*
inactive/active_not_acknowledged */

DMS_ALARM_ACT_ACTNACKED, /* active/active_not_acknowledged */
DMS_ALARM_INACT_INACTNACKED, /* inactive/ not_acknowledged */
DMS_ALARM_ACT_ACTACKED, /* active/ acknowledged */

Reference-Manual — DMS / API 229

Appendix C DMSAPI files

DMS_ALARM_NOT_VALID_4,
DMS_ALARM_NOT_VALID_S,

DMS_ALARM_INACT_INACTACKED, /* inactive/inactive_acknowledged
*/

DMS_ALARM_NOT_VALID 7,
DMS_ALARM_AP_DELETED /* message object was deleted */

} DMS_ALARM_STATUS;

typedef enum {

DMS_ALARM_GAS,
DMS_ALARM_LAST_GAS,
DMS_ALARM_EVENTS,

} DMS_ALARM_LIST_TYPE;

typedef struct DMS_REC_ALARM {
DMS_DT TransitionTime;
DMS_OBJNO Objectld;
DMS_WORDI16 AlarmIndex;
DMS_ALARM_TYPE AlarmType;
DMS_OBJNO ObjectClass;
DMS_ALARM_STATUS CurrAlarmStatus;
DMS_ALARM_STATUS PrevAlarmStatus;
DMS_ALARM_PRIO Priority;
DMS_BOOLEAN NotificationLost;

230 Reference-Manual — DMS / API

Appendix C DMSAPI files

DMS_RC Ic;
DMS_UINT32 ValueSize;
DMS_VAR_TYPE AlarmValType;
DMS_VALUE *AlarmValue;

} DMS_REC_ALARM,;

#define DMSAPI_MAX_ALARM_IN_AL 43

typedef struct DMS_REC_ALARMLIST_DATA {

DMS_ALARM_LIST_TYPE ListType;

DMS_INT16 ActAlarmNo; /* actual amount of messages */
DMS_REC_ALARM *IpAlarm; /* message list */

} DMS_REC_ALARMLIST_DATA;

typedef struct DMS_REC_ACKALARM {
DMS_OBJNO Objectld;
DMS_WORDI16 AlarmlIndex;
DMS_ALARM_STATUS AlarmStatus;
DMS_RC Ic;

} DMS_REC_ACKALARM,;

#define DMSAPI_MAX_ALARM_IN_ACKAL 157

typedef struct DMS_REC_ACKALARMLIST_DATA {

Reference-Manual — DMS / API

231

Appendix C DMSAPI files

DMS_HANDLE DmsHandle;

DMS_INT16 ActAckAlarmNo; /* actual amount of acknowledged
messages */

DMS_REC_ACKALARM *IpAckAlarm; /* acknowledged message list */

} DMS_REC_ACKALARMLIST_DATA;

/*

Receivedata Union

*/

typedef union {

DMS_REC_CONN_DATA *IpConn;
DMS_REC_VARLIST_DATA *IpVarList;
DMS_REC_ALARMLIST_DATA *IpAlarmList;
DMS_REC_ACKALARMLIST_DATA *IpAckAlarmList;
DMS_REC_VERSION_DATA *IpVersion;

} DMS_REC_SERVICE_DATA;

typedef struct DMS_REC_DATA {

DMS_CONN_HANDLE ConnHandle; /* StationsConnHandle */

DMS_RC DmsRc; /* ErrorCode */
DMS_UINT32 BuffSize; /* Size of DataBuffer */

232 Reference-Manual — DMS / API

Appendix C DMSAPI files

DMS_REC_SERVICE_TYPE SrvType; /* ServiceTyp */
DMS_REC_SERVICE_DATA SrvBuff; /* Pointer to DmsData */

} DMS_REC_DATA;

typedef DMS_RC (* DMS_REC_DATA_PROC) (DMS_REC_DATA *DmsRec);

#define DMSAPI_MAX_CB 10
#define DMSAPI_NO_CALLBACK 0

/*

Server management

*/

typedef enum {

DMS_WRITE_SERVICE_TYP,
DMS_READ_SERVICE_TYP,
DMS_GETDATA_ADDR_SERVICE_TYP

} DMS_VAR_SERVICE_TYP;

typedef struct {

DMS_OBJ_PATH ObjPath;

int VarLen;

DMS_VAR_TYPE VarType;

Reference-Manual — DMS / API 233

Appendix C DMSAPI files

DMS_VALUE *VarValue;
DMS_VAR_RC VarRc;

} DMS_VAR_ELEM,;

typedef DMS_RC (* DMS_VAR_SERVER_PROC)
(
DMS_CONN_HANDLE ConnHandle,
DMS_VAR_SERVICE_TYP VarServiceTyp,
int VarElemNo,
DMS_VAR_ELEM *VarElem

);

typedef enum {

DMS_DLINIT_SERVICE_TYP,
DMS_DLEXIT_SERVICE_TYP,
DMS_ULINIT_SERVICE_TYP,
DMS_ULEXIT_SERVICE_TYP,
DMS_DELDOM_SERVICE_TYP

} DMS_DOM_SERVICE_TYP;

typedef enum {

DMS_DOM_RAM_TYP,

234 Reference-Manual — DMS / API

Appendix C DMSAPI files

DMS_DOM_PRAM_TYP,
DMS_DOM_FILE_TYP,
DMS_DOM_PROC_TYP

} DMS_DOMAIN_TYP;

typedef DMS_RC (* DMS_DOM_SERVER_PROC)

(
DMS_CONN_HANDLE ConnHandle,

DMS_OBJNO ObjNo,

DMS_RC rc,
DMS_DOMAIN_TYP DomainType,
DMS_INT32 *DomainLen,
DMS_CHAR *DomainContent,
DMS_CHAR **OwnDomainContent

);

[*

DMS Name management

*/

typedef struct DMS_NAME_RESOURCE_DATA {

DMS_WORD32 dwIPAddrl;
DMS_WORD32 dwIPAddr2;
DMS_RES_NO ResNo;

Reference-Manual — DMS / API

235

Appendix C DMSAPI files

DMS_RES_TYPE
DMS_UINT16
DMS_UINT16
DMS_UINT16
DMS_UINT16

ResType;
wTimeOut; /* in Sek */
wMajor VersionNo;
wMinor VersionNo;

wPatchVersionNo;

} DMS_NAME_RESOURCE_DATA;

typedef struct DMS_NAME_VAR_DATA {

DMS_WORD32

DMS_VAR_TYPE

DMS_RES_NO
DMS_OBJ_PATH

dwAccessRights;
VarType;
ResNo;
OPath;

} DMS_NAME_VAR_DATA;

typedef struct DMS_NAME_TAG_DATA {
DMS_WORD32
DMS_RES_NO ResNo;
DMS_OBJNO ObjClass;
DMS_OBJNO ObjNo;
DMS_CMPNO

dwAccessRights;

CmpNo;

} DMS_NAME_TAG_DATA;
typedef struct DMS_NAME_OBJ_DATA {

236 Reference-Manual — DMS / API

Appendix C DMSAPI files

DMS_WORDI16 nRWFlag;
DMS_CMPNO CmpNo;

DMS_VAR_TYPE VarType;
DMS_WORDI16 Reserved;

/* component name as string null terminated and 4 byte alignment */

} DMS_NAME_OBJ_DATA;

[*

DMS-Utilities

*/

typedef struct DMS_VAR_CODE {

char
char
char
char

char

BOOLEAN

} DMS_VAR_CODE;

szDateStringSyntax[5];
szDecimal[10];
sz1000Decimal[10];
szDate[10];
szTimeSeparation[10];

fDigiTimeAsLong;

Reference-Manual — DMS / API

237

dmsapi.h

Appendix C DMSAPI files

#endif /* _DMSAPI_TYP_H defined */

#if __cplusplus

}
#endif

C.2 dmsapi.h

#ifdef CGEN
COMMENT

st sfe sfe sfe she she she she sie e e ste ste sfe sfe sfe she she she she s she sk sie st sfe sfe sfe sfe she she she sfe she sk st sie sk sfe sfe sfe she she she she she sk siestesie st ste st sfe sfeoske skl ok
*

DMS-API

Digimatik Message Specification ApplicationInterface
Communication Protocol for Digimatik Process Level

Functions

>k sk s sk sk s sk sk sk st sk sk st s sk sk sk sk st sfe sk sk s sk sk s sk st sk sk ke s sk ke s sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk st sk sk sk stk keskok
*

COMMENT_END

FILENAME $Workfile: DMSAPLH $

238

Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

VERSION $Revision: 1.13.1.0 $ (0)

HISTORY
HISTORY_END

/* $Log: DMSAPLH_v $
*/

#endif

#if __ cplusplus

extern "C" {

#endif

#ifndef _DMSAPI_FNC_H

#define _DMSAPI_FNC_H

#ifdef _ DMS_API_INIT_FKT _

ifdef WIN32

define CGEXPORT _declspec(dllexport)
else

define CGEXPORT

endif

#else

ifdef WIN32

define CGEXPORT _declspec(dllimport)
else

define CGEXPORT

Reference-Manual — DMS / API 239

dmsapi.h Appendix C DMSAPI files

endif
#endif /* __ DMS_API_INIT FKT__*/

/*

Environment and General Management Services

*/

/* Initialisation of Dms on a Gateway */

CGEXPORT DMS_RC DMSAPI_Init (
DMS_RES_NO OwnResNo /* Own Resource 1d */,
DMS_RES_TYPE OwnResType /* Own Resource Typ */,
DMS_INT16 NoOfSrvConn /* Number of ServerConnection */,
DMS_BOOLEAN bStandardServer /* TRUE or FALSE */);

/* Shutdown Dms */

CGEXPORT DMS_RC DMSAPI_Exit (
DMS_RES_NO OwnResNo /* Own Resource No */);

/* StationConnect */

CGEXPORT DMS_RC DMSAPI_ConnectByAddr(
DMS_RES_NO OwnResNo /* Own Resource Id */,

DMS_INT16 nBTRLnk /* take DMS_BTR_TCPIP from
DMSTYPh #/,

240 Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

s

DMS_UINT32 ullPAddr1 /* first ipaddress of remote station */,
DMS_UINT32 ullPAddr2 /* second ipaddress of remote station */,
DMS_RES_NO ResNo /* resource no */,

DMS_RES_TYPE ResType /* resource type */,

DMS_UINT16 ulKeepAliveT /* KeepAliveTimeout */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /* synchrone flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecConnLen /* size of RecConn */,
DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.

CGEXPORT DMS_RC DMSAPI_ConnectByName(

*);

DMS_RES_NO OwnResNo /* Own Resource No */,

DMS_CHAR *ResName /* name of resource */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /* synchrone flag */,

DMS_UINT32 ulProcT /* prozedure Timeout */,
DMS_UINT32 ulRecConnlLen /* size of RecConn */,
DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.

CGEXPORT DMS_RC DMSAPI_ConnectByNo(

DMS_RES_NO OwnResNo /* Own Resource No */,
DMS_RES_NO ResNo /* name of resource */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,

Reference-Manual —

DMS / API 241

dmsapi.h

Appendix C DMSAPI files

DMS_INT16 nSyncFlag /* synchrone flag */,
DMS_UINT32 ulProcT /* prozedure Timeout */,
DMS_UINT32 ulRecConnLen /* size of RecConn */,

DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*/);

/* StationDisConnect */

CGEXPORT DMS_RC DMSAPI_Disconnect(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */);

/* ConnectionData */

CGEXPORT DMS_RC DMSAPI_GetConnectionData(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_REC_CONN_DATA *Data /* Out -> ReceiveStruct of Conn. */);

/* Set RemoteTime */

#ifdef WIN32

CGEXPORT DMS_RC DMSAPI_SetSystemTime (
SYSTEMTIME *NTDT /* Win32 date and time format */);

#endif

CGEXPORT DMS_RC DMSAPI_SetSystemTimeByDmsType (
DMS_DT *DateTime /* DMS date and time */);

242

Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

CGEXPORT DMS_RC DMSAPI_SetSystemTimeByString (
DMS_CHAR * IpszDateTime /* date and time string */);

CGEXPORT DMS_RC DMSAPI_RestartResource(
IN DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
IN DMS_RESTART_REASON RestartReason /* RestartReason */);

CGEXPORT DMS_RC DMSAPI_RegisterC1tCB(
DMS_INT16 nCBId /* CallbackId */,
DMS_REC_DATA_PROC CallBackProc /* Callbackfunction */);

/ *
Variablemangement
*/

CGEXPORT DMS_RC DMSAPI_VLCreate(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 nVLService /* Service:
DMSAPI_VL_SINGLE_READ
DMSAPI_VL_CYCLE_READ
DMSAPI_VL_SINGLE_WRITE #/,
DMS_HANDLE *IlpDmsHandle /* Identifier for Varlist */);
CGEXPORT DMS_RC DMSAPI_VLAddWriteVarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_CHAR *lpszVarname /* Variable name */,
DMS_VAR_TYPE VarType /* Variable type */,

Reference-Manual — DMS / API

243

dmsapi.h Appendix C DMSAPI files

DMS_VALUE *lpvVarValue /* Variable value */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INT16 *IpnIndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLAddWriteVarBy Addr(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH *pOpath /* Objectpath */,

DMS_VAR_TYPE VarType /* Variable type */,

DMS_VALUE *lpvVarValue /* Variable value */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INTI16 *Ipnlndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLAddReadVarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_CHAR *lpszVarname /* Variable name */,

DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,

DMS_INT16 *Ipnlndex /* Index in RecVarStruct */);
CGEXPORT DMS_RC DMSAPI_VLAddReadVarByAddr(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_OBJ_PATH *IpOpath /* Objectpath */,

DMS_VAR_TYPE VarType /* Variable type */,

DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,

DMS_INT16 *Ipnlndex /* Index in RecVarStruct */);
CGEXPORT DMS_RC DMSAPI_VLChangeValue(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nlndex /* Index in RecVarStruct */,

244 Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

DMS_VAR_TYPE VarType /* Variable type */,
DMS_VALUE *IpvVarValue /* Variable value */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLDelVar(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INT16 nlndex /* Index in RecVarStruct */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLClear(
DMS_HANDLE DmsHandle /* VarListHandle */);

CGEXPORT DMS_RC DMSAPI_VLRead(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nCBId /¥ Callbackld */,

DMS_INT16 nSyncFlag /¥ synchron flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecVarLen /* size of RecVarStruct */,

DMS_REC_VARLIST_DATA *IpRecVar /* Out-> Pointer to RecVarStruct
*);

CGEXPORT DMS_RC DMSAPI_VLReadCycle(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_UINT32 ulCycleTime /* cycletime in ms */,
DMS_INT16 nCBId /* Callbackld */,
DMS_INT16 nSyncFlag /* synchrone flag */,

Reference-Manual — DMS / API 245

dmsapi.h Appendix C DMSAPI files

DMS_UINT32 ulProcT /* prozedur timeout */,

DMS_UINT32 ulRecVarLen /* Size of RecVarStruct */,

DMS_REC_VARLIST_DATA *IpRecVar /* Out-> Pointer to RecVarStruct
*);

CGEXPORT DMS_RC DMSAPI_VLStopCycle(
DMS_HANDLE DmsHandle /* VarListHandle */);

CGEXPORT DMS_RC DMSAPI_VLWrite(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nCBId /* Callbackld */,

DMS_INT16 nSyncFlag /* synchrone flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecVarLen /* Size of RecVarStruct */,

DMS_REC_VARLIST_DATA *IpRecVar /* Out -> Pointer to RecVarStruct
*);

CGEXPORT DMS_RC DMSAPI_VLDelete(
DMS_HANDLE DmsHandle /* VarListHandle */);

/*

Alarmmangement

*/

CGEXPORT DMS_RC DMSAPI_GetAlarmSummary(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

246 Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

DMS_INT16 nCBId /* Callbackld */,
DMS_INTI16 nSyncFlag /* synchrone flag */,
DMS_UINT32 ulProcT /* prozedure timeout */,
DMS_UINT32 ulRecVarLen /* size of AlarmRec */,

DMS_REC_ALARMLIST_DATA *IpAlarmRec /* Out -> Pointer to
AlarmListStruct */);

CGEXPORT DMS_RC DMSAPI_AckAlarmByList(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_HANDLE *IlpDmsHandle /* Identifier for Acklist */,

DMS_INT16 nCBId /* Callbackld */,

DMS_INT16 ActAlarmNo /* actual amount of messages */,

DMS_REC_ACKALARM *IpAlarmAck /* Pointer to AlarmAckStruct
.

DMS_INT16 nSyncFlag /¥ synchrone flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecVarLen /* size of AckAlarmRec */,

DMS_REC_ACKALARMLIST_DATA *IpAckAlarmRec /* Out -> Pointer to
AlarmAckListStruct */);

/>X<

DMS Name management

*/

CGEXPORT DMS_RC DMSAPI_LockOV (

Reference-Manual — DMS / API 247

dmsapi.h

Appendix C DMSAPI files

DMS_RES_NO OwnResNo /* */);

CGEXPORT DMS_RC DMSAPI_UnlockOV (DMS_RES_NO OwnResNo /*
GWY Resource I1d*/);

CGEXPORT DMS_RC DMSAPI_SetProjectDir(DMS_CHAR * szProjectDir /*
path to new Directory */);

CGEXPORT DMS_RC DMSAPI_ChangeProject(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_CHAR * ProjName /* new project name™*/);

CGEXPORT DMS_RC DMSAPI_GetProjectInfo(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_VERSION_DATA * VersionData /* OUT -> pointer to VersionData */);

CGEXPORT DMS_RC DMSAPI_GetVarlnfoByName(
DMS_RES_NO OwnResNo /¥ GWY Resource Id */,
DMS_CHAR * [pVarName /* variable name */,
DMS_RES_NO *pResNo /* Out -> remote resource Id */,
DMS_OBJ_PATH * IpPath /* Out -> object path */,
DMS_VAR_TYPE * [pVarType /* Out -> variable type */,
DMS_WORD32 * IpAccessRights /* Out -> Access Rights */);
CGEXPORT DMS_RC DMSAPI_GetVarnameByOPath (
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_RES_NO ResNo /* remote resource Id */,

248

Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h
DMS_OBJ_PATH *IpPath /* Out -> ObjectPath */,
DMS_UINT32 VarNameLen /* max. size of Varname */,
DMS_CHAR *IpVarName /* Out -> variable name */);
CGEXPORT DMS_RC DMSAPI_GetTagByAddr (
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_RES_NO ResNo /* remote resource Id */,
DMS_OBJNO ObjNo /* ObjectPath */,
DMS_UINT32 TagNameLen /* max. Size of tagname */,
DMS_CHAR *IpTagName /* Out -> tagname */,
DMS_NAME_TAG_DATA *lpTagInfo /¥ Out -> tagInfo */);
CGEXPORT DMS_RC DMSAPI_GetFirstResourcelnfo(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 *IpulNoOfRess /* Out -> amount of resources */,
DMS_UINT32 ResNamelen /* max. size of resname */,
DMS_CHAR *I[pResName /* Out -> name of resource */,

DMS_NAME_RESOURCE_DATA *IpResInfo /* Out -> ResInfo */);

CGEXPORT DMS_RC DMSAPI_GetNextResourcelnfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 ResNamelLen /* max. size of resname */,
DMS_CHAR *IpResName /* Out -> name of resource */,

DMS_NAME_RESOURCE_DATA *IpResInfo /* Out -> Reslnfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstVarInfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,

DMS_UINT32 *pulNoOf Var /* amount of variables in config */,

Reference-Manual — DMS / API

249

dmsapi.h Appendix C DMSAPI files

DMS_UINT32 VarNamel en /* max. size of variable name */,
DMS_CHAR *IpVarName /* Out -> variable name */,
DMS_NAME_VAR_DATA *IpVarlnfo /* Out -> variable info */);

CGEXPORT DMS_RC DMSAPI_GetNextVarlnfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 VarNamel en /* max. size of variable name */,
DMS_CHAR *IpVarName /* Out -> variable name */,

DMS_NAME_VAR_DATA *IpVarlnfo /* Out -> variable info */);

CGEXPORT DMS_RC DMSAPI_GetFirstTagInfo(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 *lpulNoOfTag /* amount of tags in config. */,
DMS_UINT32 TagNameLen /* max. size of tagname */,
DMS_CHAR *IpTagName /* Out -> tagname */,
DMS_NAME_TAG_DATA *IpTaglnfo /* Out -> taginfo */);

CGEXPORT DMS_RC DMSAPI_GetNextTagInfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 TagNameLen /* max. size of tagname */,
DMS_CHAR *IpTagName /* Out -> tagname */,

DMS_NAME_TAG_DATA *IpTaglnfo /* Out -> taginfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstCmpOfObjClass(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_OBJNO ObjClass /* Object class */,

250 Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

DMS_UINT32 *1pulNoOfCmp /* amount of components */,
DMS_UINT32 CmpNameLen /* max. size of component name */,
DMS_CHAR *[pCmpName /* component name */,
DMS_NAME_OBJ_DATA *]pObjlnfo /* ObjectInfo */);

CGEXPORT DMS_RC DMSAPI_GetNextCmpOfObjClass(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_OBJNO ObjClass /* Object class */,

DMS_UINT32 CmpNameLen /* max. size of component name */,
DMS_CHAR *[pCmpName /* component name */,

DMS_NAME_OBJ_DATA *1pObjlnfo /* ObjectInfo */);

/*
DMS-ServerManagement (Not yet implemented !)
*/

CGEXPORT DMS_RC DMSAPI_ActivateServer(
DMS_RES_NO OwnResNo /* GWY Resource Id */);

CGEXPORT DMS_RC DMSAPI_DeactivateServer(
DMS_RES_NO OwnResNo /* GWY Resource Id */);

CGEXPORT DMS_RC DMSAPI_OpenVarServer(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_VAR_SERVER_PROC DMSReadVarServerProc [* %/,
DMS_VAR_SERVER_PROC DMSWriteVarServerProc /% */,

int MaxServer /* */);

Reference-Manual — DMS / API 251

dmsapi.h Appendix C DMSAPI files

CGEXPORT DMS_RC DMSAPI_CreateInfoReport(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 OwnlIRId /* Inforeportld for Client */,
DMS_HANDLE *lpDmsHandle /* Identifier for Informationreport */);

CGEXPORT DMS_RC DMSAPI_DeleteInfoReport(
DMS_HANDLE DmsHandle /* Identifier for Informationreport */);

CGEXPORT DMS_RC DMSAPI_GetInfoReportBuffer(
DMS_HANDLE DmsHandle /* ldentifier for Informationreport */,
DMS_UINT32 ulProcT /* prozedure timeout */,
DMS_UINT32 ulRecVarLen /* size of RecVar */,
DMS_CHAR **]plpRecVar /* Out -> Pointer to InfoReport */);

CGEXPORT DMS_RC DMSAPI_SendInfoReportBuffer(
DMS_HANDLE DmsHandle /* ldentifier for Informationreport */,
DMS_UINT32 ulProcT /* prozedure timeout */,
DMS_UINT32 ulRecVarLen /* size of RecVar */,
DMS_CHAR *I[pRecVar /* Out -> Pointer to InfoReport */);

/*

DMS-Utilities
*/

252 Reference-Manual — DMS / API

Appendix C DMSAPI files dmsapi.h

CGEXPORT void DMSAPI_DumpRecData(DMS_REC_DATA * DmsRecData /*
*/);

CGEXPORT int DMSAPI_GetVarLen(DMS_VAR_TYPE VarType /* variable type
*);

CGEXPORT DMS_RC DMSAPI_SetVarCode(DMS_VAR_CODE * VarCode);

CGEXPORT DMS_RC DMSAPI_GetStringBy Value(
DMS_UINT32 ulStrLen /* size of String */,
DMS_CHAR *lpszString /* Out -> String */,
DMS_VAR_TYPE VarType /* variable type */,
DMS_VALUE *lpvVarValue /* Out -> variable value */);

CGEXPORT DMS_RC DMSAPI_GetValueByString(
DMS_UINT32 ulValLen /* size of VarValue */,
DMS_VALUE *lpvVarValue /* Out -> Value */,
DMS_VAR_TYPE VarType /* variable type */,
DMS_CHAR *lpszString /* Out -> String */);

/>X<
(Not yet implemented !)
*/

CGEXPORT DMS_RC DMSAPI_GetErrStrByErr(
DMS_UINT32 ulStrLen /* size of String */,

Reference-Manual — DMS / API 253

dmserr.h Appendix C DMSAPI files

DMS_CHAR *lpszString /* Out -> String */,
DMS_RC Rc /* ErrorCode */);

#endif /* _DMSAPI_TYP_H defined */

#if __cplusplus

}
#endif

C.3 dmserr.h
/*
COMMENT

st sfe sfe sfe sfe she she ske sk s sie sie st sfe sfe sfe she sfe she she she sk sk sie sie sfe sfe sfe sfe sfe sfe she she she sk st sie sie sfe sfe sfe sfe sfe she she sk sfe skt sie ste sfe sfe sfe sfe sfe she s skeoskeoskosiokoteteok
*

DMS-API
Digimatik Message Specification ApplicationInterface

Communication Protocol for Digimatik Process Level

ErrorCodes

st sfe sfe sfe sfe s sk ske sk s sk st st sfe sfe sfe sfe sfe she sk sk sk sk ke sie sfe sfe sfe sfe sfe sfe she she sk sk sk sk ske st sfe sfe sfe sfe sfe she sk sk sk sk sk st sfe sfe sfe sfe sfe she s soskoske kit sk
*

COMMENT_END

254 Reference-Manual — DMS / API

Appendix C DMSAPI files dmserr.h

FILENAME $Workfile: DMSERR.H $

VERSION $Revision: 1.5.1.0 $ (0)

HISTORY
HISTORY_END

$Log: DMSERR.H_v $

sk sk e sfe sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk st sl sk st sfe sk sk s sk sk s sk st s sk sk s sk sk s sk sk sk sk sk s sk sk seosk sk sk sk sk sk skeskok
*******/

#include "errbase.hg"

#define E_ DMSAPI_OK 0x00

#define E_DMSAPI_NOT_INIT (E_DMSAPI_BASE + 0x01)
#define E_DMSAPI_INVALID_CONF (E_LDMSAPI_BASE + 0x02)
#define E_DMSAPI_INVALID_ARG (E_DMSAPI_BASE + 0x03)
#define E_DMSAPI_SMALL_RCV_BUFF (E_DMSAPI_BASE + 0x04)
#define E DMSAPI_EMPTY_CONF (E_DMSAPI_BASE + 0x05)
#define E_ DMSAPI_INTERNAL_ERROR (E_DMSAPI_BASE + 0x06)
#define E_DMSAPI_ACCESS_ERROR (E_DMSAPI_BASE + 0x07)
#define E_DMSAPI_NO_CONF (E_DMSAPI_BASE + 0x08)

#define E_DMSAPI_INVALID_DMS_HANDLE (E_DMSAPI_BASE + 0x09)
#define E_DMSAPI_INVALID_CONN_HANDLE (E_DMSAPI_BASE + 0x0A)

Reference-Manual — DMS / API 255

dmserr.h Appendix C DMSAPI files

#define E_DMSAPI_NO_RESOURCE (E_DMSAPI_BASE + 0x0B)
#define E_DMSAPI_VARLIST_IN_USE (E_DMSAPI_BASE + 0x0C)
#define E_DMSAPI_NO_CALLBACK (E_DMSAPI_BASE + 0x0D)

#define E_ DMSAPI_DUPLICATE_CALLBACK (E_DMSAPI_BASE + 0x0E)
#define E_DMSAPI_INVALID_INDEX (E_DMSAPI_BASE + 0x0F)
#define E_DMSAPI_INVALID_VARTYPE (E_DMSAPI_BASE + 0x10)
#define E_DMSAPI_INVALID_VARMODE (E_DMSAPI_BASE + 0x11)
#define E_DMSAPI_NO_CONNECTION (E_DMSAPI_BASE + 0x12)
#define E_DMSAPI_ALREADY_INIT (E_DMSAPI_BASE + 0x13)
#define E DMSAPI_MAX_APPLICATION (E_DMSAPI_BASE + 0x14)
#define E_DMSAPI_MAX_ CONNECTION (E_DMSAPI_BASE + 0x15)
#define E_DMSAPI_TIMEOUT (E_DMSAPI_BASE + 0x16)

#define E_DMSAPI_INVALID_DIR (E_LDMSAPI_BASE + 0x17)

256 Reference-Manual — DMS / API

Index

A Manufacturing Message Specification 13
ACKNOWIEAZE .vovvvrreerrierciieiieeiiesieesieens 17 MMS (Manufacturing Message Specification 15
APPLCAION ..oovviiiiieiiiiieeieciceeese e 13
o
C OST T-1AYET et 15
client-server modelcccceevevveviiiinininnnnnn. 13
R
D RODOLS .ot 15
Digimatikcccocoeviniiiiiicieeeen 13
DownloadSegmentccccceceeeiieienincnencenne. 17 T
TAZS e e 18
E TerminateDLcccooooviiveiieeeeeeeeeee e, 17
Ethernet ... 13
EventNOtificationcccoeuervrierenienririeinnns 17 \'
Variables ... 18
F
Freelance CSO gatewayc.cccceeveevervenncnne. 14
Freelance Engineeringc.cccceveevcnvuencnne. 13
Freelance OPC gatewayc.ccocceceevienuenncnne. 14
Freelance Operationsc...cccceceveeveeneencnnen. 13
Freelance process stationscccceeceeeveneenee. 14
G
GetAlarmSummaryccccoceevenienenienenens 17
|
InitiateDLcccocoviiiiiiiiici 17
Interfaceccccocovivieniiiiiiiiiici 13
M
Memory-programmablecceceveeienenne. 15

MMS

Reference-Manual — DMS / API 257

Index

258 Reference-Manual — DMS / API

www.abb.com/freelance
www.abb.com/controlsystems

We reserve the right to make technical
changes to the products or modify the
contents of this document without prior
notice. With regard to purchase orders, the
agreed particulars shall prevail. ABB does
not assume any responsibility for any
errors or incomplete information in this
document.

We reserve all rights to this document and
the items and images it contains. The
reproduction, disclosure to third parties or
the use of the content of this document -
including parts thereof - are prohibited
without ABB's prior written permission.

All rights to other trademarks reside with
their respective owners.

Copyright © 2019 ABB.
All rights reserved.

3BDD012508-111 A

	Table of Contents
	About this book
	1 Application interface to Freelance for Windows
	1.1 Overview
	1.2 Manufacturing message specification ISO 9506 (MMS)
	1.3 Digimatik message specification (DMS)
	1.4 DMS/MMS function areas
	1.5 Freelance addressable objects
	1.5.1 Variables
	1.5.2 Allocated tags
	1.5.3 System objects

	1.6 Freelance layered communications model
	1.7 DMS/API installation
	1.8 Configuring the DMS/API gateway in Freelance Engineering
	1.9 Loading the DMS/API gateway
	1.9.1 Initial configuration
	1.9.2 Re-configuration

	1.10 DMS/API function overview

	2 Basic transport application interface (BTR)
	2.1 Server functionality (TCPIP)

	3 DMS client management
	3.1 Environment and general management services
	3.1.1 Initializing and terminating a DMS session
	3.1.2 Connection management

	3.2 Variable access services
	3.3 Caution!
	3.3.1 DMSAPI_VLCreate
	3.3.2 DMSAPI_VLDelVar
	3.3.3 DMSAPI_VLClear
	3.3.4 DMSAPI_VLRead
	3.3.5 DMSAPI_VLReadCycle
	3.3.6 DMSAPI_StopCycle
	3.3.7 DMSAPI_VLWrite
	3.3.8 DMSAPI_VLDelete

	3.4 Alarm management
	3.4.1 DMSAPI_GetAlarmSummary
	3.4.2 DMSAPI_CreateAckAlarmList
	3.4.3 DMSAPI_AddAckAlarmByAddr
	3.4.4 DMSAPI_ClearAckAlarmList
	3.4.5 DMSAPI_AckAlarmList
	3.4.6 DMSAPI_DeleteAckAlarmList
	3.4.7 DMSAPI_AckAlarmByList

	3.5 Domain management
	3.6 Program invocation management
	3.7 Receiving/decoding data
	3.7.1 Structure definitions
	3.7.2 Synchronous functions
	3.7.3 DMSAPI_RegisterCltCB
	3.7.4 Callback function (&RecStruct)

	4 Name management
	4.1 File directory
	4.1.1 DMSAPI_SetProjectDir
	4.1.2 DMSAPI_ChangeProject

	4.2 Project information
	4.2.1 DMSAPI_GetProjectInfo

	4.3 Locking “Name management”
	4.3.1 DMSAPI_LockOV
	4.3.2 DMSAPI_UnlockOV

	4.4 Station information
	4.4.1 DMSAPI_GetFirstResourceInfo
	4.4.2 DMSAPI_GetNextResourceInfo

	4.5 Variable information
	4.5.1 DMSAPI_GetFirstVarInfo
	4.5.2 DMSAPI_GetNextVarInfo

	4.6 Tag information
	4.7 Object class position information
	4.7.1 DMSAPI_GetFirstCmpOfObjClass
	4.7.2 DMSAPI_GetNextCmpOfObjClass

	4.8 Address conversion
	4.8.1 DMSAPI_GetVarNameByOPath
	4.8.2 DMSAPI_GetVarInfoByName

	5 Server management
	6 DMS utilities
	6.1 DMSAPI_GetStringByValue
	6.2 DMSAPI_GetValueByString
	6.3 DMSAPI_GetVarLen
	6.4 DMSAPI_DumpRecData

	Appendix A Variable types and error codes
	A.1 DMS variable types
	A.2 DMS error codes

	Appendix B Application interface freelance examples
	B.1 DMSAPI samples
	B.2 Variable access services
	B.2.1 One-time read “read.c”
	B.2.2 Cyclical read “acycle.c”
	B.2.3 One-time write “awrite.c”

	B.3 Alarm services “aalarm.c”
	B.4 Name services “name”
	B.5 Setting the time “settime.c”
	B.6 Toggle primary/secondary redundancy “toggle.c”

	Appendix C DMSAPI files
	C.1 dmstyp.h
	C.2 dmsapi.h
	C.3 dmserr.h

	Index

