
—
PROCESS AUTOMATION

Freelance 2019
Engineering Manual
IEC 61131-3 Programming

Document Number: 3BDD012504-111
Revision: A

Release: January 2019

—
PROCESS AUTOMATION

Freelance 2019
Engineering Manual
IEC 61131-3 Programming

—
Notice
This document contains information about one or more ABB products and may include a description of or a reference
to one or more standards that may be generally relevant to the ABB products. The presence of any such description
of a standard or reference to a standard is not a representation that all of the ABB products referenced in this docu-
ment support all of the features of the described or referenced standard. In order to determine the specific features
supported by a particular ABB product, the reader should consult the product specifications for the particular ABB
product.

ABB may have one or more patents or pending patent applications protecting the intellectual property in the ABB
products described in this document.

The information in this document is subject to change without notice and should not be construed as a commitment
by ABB. ABB assumes no responsibility for any errors that may appear in this document.

Products described or referenced in this document are designed to be connected, and to communicate information
and data via a secure network. It is the sole responsibility of the system/product owner to provide and continuously
ensure a secure connection between the product and the system network and/or any other networks that may be
connected.

The system/product owners must establish and maintain appropriate measures, including, but not limited to, the
installation of firewalls, application of authentication measures, encryption of data, installation of antivirus pro-
grams, and so on, to protect the system, its products and networks, against security breaches, unauthorized access,
interference, intrusion, leakage, and/or theft of data or information.

ABB verifies the function of released products and updates. However system/product owners are ultimately respon-
sible to ensure that any system update (including but not limited to code changes, configuration file changes, third-
party software updates or patches, hardware change out, and so on) is compatible with the security measures
implemented. The system/product owners must verify that the system and associated products function as expect-
ed in the environment they are deployed.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind
arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from
use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the
contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or dis-
closed only in accordance with the terms of such license. This product meets the requirements specified in EMC Di-
rective 2014/30/EU and in Low Voltage Directive 2014/35/EU.

—
Trademarks
All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2019 by ABB.
All rights reserved.

Table of contents

About this book
Use of warning, caution, information, and tip icons .. 17

Terminology.. 18

Document conventions ... 18

1 - Variables
1.1 General Description - Variables.. 21

1.2 Data types ... 22

1.2.1 Overview of simple data types ... 22

1.3 Variable list ... 23

1.3.1 Call the variable list.. 23

1.3.2 Structure of the variable list ... 23

1.3.3 Edit the variable list.. 26

1.3.4 Initial values ... 28

1.3.5 Normal view and station view.. 30

1.3.6 Close... 31

1.4 Edit variable list entries ... 31

1.4.1 Undo... 32

1.4.2 Create a new variable in the list ... 32

1.4.3 Create a new variable in a program.. 33

1.4.4 Insert an existing variable in a program ... 33

1.4.5 Edit a field in the list ... 34

1.4.6 Delete field ... 35

1.4.7 Delete unused variables.. 35

1.4.8 Delete I/O allocation .. 36

1.4.9 Edit block ... 36

1.4.10 Export ... 38
 Engineering - IEC 61131-3 Programming 5

Table of Contents

1.4.11 Import..39

1.4.12 Cross references ..41

1.4.13 Station access ..43

1.4.14 Assign block to resources automatically ..43

1.4.15 Assign block to resources manually ...44

1.4.16 Assign block to process image ...45

1.5 Options ..45

1.5.1 Print...45

1.5.2 Adjust colors ...45

1.5.3 Save column settings...46

1.5.4 Auto accept ...46

1.5.5 Save filter ..46

1.5.6 Clear filter ...46

1.5.7 Show saved filters ...46

1.6 System variables..46

1.6.1 System variables with project information ...47

1.6.2 System variables with resource information...48

1.6.3 System variables with information of a redundant resource.............................50

1.6.4 System variables for power fail on voltage failure ...51

1.6.5 System variables for error handling task ..52

1.6.6 System variables for I/O communication ...52

1.6.7 System variables with information for lateral communication.........................53

1.7 Structured data types ..54

1.7.1 Call definition of structured data types...54

1.7.2 Define a new data type..54

1.7.3 Create data type components ..54

1.7.4 Insert a new variable with structured data type...55

1.7.5 Use a structured variable in a program ...56

2 - Tags
2.1 General description - Tag list ..59

2.1.1 Call the tag list ..59

2.1.2 Structure of the tag list..60
6 Engineering - IEC 61131-3 Programming

Table of Contents

2.1.3 Edit the tag list ... 62

2.1.4 Normal view and station view.. 65

2.1.5 Close... 66

2.2 Edit tag list entries .. 67

2.2.1 Undo... 67

2.2.2 Insert new tag in the list ... 68

2.2.3 Edit a field in the list .. 69

2.2.4 Delete field ... 69

2.2.5 Delete unused tags.. 69

2.2.6 Edit block ... 70

2.2.7 Export ... 72

2.2.8 Import ... 73

2.2.9 Cross references ... 75

2.2.10 Station access ... 76

2.2.11 Area .. 77

2.2.12 Change function block type ... 78

2.2.13 Access rights .. 78

2.2.14 User groups .. 79

2.3 Options ... 79

2.3.1 Print .. 79

2.3.2 Adjust colors .. 79

2.3.3 Save column settings .. 79

2.3.4 Auto Accept ... 79

2.3.5 Save filter ... 80

2.3.6 Clear filter .. 80

2.3.7 Show saved filters... 80

3 - OPC items
3.1 General Description - OPC items ... 81

3.1.1 Call OPC item list and browse for OPC items ... 81

3.1.2 Structure of the OPC item list .. 82

3.1.3 Sort the OPC item list .. 83

3.1.4 Edit the OPC item list .. 84
 Engineering - IEC 61131-3 Programming 7

Table of Contents

3.2 Assign variable ..86

3.3 Standard library of OPC_FB-Classes..94

3.3.1 OPC_FB-CLASS and instances..94

3.3.2 Create an OPC_FB-CLASS library ..94

3.4 Definition of OPC_FB-CLASS...95

3.4.1 OPC_FB-CLASS interface ...95

3.4.2 Modify an OPC_FB-Classes...98

3.4.3 Create an OPC_FB-CLASS ...100

3.4.4 Faceplate for an OPC_FB-CLASS ...101

3.4.5 Check OPC_FB-CLASS...102

3.4.6 Lock OPC_FB-CLASS...102

3.4.7 OPC_FB-CLASS comments...103

3.4.8 Export / Import..103

3.5 Tag instantiation ..103

3.5.1 Instantiate All..105

4 - Libraries
4.1 Library – User interface ..107

4.1.1 Specify own library list ...108

4.1.2 Specify favorites list..110

4.1.3 All blocks ..111

4.1.4 User function blocks ...113

4.1.5 Sort elements in the list...113

4.1.6 Insert library elements into a program..114

4.1.7 Hide and show the Library explorer ...115

5 - Function Block Diagram (FBD)
5.1 General Description - Function Block Diagram ...117

5.1.1 Create an FBD program..118

5.1.2 Copy an FBD program ...118

5.1.3 Delete an FBD program..119

5.1.4 Call the FBD program editor ..119

5.1.5 Close FBD program ..119
8 Engineering - IEC 61131-3 Programming

Table of Contents

5.2 Representation of the Function Block Diagram ... 120

5.2.1 User interface of the FBD editor .. 120

5.2.2 Modify default settings... 121

5.2.3 Display program information ... 123

5.3 Description of FBD program elements... 124

5.3.1 Connections and Lines ... 124

5.3.2 Variables and Constants ... 125

5.3.3 Blocks... 126

5.3.4 Comment fields .. 127

5.4 Parameterize FBD program elements... 128

5.4.1 Parameter definition of function blocks ... 128

5.4.2 Parameterize comment fields ... 132

5.4.3 Change the processing sequence of the blocks ... 132

5.4.4 Define favorites list .. 133

5.5 Edit an FBD Program ... 133

5.5.1 Draw signal flow lines.. 133

5.5.2 Insert FBD elements... 138

5.5.3 Change number of inputs ... 141

5.5.4 Display and change data types ... 142

5.5.5 Invert a block terminal .. 143

5.5.6 Change variables ... 143

5.5.7 Cross references ... 144

5.5.8 Insert or delete columns and rows.. 145

5.5.9 Block operations... 146

5.5.10 Undo an action ... 151

5.5.11 Program administration functions .. 151

5.6 Commissioning the Function block diagram (FBD) .. 153

6 - Instruction List (IL)
6.1 General Description – Instruction List ... 157

6.1.1 Create an IL program ... 158

6.1.2 Copy an IL program .. 158

6.1.3 Delete an IL program ... 159
 Engineering - IEC 61131-3 Programming 9

Table of Contents

6.1.4 Call the IL program editor ..159

6.1.5 Close IL program ..159

6.2 Representation of the Instruction List ...160

6.2.1 User interface of IL editor...160

6.2.2 Modify default settings ...162

6.2.3 Display program information..163

6.2.4 Define favorites list ...164

6.3 Edit an IL Program..164

6.3.1 Acceptable data types for IL operators and functions165

6.3.2 Call IL operators ...168

6.3.3 Insert function blocks into an IL program ..178

6.3.4 Cross references ..181

6.3.5 Program administration functions...182

6.4 Commissioning the Instruction list (IL) ..185

7 - Ladder Diagram (LD)
7.1 General Description – Ladder Diagram ..187

7.1.1 Rules for processing a Ladder Diagram program...188

7.1.2 Create an LD program ..189

7.1.3 Copy an LD program ...190

7.1.4 Delete an LD program ..190

7.1.5 Call the LD program editor...190

7.1.6 Close LD program ..191

7.2 Representation of the Ladder Diagram ...192

7.2.1 User interface of the LD editor ...192

7.2.2 Modify default settings ...193

7.2.3 Display program information..195

7.2.4 Define favorites list ...196

7.3 Description of the Ladder Diagram elements ...196

7.3.1 Connections and lines ...196

7.3.2 Contacts ..198

7.3.3 Coils ..199

7.3.4 Variables and constants ...201
10 Engineering - IEC 61131-3 Programming

Table of Contents

7.3.5 Function blocks .. 203

7.3.6 Jumps and returns... 204

7.3.7 Labels ... 206

7.4 Parameterize Ladder Diagram elements... 206

7.4.1 Parameterize a contact.. 207

7.4.2 Parameterize a coil ... 208

7.4.3 Parameterize a variable .. 209

7.4.4 Parameterize a jump ... 209

7.4.5 Parameterize a label ... 210

7.4.6 Parameterize function blocks ... 210

7.5 Edit an LD program.. 210

7.5.1 Representation of the signal flow lines .. 210

7.5.2 Draw lines .. 211

7.5.3 Insert LD elements and function blocks... 214

7.5.4 Insert or delete columns and rows.. 215

7.5.5 Cross references ... 216

7.5.6 Block operations... 218

7.5.7 Program administration functions .. 222

7.6 Commissioning the Ladder diagram (LD) ... 224

8 - Structured Text (ST)
8.1 General Description – Structured Text ... 227

8.1.1 Create an ST program .. 228

8.1.2 Copy an ST program ... 228

8.1.3 Delete an ST program .. 229

8.1.4 Call the ST program editor... 229

8.1.5 Close ST program .. 229

8.2 Representation of the Structured Text .. 229

8.2.1 User interface of the ST editor ... 229

8.2.2 Syntax coloring .. 231

8.2.3 Modify default settings... 232

8.2.4 Display program information ... 233

8.2.5 Define favorites list .. 234
 Engineering - IEC 61131-3 Programming 11

Table of Contents

8.3 Description of the ST program elements ..234

8.3.1 Language elements ...234

8.3.2 Types ...239

8.3.3 Variables and function blocks ...241

8.3.4 Expressions ...245

8.3.5 Statements ...247

8.3.6 Limits of the system..257

8.3.7 Examples...259

8.4 Edit an ST program ...264

8.4.1 Insert ST elements ..264

8.4.2 Insert variables and function blocks ...265

8.4.3 Working with variables ...269

8.4.4 Working with functions...270

8.4.5 Working with function blocks...272

8.4.6 Program user-defined function blocks ..277

8.5 General processing functions ..279

8.5.1 Bookmarks ..279

8.5.2 Breakpoints ...280

8.5.3 Find and replace..281

8.5.4 Goto line ...282

8.5.5 Block operations ...283

8.5.6 Cross references ..287

8.5.7 Program administration functions...288

8.6 Commissioning structured text..291

8.6.1 User interface for commissioning...291

8.6.2 Display of online data ...292

8.6.3 Error tracing ..292

9 - Sequential Function Chart (SFC)
9.1 General Description – Sequential Function Chart ..293

9.1.1 Create an SFC program...295

9.1.2 Call SFC program editor...295

9.1.3 Close SFC program...295
12 Engineering - IEC 61131-3 Programming

Table of Contents

9.1.4 Basic rules .. 296

9.1.5 Example of how to edit .. 296

9.2 Structure of the Sequential Function Chart .. 298

9.2.1 SFC program user interface.. 298

9.2.2 Display program information ... 299

9.2.3 Drawing help .. 300

9.3 Edit SFC Elements ... 301

9.3.1 Initial step... 302

9.3.2 Step... 302

9.3.3 Jump ... 303

9.3.4 Transition.. 303

9.3.5 Vertical line .. 304

9.3.6 Horizontal sequence selection line... 304

9.3.7 Sequence selection divergence start ... 305

9.3.8 Sequence selection divergence add .. 305

9.3.9 Sequence selection convergence add.. 306

9.3.10 Sequence selection convergence end.. 306

9.3.11 Horizontal simultaneous sequence line .. 306

9.3.12 Simultaneous sequence divergence start .. 307

9.3.13 Simultaneous sequence divergence add ... 307

9.3.14 Simultaneous sequence convergence end... 307

9.3.15 Simultaneous sequence convergence add... 308

9.4 Edit SFC structure .. 309

9.4.1 Shift blocks... 310

9.4.2 Undo... 310

9.4.3 Edit columns / lines .. 311

9.4.4 Parameterize SFC program elements ... 315

9.4.5 Edit program... 321

9.4.6 Define criteria window... 321

9.4.7 Define display access ... 329

9.4.8 Parameterize SFC program .. 330

9.4.9 Edit elements .. 335
 Engineering - IEC 61131-3 Programming 13

Table of Contents

9.4.10 Export and import blocks..337

9.4.11 Program administration functions...338

9.5 Commissioning the SFC program...340

9.5.1 Operation dialog SFC program...342

9.5.2 Step operating dialog ...344

9.5.3 Transition operation dialog ..345

9.5.4 Step states ...346

9.5.5 Step action execution ..347

9.5.6 Display of steps in the SFC program ..347

9.5.7 Transition states ..348

9.5.8 Display of transitions in the SFC program ...349

10 - User Function Blocks
10.1 General Description – User Function Blocks..351

10.1.1 User function block - classes and instances..353

10.1.2 Create user function block pool ..354

10.1.3 Create a user function block class...354

10.1.4 Create a user function block program...355

10.1.5 Create a user function block faceplate ..355

10.2 Definition of User Function Block Classes...356

10.2.1 Interface of a user function block ...356

10.2.2 Edit interface of a user-defined function block...363

10.2.3 Parameter dialog of a user function block ..366

10.2.4 Text list..371

10.2.5 User function block program ..374

10.2.6 User function block faceplate ...376

10.2.7 Check user function block classes ..379

10.2.8 Lock user function block class..380

10.2.9 Help for user function blocks..381

10.2.10 Export and import ...382

10.3 Commissioning ...383

10.3.1 Load objects ..383

10.3.2 Read, write and correct ...383
14 Engineering - IEC 61131-3 Programming

Table of Contents

10.3.3 Load parameters ... 384

10.4 Generate instances of user function blocks .. 386

10.4.1 Create new user function block instance.. 386

10.4.2 Using user function blocks... 387

10.4.3 Use faceplates of user function blocks... 393

10.5 Modification of user function blocks.. 393

11 - Debugger
11.1 General description – Debugger ... 399

11.1.1 Fault tracing with the debugger.. 399

11.1.2 Breakpoints .. 400

11.2 Debugger interface.. 402

11.2.1 Breakpoint list .. 402

11.2.2 Watch window.. 404

11.3 Working with the debugger .. 407

11.3.1 Starting the debugger ... 407

11.3.2 Edit breakpoint ... 408

11.3.3 Task state .. 409

11.3.4 Single step .. 411

11.3.5 Watch values... 412

11.3.6 Go... 412

11.3.7 Stop debugger... 412

11.3.8 Typical examples of errors ... 413

11.4 Breakpoint functions .. 418

11.4.1 Mark breakpoints ... 418

11.4.2 Event log .. 420

Index
 Engineering - IEC 61131-3 Programming 15

Table of Contents

16 Engineering - IEC 61131-3 Programming

About this book

Use of warning, caution, information, and tip icons
This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
comply fully with all Warning and Caution notices.

Electrical warning icon indicates the presence of a hazard which could result in
electrical shock.

Warning icon indicates the presence of a hazard which could result in personal
injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function
 Engineering - IEC 61131-3 Programming 17

 About this book

Terminology
The Glossary contains terms and abbreviations that are unique to ABB or have a
usage or definition that is different from standard industry usage. Please make
yourself familiar to that.

You will find the glossary at the end of the Engineering Manual System
Configuration.

Document conventions
The following conventions are used for the presentation of material:

• The words in names of screen elements (for example, the title in the title bar of
a window, the label for a field of a dialog box) are initially capitalized.

• Capital letters are used for the name of a keyboard key if it is labeled on the
keyboard. For example, press the ENTER key.

• Lowercase letters are used for the name of a keyboard key that is not labeled on
the keyboard. For example, the space bar, comma key, and so on.

• Press CTRL+C indicates that you must hold down the CTRL key while
pressing the C key (to copy a selected object in this case).

• Press ESC, E, C indicates that you press and release each key in sequence (to
copy a selected object in this case).

• The names of push and toggle buttons are boldfaced. For example, click OK.

• The names of menus and menu items are boldfaced. For example, the File
menu.

– The following convention is used for menu operations: MenuName >
MenuItem > CascadedMenuItem. For example: select File > New > Type.

– The Start menu name always refers to the Start menu on the Windows
Task Bar.
18 Engineering - IEC 61131-3 Programming

 About this book

• System prompts/messages are shown in the Courier font, and user
responses/input are in the boldfaced Courier font. For example, if you enter a
value out of range, the following message is displayed:

Entered value is not valid. The value must be 0 to 30.

You may be told to enter the string TIC132 in a field. The string is shown as
follows in the procedure:

TIC132

Variables are shown using lowercase letters.

sequence name
 Engineering - IEC 61131-3 Programming 19

 About this book

20 Engineering - IEC 61131-3 Programming

1 Variables

1.1 General Description - Variables
Variables are used for storing and processing information. Various different data
types are available in the system, for example Byte, Word, Integer, Real,
Date&Time. To enable several variables to be processed jointly even if they have
different data types, it is possible to define structured data types. For more
information, refer to Structured data types on page 54.

Along with the standard data types, user defined structured data types are also
available when declaring a variable.

System variables are created every time a new resource, process station or gateway
is added. Status details for the resource are stored in these variables.

Default values can be assigned to each variable and to the separate elements of a
structured variable. These values are used after a cold start, or when a station is
initialized.

Variables from Freelance can be made available to other systems via gateway
stations. For this purpose, read/write accesses are configured in the station view of
the variables list.

All the variables of the current project are stored and displayed in the variable list.

The variable names can consist of letters, digits and the special character “_”.
A variable name must contain at least one letter or underscore to be able to
distinguish variables from constants.
 Engineering - IEC 61131-3 Programming 21

Data types 1 Variables

1.2 Data types

1.2.1Overview of simple data types

Data
type

Bit Value range Explanation Input formats Examples

REAL 32 ±1.175494351E-38 ...

±3.402823466E38

Floating point value
IEEE(1) format

(1) IEEE Institute of Electrical and Electronic Engineers; American Association of Experts

0.0, 3.14159, -1.34E-12,
-1.2234E-6, 12.6789E10

DINT 32 -2 147 483 648 ...

+2 147 483 647

Double integer val-
ue with sign

-34355, +23456

INT 16 -32 768...+32 767 Integer value with
sign

3, -3, 12345

UDINT 32 0...4294 967 295 Double integer val-
ue without sign

123456787, 4566

UINT 16 0...65 535 Integer value with-
out sign

4000, 66

DWORD 32 0...4294 967 295 (0...232-1) Double word 0, 655, 16#0000 0FFF,
8#000 000 000 074,
2#0...0...0...0...0...0...0...0001

WORD 16 0...65 535 (0...216-1) Word 2, 554, 16#0FFF, 8#000 004,
2#0000 0000 0000 0001

BYTE 8 0...255 (0...28-1) Byte 0, 55, 2#0000 0011, 8#377,
16#0A

BOOL 8 0. 1 (FALSE, TRUE) Boolean value 0, 1, FALSE, TRUE

DT 32 1970-01-01-00:00:00.000 ...
2099-12-31-23:59:59.999

Date+time value DT#1994-02-14-10:00:00.00

TIME 32 +24d20h31m23s647ms ...
-24d20h31m23s648ms

Time value T#22s T#3m30s T#14m7s
22 Engineering - IEC 61131-3 Programming

1 Variables Variable list

Variables of data type STRING are used to display texts. The variables can be edited
e.g. in an FBD program with the STRING function blocks. These texts can be used
e.g. in the operation log, the SFC criteria window or in free graphics, to describe
certain states or provide information.

1.3 Variable list

1.3.1Call the variable list

When opening the project, the variable list is automatically displayed as a separate
tab in the right pane. This can be closed and reopened later from the main menu.

1.3.2 Structure of the variable list

All variables of the current project are displayed in a list.

For the representation of REAL numbers the following applies: due to the
internal mapping only 7 significant digits can be determined during conversion to
characters. Very high and very low values are represented in exponential form.

Data type Byte Explanation Entry formats, Examples

STR8 8 8 character text FC 1100

STR16 16 16 character text TIC1234

STR32 32 32 character text P11400 too low

STR64 64 64 character text Boilers temp. too high

STR128 128 128 character text Generator2 speed to high

STR256 256 256 character text Automation unit malfunctioning

> System > Variable list
 Engineering - IEC 61131-3 Programming 23

Structure of the variable list 1 Variables
 di0347us.png

The variable list is structured as follows:

Name Variable name, max. 16 characters

Comment Comment on variable, max. 33 characters

Type Data type, see Overview of simple data types on page 22

Res. A variable is always allocated to one resource. None of the other
resources can read it unless the Export attribute = YES (X) has been
assigned.

X Y Variable released for reading by other resources,
(Variable input Export),
N Variable available for own resource only,
(Variable input Export).

The status bar shows the number of entries displayed currently. The format is
<entries> of <total entries>. With activated search filters you can see how many
variables meet the search criteria.
24 Engineering - IEC 61131-3 Programming

1 Variables Structure of the variable list

Object, Position
For variables assigned to a hardware component, the component
type and slot or the variable is entered here, for example AI723 and
AC7_L2_I8 for a channel allocation of an AI 723F module or
AC900 and AC9_d_ERR for an AC 900F error signal.

Example AC7_L2_I8:
AC7 Station name in hardware structure
L2 Position of the module in the controller
I8 Component name (channel)

If you double-click one of these two fields, a dialog appears in
which you can select a hardware component or variable for
allocation.

P Y Process variables processed from the process image
(Variables via process image)
N Processing direct from I/O module
(Variables via process image).

Initial value After the process station has been cold-started, the variable is
initialized with this value. See Initial values on page 28.

OPC address Address or name of a variable on the OPC server. For a Freelance
OPC gateway this is identical to the variable name in the process
station.

An I/O component can only be exported via a variable, not directly. This means,
the I/O component cannot be read in other resources by using the component
name. Note that variables which are to be allocated to an I/O component do not
feature gateway write access rights. See also Station access on page 43.

When changing the P attribute, only newly referenced variables will be written
via the process image, while existing instances remain unchanged.

Variables displayed in red either have no references within the project or they
may be system variables. See System variables on page 46.
 Engineering - IEC 61131-3 Programming 25

Edit the variable list 1 Variables

1.3.3 Edit the variable list

Column headers

The arrow ^ in the head of a column indicates that the data is sorted by this column.

header appearance_us.png

Sort list entries

In the variable list, sorting is available for the following columns:

• Name
• Type
• Resource
• Object
• Location

Filter list entries

The user can filter the variables data and save the current filter logic for later use.
Based on the type of data, the following are the three kinds of filters available:

Free text filter
The user can type the search criteria in the edit box present below
the column header. For example “Name” column filter in variable
list.

Drop-down list
The filter criteria are already defined in a drop-down list and the
user can select one of them to filter the list. For example “Type”
column in variable list.
26 Engineering - IEC 61131-3 Programming

1 Variables Edit the variable list

Save current filter

Once filtering is applied to the list, user has an option to save the current filtering
criteria. This preserves the current configuration and can be used in future. This will
be project specific. An icon in the toolbar pops up as a dialog, where the user can
type a name. This list of saved filters can also be accessed from another toolbar icon.
Automatic names are given for filters imported from old projects. The following
dialog box appears when you click the Save filter from the toolbar.

Call saved filters

User can view, delete and use the list of saved filtering criteria. This list can be
opened by clicking the toolbar icon.

Toolbar Icons

Varlist_icons.png

Description of the icons from left to right:

Cross references
The cross references show the places (programs, displays, etc.) in
which the selected variable is used.
This icon is enabled only when a variable is selected.

Hide system variables
All variables that have been automatically pre-defined by the
system can be shown or hidden.
Click Hide system variables to hide the system variables in the
variable list.
Click Hide system variables again, to show the system variables in
the variable list again.

Hide unused variables
All variables that are defined but not used in a program can be
shown or hidden.
Click Hide unused variables, to hide or unhide the unused
variables in the list.

Save filter Saves the current filter settings under a given name. A maximum of
ten filter settings can be stored.
 Engineering - IEC 61131-3 Programming 27

Initial values 1 Variables

Show saved filters
A dialog box opens from which you can select, activate or delete a
previously saved filter.

Clear filter Clears all active filter criteria of the variable list. This includes the
“Hide system variables” and “Hide unused variables” functions.

Access by gateway station
This drop-down list is used to select one gateway or all gateways.
An empty item selection means “all gateways”.The gateway access
filter shows only variables that have access to the selected gateway
station.

Search in the variable list

The Find function allows you to search variables by name. When this function is
chosen from the menu or shortcut menu, a dialog containing an input field appears.
When a name or the beginning of a name is entered, the list is scrolled automatically
until the first matching entry is found.

1.3.4 Initial values

Initial values can be assigned to each variable and to the separate elements of a
structured variable; these initial values are adopted following a cold start or the
initialization of a station.

A double-click in the Initial value field for a particular variable allows the initial
value for that variable to be modified.

> Edit > Find
28 Engineering - IEC 61131-3 Programming

1 Variables Initial values

di0347us.png

If the selected variable has a standard data type, then the initial value may be entered
directly. In the case of variables with structured data types a dialog is displayed
which shows all the elements of the structured variable's basic data type.

di0346us.png

No initial values can be assigned here to variables that are assigned to hardware
components.
 Engineering - IEC 61131-3 Programming 29

Normal view and station view 1 Variables

By clicking on a variable its default initial value can be replaced by an initial value
specifically for that variable. If at least one value has been entered in the dialog, this
is indicated by -...- in the variable list.

1.3.5 Normal view and station view

In addition to the normal view, a station view can also be selected. In the station
view parameters are set for each variable to define whether they can be read and/or
written via a gateway.

R = Read access - the variable can be read via the gateway.

W = Write access - the variable can be written via the gateway.

tj006us.png

A dialog opens to modify the access rights.

> Editor > Normal view

or

> Editor > Station view

> Double-click a resource column

or

> Select a block > Edit > Station access
30 Engineering - IEC 61131-3 Programming

1 Variables Close

See also Station access on page 43.

1.3.6 Close

Closes the Variables tab.

1.4 Edit variable list entries

Various menu options are available for editing the individual list entries. For
example, the last action can be undone, new entries can be inserted, entries can be
deleted, cut or copied. Blocks or variables can be imported and exported.

di0338us.png

> Editor > Close

> Edit
 Engineering - IEC 61131-3 Programming 31

Undo 1 Variables

1.4.1 Undo

The last change is undone and the old status restored. If it is not possible to undo the
last action, the menu item is disabled.

1.4.2 Create a new variable in the list

When any filter is activated, i.e. the list is not fully displayed, it is not possible to
insert a new variable.

If the cursor is located on an empty field, e.g. at the end of the list, a new variable
may be entered directly into the individual fields in this line of the list.

After the menu item Insert new variable has been chosen, a window is displayed.
The parameters for the variable must be entered in this window.

di0335us.png

Name Enter variable name, max. 16 characters.

Data type Select data type from a list of data types.

Resource Enter the resource by means of a selection list.

> Edit > Undo

> Edit > Insert new variable
32 Engineering - IEC 61131-3 Programming

1 Variables Create a new variable in a program

Variable via
Process image The variable is read via the process image,

 The variable is read not via the process image, but directly at
the time of processing. This results in a greater load on the CPU
module

Export The variable can be read in other resources.
 The variable can only be read or written by its own resource.

Comment Comment in the form of free text.

1.4.3 Create a new variable in a program

It is possible to define new variables directly in the program editors. Variables that
are to be used in a program but have not yet been declared in the project can be
inserted directly in the program. Once a new name has been entered, the dialog
described in the previous section for declaring a variable is displayed automatically.

1.4.4 Insert an existing variable in a program

At every point at which a variable needs to be defined in a program the function key
F2 can be pressed. In the following dialog, a variable already defined in the project
can be selected for use.

An I/O component cannot be exported directly, but only with the assistance of a
variable: this means that the I/O component cannot be read by other resources
through the component name. It is also important to remember that variables
which are to be assigned to an I/O component cannot be written via a gateway.

When any filter is activated, that is the list is not fully displayed, it is not possible
to insert a new variables.
 Engineering - IEC 61131-3 Programming 33

Edit a field in the list 1 Variables
 di0345us.png

Variable via Process image
A choice can be made as to whether the variable can be read from
the process image. Refer to Engineering Manual, System
Configuration, Project tree.

The other details, e.g resource, are shown for information purposes and can only be
modified in the variable list itself.

1.4.5 Edit a field in the list

Depending on the field selected, the new value can either be entered directly or
modified by means of a dialog.

Changing existing variables may affect other programs. In order to avoid errors a list
of the affected programs is displayed when changes are made. A decision can be
made as to whether or not the changes are to be carried out.

> Select field by double-click. The cursor is positioned at the last entry position

or

> Edit > Field
34 Engineering - IEC 61131-3 Programming

1 Variables Delete field

1.4.6 Delete field

If a whole line in the list is selected, then the variables may be deleted.

The text parts of a list entry can be deleted directly with the cursor. This is achieved
by clicking on the field, positioning the cursor at the beginning of the section to be
deleted, selecting the area for deletion by holding down the mouse button, and lastly
removing the text thus selected by pressing the Delete button.

1.4.7 Delete unused variables

All entries with no cross references (these variables are identified by a red color) are
deleted following a query for confirmation. The system variables cannot be deleted.

di0340us.png

Yes The variable that is displayed is deleted.

Delete all All unused variables (all variables in red) are deleted.

No The variable that is displayed is not deleted, and the next variable is
displayed.

Cancel Aborts the delete function.

Certain entries in fields cannot be explicitly deleted using this command. In the
case of the variable list the fields Name and Type fall into this category.

> Click the desired field > Edit > Delete.

> Edit > Delete unused variables

Variables for which access rights have been assigned via a gateway, but which are
not used in any program, are considered as unused variables.
 Engineering - IEC 61131-3 Programming 35

Delete I/O allocation 1 Variables

1.4.8 Delete I/O allocation

The hardware allocation, object and position entries, of the selected variables are
deleted.

1.4.9 Edit block

Only one block can be defined in each case respectively. A block consists of a set of
consecutive rows in the list and can be selected as follows:

The resulting block is identified and is also retained when the left mouse button or
the SHIFT key is released.

Cut

The defined block is removed from the text section and stored in the clipboard. The
command Paste is used to insert this stored block in any other position.

Copy

The defined block is copied and stored in the clipboard. The command Paste is used
to insert this block in any other position.

> Click cursor where the block is to start

> Press left mouse button and drag the mouse to the end of the block to mark it

or

> Press SHIFT key and move cursor using arrow keys

> Select block > Edit > Cut

> Select block > Edit > Copy
36 Engineering - IEC 61131-3 Programming

1 Variables Edit block

Paste

A copied or cut block in the clipboard is inserted at the position defined by the
cursor.

Delete

A warning message with a query for confirmation will appear for each variable
which is still used in other programs.

di0348us.png

Don't delete Selected variable is not deleted

Delete Selected variable is deleted

Show program
Jump to the selected program.

> Select block > Edit > Paste

Since the variable names must be changed the same window is displayed as for
the menu item Insert new variable.

> Select block > Edit > Delete
 Engineering - IEC 61131-3 Programming 37

Export 1 Variables

Cancel Return to the variable list

1.4.10 Export

The selected entries are saved as a file on a data medium (hard disk). An additional
window appears in which the file path and file name must be entered. This file may
be imported into other projects via the menu item Import....

Two file types are available for the export; the Freelance file format with the
extension EAM and the external file format CSV (comma separated values) which
can be read by external applications like Microsoft Excel.

For an export to a CSV file the user has to specify which information of the selected
tags should be exported.

Export_var_us.png

The standard information items Name, Comment, Type, Export flag and Process
image flag are mandatory an cannot be de-selected.

Optionally, the parameters Resource, Object, Location, Initial value, OPC
address and Station view can be selected.

> Select one or more variables in the list > Edit > Export...

> Select the desired file type *.eam or *.csv > specify file name

Data for resource (Res.), object and location can not be imported.
38 Engineering - IEC 61131-3 Programming

1 Variables Import

The first row of the CSV file contains the column headers, from the second row
onwards the variable list information is stored.

Example for a CSV file if all options are selected:

CSV_file_vars_us.png

Name Name of the variable

Comment Comment of the variable

Type Data type

Res. Name of the associated resource

X Export: "Y" or "N" - Variable is exported to other resources via
lateral communication or not.

Object Name of the assigned hardware component

Location Component name of the assigned hardware component

P “Y" or "N" - Variable is read via process image or not

Initial value Configured initial value

OPC address Name of the OPC item, if this variable is read from an OPC server

OPC;trn Resource names of the gateway stations in the project
R = Variable can be read via this gateway station.
RW = Variable can be read and written via this gateway station.
(empty) = Variable cannot be accessed via this gateway station.

1.4.11 Import

If variables are defined outside of Freelance Engineering, either in another
Freelance project or with an external application, these variables can be imported
from a file into the project.

Two file formats are supported: the Freelance file format with the extension EAM
and the external file format CSV (comma separated values).
 Engineering - IEC 61131-3 Programming 39

Import 1 Variables

An EAM file was created via Export from a variable list of Freelance Engineering.

A CSV file was created by an external application or with a text editor. The entries
are separated with a semicolon ‘;’. If a text item itself includes the list separator, the
text entry should be enclosed in quotation marks (“ ”); for example "xxx;xxx". The
end of the file is marked by a line break.

The first row of the CSV file contains the column headers, the second row onwards
contains the variable list information. See also description of Export above. At least
the column "Name" must exist to import the CSV file, all other columns are not
mandatory.

If a variable should be imported with a name that already exists in the project, a
dialog is shown:

I nsert_new_variable_US.png

If the user should not enter a new name and press Rename, the record will be
overwritten with the information of the CSV file. Fields that are not specified in the
CSV file will not be modified via the import. The overwrite operation must be
confirmed by the user.

If the user enters a new name in the renaming dialog, the data record of the existing
variable is copied and modified with the information from the file. Thus, omitted
fields in the CSV file will assume the value of the original variable.

> Edit > Import > select file type *.eam or *.csv > select file

Overwriting columns of an existing variable record is possible only when
importing a CSV file. Existing data for object and location will be deleted.
With the import from an EAM file all new variables must get unique names. Data
for resource (Res.), object and location can not be imported.
40 Engineering - IEC 61131-3 Programming

1 Variables Cross references

If no naming collision is found, a new variable is created with the information of the
file. For the omitted fields default values are used:

If a value which is tightly coupled with system values, for example data type, has an
invalid entry, the value will be replaced with default value. Any columns other than
the described fields above will be ignored.

Press the Skip button to ignore the current variable and continue with the next entry
in the file.

During the import, a ".log" extension files is created with the same path and name as
the imported CSV file. In this LOG file the import errors are listed and also those
variables that could not be imported automatically, together with the information
Invalid, Skip and Rename.

1.4.12 Cross references

All cross references for a variable can be shown in a list. Cross references are
references to this variable in programs, displays, logs and so on, in other words to
places where this variable is used.

Column name Default value

Comment “

Data Type Others

Resource (------)

Export N

Process Y

Initial Value 0/""

Station View R

> Select field > Cross references or F5 key

or

> Edit > Cross references
 Engineering - IEC 61131-3 Programming 41

Cross references 1 Variables

A window displays the names of affected programs and the information whether the
variable is read or written by these programs.

tj007us.png

Show program
Calling a program with pre-selection of this variable or calling the
module to which the variable is allocated.

Show declaration
Variable list remains selected, the selected variable is marked.
42 Engineering - IEC 61131-3 Programming

1 Variables Station access

1.4.13 Station access

di0344us.png

If the variable is to be read or written through a gateway station this access must be
enabled in the following items:

• in the project tree on the gateway station
• in the variable list

Call up the Station view of the variable list to get an overview of the access rights
for all variables.

For more information, see also Normal view and station view on page 30 and
Engineering Manual Freelance OPC Server.

1.4.14 Assign block to resources automatically

Following a block import none of the variables that have been newly added to the
project database during the import process have yet been allocated to a resource.
Variables which already existed in the project retain their resource allocation. If
automatic allocation has been selected, variables that have been selected by block
selection within the variable list are assigned automatically to resources according
to the programs that the variables are referencing. The Assign block to resources
manually menu can be used to subsequently manually assign those variables which
proved impossible to assign automatically. For more information, refer to Assign
block to resources manually on page 44.

> Select block > Edit > Station access

Variables which are to be assigned to an I/O component must not have the write
access rights of a gateway.
 Engineering - IEC 61131-3 Programming 43

Assign block to resources manually 1 Variables

1.4.15 Assign block to resources manually

di0352us.png

Each variable should be assigned to precisely one resource (process station).
Following a block import none of the variables that have been newly added to the
project database during the import process have yet been allocated to a resource.
Variables which already existed in the project retain their resource allocation.
Manual resource assignment can be used to select one of the existing process
stations in the project. All the variables selected in the block are then assigned to
this resource and none other.

If Export is ticked, variables from other resources can be read in.

> Select variable or block

> Edit > Assign block to resources automatically

The resource is assigned and entered in the Res column.

If the variable is not yet used in the project under this name, no resource (process
station) can be assigned automatically.

> Select variable or block

> Edit > Assign block to resources manually
44 Engineering - IEC 61131-3 Programming

1 Variables Assign block to process image

1.4.16 Assign block to process image

tj004us.png

All the variables selected in a block are assigned to a task through the process image.
See also Engineering Manual System Configuration, Project tree.

1.5 Options

1.5.1Print

The contents of the screen are output to the printer.

1.5.2Adjust colors

The color of unused variables can be specified.

> Select variable or block

> Edit > Assign block to process image

> Options > Print

> Options > Colors...
 Engineering - IEC 61131-3 Programming 45

System variables 1 Variables

1.5.3Save column settings

The column width setting is saved.

1.5.4Auto accept

Turning on/off auto save

Select Auto accept to automatically save any changes done in the current editor
before switching to another editor.

1.5.5Save filter

Saves the current filtering under a given name. A maximum of ten filter settings can
be stored.

1.5.6Clear filter

Clears all active filter criteria of the variable list. This includes the “Hide system
variables” and “Hide unused variables” functions.

1.5.7Show saved filters

A dialog opens from which you can select, activate or delete previously saved filter
settings.

1.6 System variables
When a new resource is created, certain system variables are automatically declared
for the resource and are made available to the user.

These variables are global, that is they can be read by other resources throughout the
entire system.

> Options > Save column settings

> Options > Auto accept
46 Engineering - IEC 61131-3 Programming

1 Variables System variables with project information

They are recorded in the variable list and may be freely accessed or edited from
within the project. Thus a program may be started or information generated when a
defined CPU load is exceeded. The first four characters of the name structure show
the resource name, followed by the assigned variable name, e.g. DPS1.StationNo.

The system variables, with the exception of the variables for lateral communication,
are not shown in the list of global variables in the resource. The reason is that these
variables are stored elsewhere in the system.

The key shown below relates to the following explanation of system variables and
their significance:

In general version numbers are coded as three variables: xMajorVerNo,
xMinorVerNo, and xPatchVerNo.

1.6.1 System variables with project information

xxxx = name of the resource;
column P: X = system variable of a process station resource
column G: X = system variable of a gateway station resource

Variable name Data type P G Designation

xxxx.ProjectName STRING16 X X Name of current project.

xxxx.CMajorVerNo UINT X X Current major project version number

xxxx.CMinorVerNo UINT X X Current minor project version number. It
increases each time a program is loaded
or deleted.

xxxx.CPatchVerNov UINT X X Current version number for project
“amendments”. It increases every time the
function block is changed
 Engineering - IEC 61131-3 Programming 47

System variables with resource information 1 Variables

1.6.2 System variables with resource information

Variable name Data type P G Designation

xxxx.StationNo UINT x x Station number of the resource

xxxx.StationType UINT x x Station type of the resource

4 = D-PS or D-PS/RED

5 = D-GS or D-GS/RED

xxxx.MaxObjNo UINT X X Maximum number of objects which may
be handled by the resource

xxxx.GlobVarSize UINT X X Size of RAM for global variables in Kilo
Bytes.

xxxx.PRAM_Size UDINT X X Size of write-protected RAM in bytes
(RAM for user configuration)

xxxx.PRAM_Free UDINT X X Free write-protected RAM currently avail-
able in bytes (configuration memory)

xxxx.RAM_Size UDINT X X Size of RAM in bytes (working memory)

xxxx.RAM_Free UDINT X X Free RAM currently available in working
memory

xxxx.CPU_Load UINT X X Current CPU load (%)

xxxx.DateTime DT X X Current date and time at resource (Local
time)

xxxx.UserStopped BOOL X Boolean variable, logic = 1 when the sta-
tion is shutdown from Freelance Engineer-
ing

xxxx.MsrStopped BOOL X Boolean variable, logic = 1 when the sta-
tion is shutdown via a RUN/STOP switch
on the CPU module
48 Engineering - IEC 61131-3 Programming

1 Variables System variables with resource information

xxxx.ResState UINT X Displays current state of the resource.

1 = no operating system

2 = cold start

4 = cold start stopped

8 = running

16 = stopped

32 = warm start

64 = warm start stopped

128 = standby

256 = starting

512 = stopping

xxxx.OMajorVerNo UNIT X X Part 1 of the operating system version
number

xxxx.OMinorVerNo UNIT X X Part 2 of the operating system version
number

xxxx.OPatchVerNo UINT X X Part 3 of the operating system version
number

xxxx.Configuring BOOL X Boolean variable, logic = 1 when the

station is being configured by Freelance
Engineering

xxxx.EMajorVerNo UINT X X Current major EPROM version number

xxxx.EMinorVerNo UINT X X Current minor EPROM version number

xxxx.CPURack UINT X ID of the rack which the currently active
CPU module (Primary CPU) is plugged in-
to.

xxxx.CPUSlot UINT X Slot holding the currently active CPU mod-
ule (Primary CPU).

Variable name Data type P G Designation
 Engineering - IEC 61131-3 Programming 49

System variables with information of a redundant resource 1 Variables

1.6.3 System variables with information of a redundant resource

xxxx.RadioClkAv BOOL X Boolean variable set to logical 1 if the pro-
cess station is synchronized by a radio
clock. The radio clock does not need to be
connected directly to the process station.
The synchronization can also be per-
formed by another process station which
has a radio clock connected.

xxx.TSynchInst BOOL X Boolean variable set to logical 1 if the
gateway sends time synchronization mes-
sages to external systems. This function-
ality can be activated by configuration in
Freelance Engineering (enable external
time synch.)

Variable name Data type P G Designation

xxxx.MainCPUPrim BOOL X Boolean variable set to logical 1 when the
CPU module in the central unit (slot with
rack-ID = 0 and slot ID = 0) is active (Pri-
mary CPU). This variable is set to logical 0
when this CPU module is passive (Sec-
ondary CPU).

xxxx.RedCPURack UINT X ID of the rack which the passive CPU
module (Secondary CPU) is plugged into.
In the event of a redundancy toggle the
status changes from RedCPURack and
MainCPUPrim.

xxxx.RedCPUSlot UINT X Slot-ID of the passive CPU module (Sec-
ondary CPU).

Variable name Data type P G Designation
50 Engineering - IEC 61131-3 Programming

1 Variables System variables for power fail on voltage failure

1.6.4 System variables for power fail on voltage failure

xxxx.RedState UINT X X Redundancy status:

0 = no redundancy

1 = no secondary

2 = not sync

3 = sync

128 = Redundancy error

xxxx.RedLinkLoad UINT X Load on the redundancy link.

xxxx.StationLoad UINT X Load on the station (combination of
CPU_Load and RedLinkLoad).

xxxx.RedBufLow UDINT X Remaining storage space for redundancy
data.

Variable name Data type P G Designation

xxxx.NoPowerFail UINT X Present number of Power Fails which did
not lead to a warm start. The variable is
initialized at zero after a cold start

xxxx.PowerOffTim TIME X Only for AC 800F and DCP Controller.
Length of last power failure which led to a
warm start. It is counted from the time the
power failure occurred to the restarting of
the operating system.

Variable name Data type P G Designation
 Engineering - IEC 61131-3 Programming 51

System variables for error handling task 1 Variables

1.6.5 System variables for error handling task

1.6.6 System variables for I/O communication

y denotes the rack ID (numbered consecutively from 0 to 4) and z the module slot
(numbered consecutively from 1 to 8), e.g. DPS1.IOBootT-1-3.

Variable name Data type P G Designation

xxxx.ErrorNo UDINT X Error number of last error which rendered
a task "not executable". Refer to Engi-
neering Manual Process Station, Task
error messages.

xxxx.ErrorProgram UINT X Variable shows the object number of the
program which triggered the last error in
the process station.

xxxx.ErrorTask UINT X Variable shows the object number of the
task which triggered the last error in the
process station.

These variables are used only with rack-based I/O modules.

Variable name Data type P G Designation

xxxx.IOBootT-y-z BOOL X State of I/O module, logic = 1 when an I/O
module is identified.

xxxx.IOBoard-y-z UINT X Type of I/O module. The following modules
are defined:

10 DDI 01, 32 x 24 V DC 53 DCP 02a, new hardware revision of
DCP 02

11 DDI 04, 28 x Namur initiators or

12 x 3/4-wire initiators

56 DCP 10, gateway

12 DDI05, 32 x 120/230 V AC 60 DDO 02, 16 x 230 V AC/DC
52 Engineering - IEC 61131-3 Programming

1 Variables System variables with information for lateral communication

1.6.7 System variables with information for lateral communication

20 DDO 01, 32 x 24 V DC, 0.5 mA 61 DDI 02, 16 x 24..60 V AC/DC

30 DAI 01, 16 x 0/4..20 mA, 50 Ohm 62 DDI 03, 16 x 90..230 V AC

31 DAI 02, 16 x 0..10 V DC 63 DDO 03, 16 x 24..60 V AC/DC, read
back

32 DAI 03, 16 x 0/4..20 mA, 250 Ohm 64 DDO 04, 16 x 115..230 V AC, read
back

35 DAI 05, 16 x 0/4..20 mA, MU pow-
ering

70 DAI 04, 8 x PT100/mV

40 DAO 01, 16 x 0/4..20 mA,
Rl=400 Ohm

80 DFI 01, 4 x f <= 45 kHz

50 DCP 02, CPU 89 DLM 01 - Link module

51 DCP 10, CPU 90 DLM 02 - Link module

52 DCP 02, gateway 100 DCO 01, 4 x RS 485/422/232 C

xxxx.IOForce-y-z BOOL X Shows forcing state of channel on the I/O
module. Boolean variable, logic = 1 when
a channel is forced on the module.

Variable name Data type P G Designation

xxxx.SendErr BOOL X Logical 1 if resource xxxx cannot transmit

xxxx.yyyy.RcvErr BOOL X Logical 1 if resource xxx has not received
any values from resource yyyy within
twice the transmission cycle time of re-
source yyyy. An alarm is also given in this
case if values have already been received
once from resource yyyy. When values are
received the RcvError is automatically re-
set to logical 0.
 Engineering - IEC 61131-3 Programming 53

Structured data types 1 Variables

1.7 Structured data types
Application-specific data types can be created, that is defined in addition to the
structured ones, with the aid of the editor. These user-defined data types are
included in the data type selection list and can be selected like standard ones. In this
way a series of data (max. 256) can be transmitted through a structured variable. For
example, all the important control signals can be switched to another station by
using one variable instead of transmitting all the structured data types separately.

1.7.1 Call definition of structured data types

1.7.2Define a new data type

Insert a new data type name into the list of structured data types, confirm with OK.

1.7.3Create data type components

The components of the new defined data type can be entered with:

The variables xxxx.yyyy.RcvErr are generated automatically if export flags are
set by variables for lateral communication.

> System > Structured data types

> Edit > Insert a new data type

or

> Double-click the name field of the first free line.

> Define!
54 Engineering - IEC 61131-3 Programming

1 Variables Insert a new variable with structured data type

StructData_Comp_us.png

A name and an elementary data type are entered for each component which is to be
available under the new data type.

Name Name of the component max. 16 characters

Type Data type, for example BOOL, INT or REAL.
See also Overview of simple data types on page 22.

Comment Any text to describe the entry.

Initial value The default initial value for a single element is specified here for all
instances of this structured variable, but may be reassigned in the
variable list for each usage of this data type. See also Initial values
on page 28.

1.7.4 Insert a new variable with structured data type

StructData_Var_us.png

> System > Variable list > Edit > Insert new variable
 Engineering - IEC 61131-3 Programming 55

Use a structured variable in a program 1 Variables

Using the new data type ControlStruct the corresponding variables can be
declared. For example, to supply multiple controllers of the same type, only one
variable of the new type ControlStruct must be created for each controller. Now, all
components are available with their elementary data types for this structured
variable.

In the example below the new variable TC120_V is assigned to the structured data
type ControlStruct. The following components of variable TC120_V are thus
available:

1.7.5 Use a structured variable in a program

StructData_Use_us.png

TC120_V.SP REAL Set point
TC120_V.PV REAL Process value
TC120_V.Man BOOL Operation mode Manual
TC120_V.Auto BOOL Operation mode Automatic

> For example, select a read or write variable in a function block diagram.
56 Engineering - IEC 61131-3 Programming

1 Variables Use a structured variable in a program

di0349uk.png

In the window shown above various components of the structured variable
TC120_V (data type ControlStruct) have been used.
 Engineering - IEC 61131-3 Programming 57

Use a structured variable in a program 1 Variables

58 Engineering - IEC 61131-3 Programming

2 Tags

2.1 General description - Tag list
All function blocks (tags) configured in a project as well as the modules configured
in the hardware structure are organized by the system and made available to the user
in the tag list.

This list is automatically generated or updated when a project is configured.
Existing data may be output to data media or imported from these media.

Data files are in ASCII text format with CSV (comma separated values).

The maximum length of tag names can be configured for a project with 12 or 16
characters. See also Engineering Manual System Configuration, Project manager.

Search criteria can be defined and activated. The status bar shows the currently
displayed number of entries. The format is <entries> of <total entries>. When
search filters are active, this enables you to see how many tags meet the search
criteria.

2.1.1 Call the tag list

When opening the project, the tag list is automatically displayed as a separate tab in
the right pane. This can be closed and reopened later from the main menu.

> System > Tag list
 Engineering - IEC 61131-3 Programming 59

Structure of the tag list 2 Tags

tk003us.png

2.1.2 Structure of the tag list

All tags of the current project are displayed in a table.

di0314us.png

Name Tag name , max. 12 or 16 characters. For details see Engineering
Manual System Configuration, Project manager

The status bar shows the number of currently displayed entries. The format is
<entries> of <total entries>. When search filters are active, this enables you to see
how many tags meet the search criteria.
60 Engineering - IEC 61131-3 Programming

2 Tags Structure of the tag list

T Object type of entry:
S Standard name.
Name of a function block, name of an SFC program, name of a
module or an object in the hardware structure; also all unused tags
or objects are labeled with 'S'.
F Formal name.
Entries with which function blocks are addressed within the class
definition of a user-defined function block are labeled with 'F'.
T Template name.
All template entries in the hardware structure are labeled with 'T'.

Res Resource name

Area name Plant area which is assigned to the tag.

R State of processing, cannot be modified in this list
+ Processing of the block is enabled (Processing),
- Processing of the block is not enabled (Processing),
? Processing of function not defined (Processing),

Short text Short text for tag, max. 12 characters

Long text Long text for tag, max. 30 characters

Type name Abbreviated text for function block type, e.g. M_ANA for analog
monitoring.Changes may be made via a selection window listing
the relevant function block types. See also Engineering Reference
Manual Functions and Function Blocks.

L Library type
S standard library type,
U user function blocks
E extra library type (SFC program).

The plant area assignment is preserved in project export and import, but not in
block export and import.

For user function blocks, sequential function chart programs and I/O modules the
state of processing is displayed with “?”.

For templates from the hardware structure the state of processing is displayed
with “-”.
 Engineering - IEC 61131-3 Programming 61

Edit the tag list 2 Tags

T OPC function block class
X FF function blocks

P Status of the plausibility check:
Configuration for the block is not correct.
Configuration errors were reported from last check for this block.
@ Plausibility check for the block without error.
No configuration errors were reported from the last check for this
block.

2.1.3 Edit the tag list

Column headers

The arrow ^ in the head of a column indicates that the data is sorted by this column.

Tags_Appearance_us.png

Sort list entries

In the tag list, sorting feature is available for the following columns:
• Name
• Area name: Sorting is based on indexes starting from A, B, C,N, O.

Sorting is not based on the Area names given by the user.
• Type name

Filter list entries

The user can filter the data, and save the current filter logic. Based on the type of
data, the following are the three kinds of filters available:

See also Engineering Manual System Configuration, Project tree.
62 Engineering - IEC 61131-3 Programming

2 Tags Edit the tag list

Free text filter
The user can type the search criteria in the edit box present below
the Column header. for example, “Name” column filter in the tag
list

Drop-down list
The Filter criteria are already defined in a drop down list and user
can select one of them to filter the list. for example, “Type name”
column in tag list.

List with multiple selection
Allows the user to select multiple items from a given list, for
example “Area” column in tag list.

Save current filter

Once filtering is applied to the list, user has an option to save the current filtering
This preserves the current configuration and can be used in future. This will be
project specific. An icon in toolbar pops up as a dialog, where user can type a name.
This list of saved filters can also be accessed from another toolbar icon. Automatic
names are given for filters imported from old projects.

Call the saved filters

User can view, delete and use the list of saved filtering criteria. This list can be
opened by clicking the toolbar icon.

Toolbar Icons

Below the Tag tab, toolbar will have the following icons.

Taglist_icons.png

Description of the icons from left to right:

Cross references
The cross references show the places (programs, displays, etc.) in
which the selected tag is used.
This icon is enabled only when a tag is selected.
 Engineering - IEC 61131-3 Programming 63

Edit the tag list 2 Tags

Hide unused tags
All tags that are defined but not used in the project can be shown or
hidden.
Click Hide unused tags to hide or show the unused tags in the list.
Show only tags with faceplates
All tags which are without faceplates can be shown or hidden. Click
this icon to hide or show all tags without faceplates.

Save filter Saves the current filter settings under a given name. A maximum of
ten filter settings can be stored.

Show saved filters
A dialog box opens from which you can select, activate or delete a
previously saved filter.

Clear filter Clears all active filter criteria of the tag list. This includes the
function “Hide unused tags” and “Show only tags with faceplates”.

Access by gateway station
This drop-down list is used to select one gateway or all gateways.
The empty item selection means “all gateways”.The gateway access
filter shows only tags that have access to the selected gateway
station.

Search in the tag list

The Find function allows you to search tags by name. When this function is chosen
from the menu or the shortcut menu, a dialog with an input field appears. When a
name or the beginning of a name is entered, the list scrolls automatically and the
first matching entry is shown.

> Edit > Find
64 Engineering - IEC 61131-3 Programming

2 Tags Normal view and station view

tk0440us.png

2.1.4 Normal view and station view

In addition to the normal view, a station view can also be selected. In the station
view, parameters are set for each tag to define whether they can be read and/or
written via a gateway and whether they can be accessed from the operator stations.

R = Read access - the tag can be read via the gateway.

W = Write access - the tag can be written via the gateway.

X = Operation access - tag can be accessed from the operator station..

> Editor> Station view

or

> Editor > Normal view
 Engineering - IEC 61131-3 Programming 65

Close 2 Tags

Tag_StationView_us.png

A dialog opens to modify the access rights.

See also Station access on page 76 and Engineering Manual Freelance OPC
Server.

2.1.5 Close

Closes the tag tab.

> Double-click a resource column

or

> Select a block > Edit > Station access

> Editor > Close
66 Engineering - IEC 61131-3 Programming

2 Tags Edit tag list entries

2.2 Edit tag list entries

Various menu options are available for editing the individual list entries. For
example, the last action can be undone, new entries can be inserted, entries can be
deleted, cut or copied. Blocks or tags can be imported and exported.

di0322us.png

2.2.1 Undo

The last change is undone and the old status restored. If it is not possible to undo the
last action, the menu item is disabled.

> Edit

> Edit > Undo
 Engineering - IEC 61131-3 Programming 67

Insert new tag in the list 2 Tags

2.2.2 Insert new tag in the list

When any filter is activated, that is the list is not fully displayed, it is not possible to
insert a new tag.

If the cursor is located on an empty field, e.g. at the end of the list, a new tag may be
entered directly into the individual fields in this line of the list.

If the cursor is on a list entry, a window will appear. The selected name appears as
the default for the old name and the new name. The new name must be changed then
by entering the desired new name. All the other data is taken over from the tag
which was selected previously.

Tagname_unique_us.png

Old The name of the selected tag for information only.

New This shows the name of the selected tag as the default and may be
changed by entering the desired new name.

Rename If a new unique name has been defined, a new tag is created-

Cancel The existing tag is not changed.

Skip Closes the dialog, no changes are done. This button is mainly used
for importing a set of tags from a file; refer also to Import on page
73.

> Edit > Insert new tag
68 Engineering - IEC 61131-3 Programming

2 Tags Edit a field in the list

2.2.3 Edit a field in the list

Depending on the field selected, the new value can either be entered directly or
modified by means of a dialog.

Changing existing tags may affect other programs. In order to avoid errors, a list of
the affected programs is displayed when changes are made. A decision can be made
as to whether or not the changes are to be carried out. See also Cross references on
page 75.

2.2.4 Delete field

If a whole line in the list is selected, then the tag may be deleted

2.2.5 Delete unused tags

All entries with no cross-references (these tags are identified by a red color) are
deleted following a query for confirmation.

Confirm Tag Deletion_us.png

>

> Double-click to select field and position cursor at the last entry position

or

> Edit > Edit field

> Enter changes

Only the fields Short text and Long text can be deleted with this command.

> Click field > Edit > Delete

> Edit > Delete unused tags
 Engineering - IEC 61131-3 Programming 69

Edit block 2 Tags

Yes The tag that is displayed is deleted.

Delete all All unused tags (all tags in red) are deleted.

No The tag that is displayed is not deleted, and the next tag is
displayed.

Cancel Aborts the delete function.

2.2.6 Edit block

Only one block can be defined in each case respectively. A block consists of a set of
consecutive rows in a list and can be selected as follows:

The resulting block is identified and is also retained when the left mouse button or
the SHIFT key is released.

Cut

The defined block is removed from the text section and stored in the clipboard. The
Paste command is used to insert this stored block in any other position.

Copy

The defined block is copied and stored in the clipboard. The Paste command is used
to insert this block in any other position.

Tags for which access rights have been assigned via a gateway, but which are not
used in any program, count as unused tags.

> Click cursor where the block is to start

> Press left mouse button and drag the mouse to the end of the block to mark it

or

> Press SHIFT key and move cursor using arrow keys.

> Select block > Edit > Cut

> Select block > Edit > Copy
70 Engineering - IEC 61131-3 Programming

2 Tags Edit block

Paste

A copied or cut block in the clipboard is inserted at the cursor position.

Delete

For each tag which is still used in other programs, a warning message will appear
with a request for confirmation.

di0355us.png

Close Back to the corresponding list

Don’t delete Selected variable/tag is not deleted

Delete Selected variable/tag is deleted

Show program
Go to selected program

> Select block > Edit > Paste

Since the tag names must be changed, the same window is displayed as for the
menu item Insert new tag.

> Select block > Edit > Delete
 Engineering - IEC 61131-3 Programming 71

Export 2 Tags

2.2.7 Export

The selected entries are saved as a file on a data medium (hard disk). An additional
window appears into which the file path and file name must be entered. This file
may be read into other projects via the menu item Import....

Two file types are available for the export; the Freelance file format with the
extension MSR and the external file format CSV (comma separated values) which
can be read by external applications like Microsoft Excel.

For an export to a CSV file the user has to specify which information of the selected
tags should be exported.

Tag_list_export_us.png

The standard information Name, Short text and Long text are mandatory an cannot
be de-selected.

Optionally the parameters Resource, Area, Type name, Library type and Station
view can be selected.

The first row of CSV file contains the column headers, from the second row
onwards the Tag list information is stored.

Example for a CSV file if all options are selected:

CSV_file_tags_us.png

> Select one or more tag entries in the list > Edit > Export

> Select the desired file format *.msr or *.csv > specify file name
72 Engineering - IEC 61131-3 Programming

2 Tags Import

Name Name of the tag entry

Res. Name of the associated resource

plant area Name of the plant area assigned to the tag

short text Configured short text of the tag

Long Text Configured long text of the tag

Type Name Short name of the tag type

C Library type, see Structure of the tag list on page 60

V_GR; V_US Resource names of the operator stations in the project
X = Tag can be accessed from this operator station
(empty)= tag cannot be accessed from this operator station

OPC;trn Resource names of the gateway stations in the project
R = Tag can be read via this gateway station
RW = Tag can be read and written via this gateway station
(empty)= Tag cannot be accessed via this gateway station.

2.2.8 Import

If tags are defined outside of Freelance Engineering, either in another Freelance
project or with an external application, these tags can be imported from a file into
the project. Three file formats are supported, the Freelance file format with the
extension MSR and the external file formats CSV (comma separated values) and
TXT (text file); the content of the CSV and the TXT file is identical.

An MSR file was created via Export from a tag list of Freelance Engineering.

A CSV file (or TXT file) was created by an external application or with a text editor.
The entries are separated with a semicolon ‘;’. If a text item itself includes the list
separator, the text entry should be enclosed in quotation marks (“ ”); for example
"xxx;xxx". The end of the file is marked by a line break.

The first row of the CSV file contains the column headers, the second row onwards
contains the tag list information. See also description of Export above.

At least the column "Name" must exist to import the CSV file, all other columns are
not mandatory.
 Engineering - IEC 61131-3 Programming 73

Import 2 Tags

If the header row does not exist in the CSV file, the first three entries of each line are
imported as Name, Short text and Long text. All other entries in the file are ignored.

If a tag should be imported with a name that already exists in the project, a dialog is
shown:

Insert_new_tag_us.png

If the user does not enter a new name and press RENAME, the record will be
overwritten with the information of the CSV file. Fields that are not specified in the
CSV files will not be modified by the import. The overwrite operation must be
confirmed by the user.

If the user enters a new name in the renaming dialog, the data record of existing tag
is copied and modified with the information from the file. Thus, omitted fields in the
CSV file will get the value of the original tag.

If no naming collision is found, a new tag is created with the information of the file.
For the omitted fields default values are used:

> Edit > Import... > select file type *.msr, *.csv or *.txt > select file

Overwriting columns of an existing tag record is possible only with import of a
CSV file. With the import from MSR files all new tags must get unique names.

Short Text “’

Long Text “”

Resource (-----)

Area Name No Area
74 Engineering - IEC 61131-3 Programming

2 Tags Cross references

If a value which is tightly coupled with system values, for example data type, has an
invalid entry, the value will be replaced with the default value. Any columns other
than the fields described above will be ignored.

Press the Skip button to ignore the current tag and continue with the next entry in
the file.

During the import, a ".log" extension files is created with the same path and name as
the imported CSV file. In this LOG file the import errors are listed and also those
tags that could not be imported automatically with the information Invalid, Skip
and Rename.

2.2.9 Cross references

Cross references of a tag can be shown in a list. Cross references are references
relating to this tag in programs, displays, listings and so on, in other words to places
where this tag is used.

A window displays the names of the relevant programs:

Type Name “”

Station view R/””

> Select field > Cross references or F5 key

or

> Edit > Cross references

Short Text “’
 Engineering - IEC 61131-3 Programming 75

Station access 2 Tags

di0356us.png

Show program
Calling a program with pre-selection of this tag or calling the
module to which the tag is allocated

Show declaration
Tag list remains selected, the selected tag is marked.

2.2.10 Station access

di0321us.png

> Select block > Edit > Station access
76 Engineering - IEC 61131-3 Programming

2 Tags Area

If the inputs, outputs and parameters of a tag are to be read or written via a gateway,
this access must be enabled in the following items:

• in the project tree on the resource
• in the tag list

For each operator station, certain tags which should not be operated on this station
can also be filtered. If no access is released, this tag cannot be selected from the tag
list of this operator station.

Call up the Station view of the tag list to get an overview of the access rights for all
tags.

For more information, see Normal view and station view on page 65 and
Engineering Manual - Freelance OPC-Server.

2.2.11 Area

tk002us.png

Areas of selected tags
All areas already assigned in the selected block are shown.

Areas already used in project
All areas that are used in the whole project are listed.

> Select block > Edit > Area
 Engineering - IEC 61131-3 Programming 77

Change function block type 2 Tags

Selection All the tags in the selected block are assigned to the plant area
entered here.

2.2.12 Change function block type

A new block type can be allocated to the marked tags. All block types of all libraries
known by the system are available for selection.

tk002us_1.png

2.2.13 Access rights

If the add-on package Security Lock is installed, individual tags or selected blocks
of tags can be locked here for certain user groups. On the relevant operator station
the tag can then only be observed, or also operated, or not called at all.

Refer to Engineering Manual User Access.

> Select block > Edit > Change function block type

> Select block > Edit > Access rights
78 Engineering - IEC 61131-3 Programming

2 Tags User groups

2.2.14 User groups

If the add-on package Security Lock is installed, individual user groups can be
assigned here to certain resources. Refer to Engineering Manual User Access.

2.3 Options

2.3.1Print

The screen contents may be output to a printer.

2.3.2Adjust colors

The color for unused tags can be specified.

2.3.3Save column settings

The column width setting is stored.

2.3.4Auto Accept

Turning on/off auto save

> Select block > Edit > User groups

> Options > Print

> Options > Colors...

> Options > Save column settings

> Options > Auto Accept
 Engineering - IEC 61131-3 Programming 79

Options 2 Tags

Select Auto Accept to automatically save any changes done in the current editor
before switching to another editor.

2.3.5Save filter

Saves the current filtering under a given name. A maximum of ten filter settings can
be stored.

2.3.6Clear filter

Clears all active filter criteria of the variable list. This includes the “Hide system
variables” and “Hide unused tags” functions.

2.3.7Show saved filters

A dialog box opens from which you can select, activate or delete a previously saved
filter setting.
80 Engineering - IEC 61131-3 Programming

3 OPC items

3.1 General Description - OPC items
OPC items represent the connection to process variables and tags which will be
provided by an OPC server. The standardized OPC interface gives the possibility to
connect different control systems with each other. The OPC items can be of two
types:

• Data Access (DA) items

• Alarm & Events (AE) items

The OPC items dialog is used for easy integration of OPC items into a Freelance
system by Freelance Engineering. If a connection is established between Freelance
Engineering. and the OPC server of another system, the configuration of the OPC
server can be read through the browser interface. The read OPC items are displayed
in a list view.

OPC items (DA and AE) can be used to define a new function block type (OPC_FB-
CLASS). A faceplate can be configured for each function block class. In a second
step, tag instances based on the classes can be created from the OPC item list. With
the defined faceplates a quick and easy visualization in Freelance Operations is
available.

A single OPC item can be instantiated as a variable in the Freelance project.

3.1.1 Call OPC item list and browse for OPC items

The OPC item list can be opened from the System menu. It opens in a separate
window.

> Project tree > System > OPC item list
 Engineering - IEC 61131-3 Programming 81

Structure of the OPC item list 3 OPC items

Click Synchronize and select the required OPC server from the list.

OPC_Items_02.png

After clicking OK, all OPC items of this OPC server which can be reached through
the browser interface are added to the OPC item list dialog.

3.1.2 Structure of the OPC item list

The OPC item list is structured as follows:

OPC_Items_01.png

When importing OPC items from third party systems, check that the data type
imported is the best match for the Freelance data types. If necessary, the user can
change it to the appropriate data type manually in the OPC item list.
82 Engineering - IEC 61131-3 Programming

3 OPC items Sort the OPC item list

The DA items are displayed in the left pane of the OPC items dialog box and the
AE items in the right pane.

DA Items
Server Name OPC server name

Item Name OPC DA data item name

Data Type OPC item data type, refer to Section 1, Variables

Access Right Access rights can be of the following 3 types:
R: Indicates a read access on the DA item
W: Indicates a write access on the DA item
RW: Indicates a read as well as write access on the DA item

Tag Name Name of the Tag using the OPC DA item

AE Items
Server Name OPC server name

Item Name OPC AE data item name

Condition Type of alarms for the AE items

Tag Name Name of the tag using the OPC AE item

Filter The OPC item list can be filtered using masks for the columns
Server name, Item name, Tag Name, Data type and Access
Rights. When the user changes the filter mask for a column, both
DA and AE item lists will be updated immediately using the filter.

3.1.3 Sort the OPC item list

The OPC item list can be sorted by using values in a specified column. Clicking the
header of a specific column of one of the lists, the item list will be re-sorted
immediately according to the values of the items in this column. The current sort
order (down or up) for the column will be shown in the header. The sort order for
this column will be toggled by next sorting.

> Click the header of one of the columns in the DA/AE list

DA/AE list is sorted using values of the column
 Engineering - IEC 61131-3 Programming 83

Edit the OPC item list 3 OPC items

3.1.4 Edit the OPC item list

The OPC item list is used to modify, add, export and import OPC items.

Modify the data type

Refer to Section 1, Variables for the Data Types available.

Browse the OPC items from other OPC server

Select a specific OPC server that will be browsed for its OPC items.

select OPC Server.bmp

Once an OPC Server is selected, the Import OPC items dialog box is displayed.
This dialog box lists the OPC items that are available from the OPC server (i.e. the
OPC items that are not already added to the OPC item list).

> Click the cell in the Data type column.

> Select the data type from the drop-down list.

When importing OPC items from third party systems, check that the data type
imported is the best match for the Freelance data types. If necessary, the user can
change it to the appropriate data type manually in the OPC item list.

> Context menu (right-click) > Browse
84 Engineering - IEC 61131-3 Programming

3 OPC items Edit the OPC item list
 import OPC item dialog.png

The OPC items dialog box is updated with the new OPC items that are selected.

Export OPC items

Selected OPC items in the OPC item list are written into a file of type OPC data
item format (*.dai).

> Tick check box to select the OPC items > OK

When importing OPC items from third party systems, check that the data type
imported is the best match for the Freelance data types. If necessary, the user can
change it to the appropriate data type manually in the OPC item list.

> Context menu (right-click) > Export
 Engineering - IEC 61131-3 Programming 85

Assign variable 3 OPC items
 OPC DA Item list export.png

Import OPC items

Imports the OPC item(s) from an existing DAI file.

3.2 Assign variable
A single OPC item can be instantiated as a variable in the Freelance project. Select
the OPC items from the OPC item list that are to be used in free graphics or trend
displays and assign them to variables.

> Context menu (right-click) > Import

> Select OPC item(s) in OPC item list dialog > Assign variable
86 Engineering - IEC 61131-3 Programming

3 OPC items Assign variable

insert OPC_Items_03.png

A new dialog, called Rename variables, shows the OPC items and new suggested
variable names. Specify the required “variable name” in the New name column and
click on OK. All the OPC items with the new names will be assigned as a variable in
the variable list.
 Engineering - IEC 61131-3 Programming 87

Assign variable 3 OPC items

OPC_Items_04.png

Objects to rename
These are the OPC items that are not assigned to a variable.

Item name OPC item name

Preview name Displays a preview of the new name as a result of pattern renaming,
while modifying the old name of the OPC item.
88 Engineering - IEC 61131-3 Programming

3 OPC items Assign variable

New name Click into the cell to enter a new name for the OPC item.

Include in patterning
If the Include in patterning check box is selected then the Preview
Name gets updated in the New name column. The Preview name is
specified by the Rename Pattern area (refer to Assign variable on
page 90).

Objects to update
These are the OPC items that are already assigned to a variable.

Server name OPC server name.

Item name OPC item name.

Filter Select to filter the Object to rename list by the OPC Server.

Original name Select to filter the Object to rename list by the OPC item name.
This filter is similar to the windows search function.

Hide renamed Select to hide the OPC items that are already renamed.

Show only errors
Select to show only the items with errors

The new name assigned to an OPC item should be unique. The characters used in
the new name must meet the following conditions:
• As symbols only “_” and “§” are allowed.

• Blank spaces are not allowed.

• A variable name consisting of only integers is not allowed.

The system assigns a predefined New name for an OPC item by scanning the item
name from right to left until a separator or a space is encountered.

Errors in the new name column are highlighted in RED.

If the new name is displayed in red, this means that the variable name already
exists. If the cell of the new name is displayed in red, this means that the new
name contains characters that are not allowed.

The Include in patterning check box is disabled automatically when an OPC
item is manually renamed in the New name column.
 Engineering - IEC 61131-3 Programming 89

Assign variable 3 OPC items

Show excluded Select to show the items whose names the user does not wish to
change.

Show included Select to show the item names the user wants to change. By default
all items are included for renaming.

Exclude
All Clears the Include in patterning check box for all the OPC items.

None Selects the Include in patterning check box for all the OPC items.

Renamed Clears the Include in patterning check box for all the renamed
OPC items.

Invert Inverts the current state of the Include in patterning check box.

Pattern Rename
Renames the OPC item based on a defined pattern. This is based on
the standard pattern renaming algorithm.

Old Name The name of the OPC item which is to be renamed.

New Name The new name for the OPC item.

Use regular expressions

Only the wild card algorithm can be used for selecting a group of
OPC items to be renamed.

The pattern rename algorithm is used to select the OPC items. It is
possible to group characters within an OPC item name string, and
the New name can be defined based on combinations of these
groups.

Execute By clicking Execute, New name for the OPC item will get updated
by the Preview Name if the Include in patterning check box is
enabled, under the Objects to rename.

Undo Click to undo the last renaming of an OPC item

To rename an OPC item: Specify if an expression will be used by selecting or
clearing the Use regular expressions checkbox > Type an expression or a wild
card value in the Old name field > Type the desired rename pattern in the New
name field > Execute
90 Engineering - IEC 61131-3 Programming

3 OPC items Assign variable

Patterning Algorithm

Based on the OPC item name the user has to define its pattern to parse and extract
the pieces from item name. This can be done with help of the symbols provided in
the table below.

The following example shows how to extract parts of an OPC item name and
assemble a new variable name out of it.

Example: “OPCS/PS.CPU_Load” ==> “CPU_Load_PS_1”

In this case “PS” and “CPU_Load” has to be extracted from
“OPCS/PS.CPU_Load”. “PS” falls between “/” and “.”, so that it is possible to
design the pattern to have 3 groups:

1. The first group must read the OPC item name up to “/”. The pattern is “(.*)\/”
which means that every character from the beginning until the “/” will be added
to this group (“OPCS”).

2. The second group must continue to read the OPC item name up to “.” but
excluding the preceding “/”. The pattern is “([^\/]*)\.” which means that every
character without the “/” will be added to this group until the “.” is reached
(“PS”).

3. The third group must continue to read the OPC item name up to the end, but
excluding the preceding “.”. The pattern is“([^\.]*)” which means that every

Symbol Definition

() defines a group

[] defines a range of characters

. every character

* multiples of character

^ exclude a character or set of characters

\ matching character

+ repeats the previous item once more

- (hyphen) it specifies a range of characters
 Engineering - IEC 61131-3 Programming 91

Assign variable 3 OPC items

character without the “.” will be added to this group until the end is reached
because it is not delimited (“CPU_Load”).

The final pattern is “(.*)\/([^\/]*)\.([^\.]*)” and must be entered into the field Old
name.

To construct the new name “CPU_Load_PS_1”, the user can combine his above
mentioned groups as follows:

1. First, the string out of group 3 is used. The pattern is “\3” which means that
every character of group 3 will be added (“CPU_Load”).

2. Second, the character“_” follows. The pattern is “_” which means that this
character will be added (“_”).

3. Third, the string out of group 2 follows in the new name. The pattern is “\2”
which means that very character of group 2 will be added (“PS”).

4. Finally, the string“_1” follows. The pattern is “_1” which means that these
characters will be added (“_1”).

The final pattern is “\3_\2_1” and must be entered into the field New name.
92 Engineering - IEC 61131-3 Programming

3 OPC items Assign variable

OPC_Items_05.png

Discard All The renaming of the OPC items is undone; the contents of the New
name column in the Objects to rename list is cleared.

OK For the entries in the column New name a variable is generated in
the variable list. For information on variables, refer to Section 1,
Variables.

Cancel Close the dialog without any changes to the system.
 Engineering - IEC 61131-3 Programming 93

Standard library of OPC_FB-Classes 3 OPC items

3.3 Standard library of OPC_FB-Classes
A standard library of OPC_FB-Classes specifically developed for the Freelance
system will be delivered along with the Freelance software.

Import the standard OPC_FB-CLASS library:

The imported block moves to the POOL. Drag and drop the standard OPC_FB-
CLASS library under the SOFTWARE node.

3.3.1 OPC_FB-CLASS and instances

To create a tag, the user first creates the OPC_FB-CLASS. After this, the user can
create instances of this OPC_FB-CLASS. There can be as many instances of an
OPC_FB-CLASS as desired.

An instance is the executable form of an OPC_FB-CLASS. Different instances are
identified by their tag names. Each instance works with values specific to that
instance.

3.3.2 Create an OPC_FB-CLASS library

The OPC_FB-CLASS library (OPC_FB-LIB) must be created with a name in the
project tree. Within it, an unlimited number of OPC_FB-Classes can be declared.

The user can define which OPC server should have access to the OPC_FB-Lib for
instantiating OPC_FB-Classes.

> Project tree > Edit > Import block

> Browse the <Freelance_Installation_Folder> \export folder and select one of
the standard libraries available (FreelanceSampleTagType)

A maximum of 100 OPC_FB-LIB notes can be created per project.

> Project tree > double-click the OPC_FB-LIB node
94 Engineering - IEC 61131-3 Programming

3 OPC items Definition of OPC_FB-CLASS

OPC_Items_09.png

For more information on creation of OPC_FB-LIB, refer to Engineering Manual
System Configuration, Project tree.

3.4 Definition of OPC_FB-CLASS
An OPC_FB-CLASS is made up of the following components

• OPC_FB-CLASS interface

• Faceplate

3.4.1OPC_FB-CLASS interface

The interface of an OPC_FB-CLASS consists of a list of variables. Some standard
items such as Class name and tag name exist for each class; in addition, any
variables can be freely defined. All entries in the block interface can be used for the
creation of a faceplate of this class. Each of the user defined variables can be
marked as optional; this means an instance of this class can be created without this
parameter.

Only after passing the plausibility check in the project tree, the OPC_FB-CLASS
can be used within the project. The faceplate of a OPC_FB-CLASS is created in the
faceplate editor. The faceplate editor offers the full functionality of the graphic
editor.
 Engineering - IEC 61131-3 Programming 95

Definition of OPC_FB-CLASS 3 OPC items

Interface editor

The interface of an OPC_FB-CLASS can be created by entering data directly in the
interface editor or by grouping OPC items in the OPC item list. The interface editor
of a class is called from the project tree:

1.png

The individual entries can be selected by a double-click or by using the menus.
Entries can be made directly in the Name, Comment and Optional fields. The
Data type, Storage type, Access fields can only be filled in using the pop-up
windows that appear.

Name Freely choose variable name. Conventions for the naming of
variables apply. Upper or lower case are both allowed and are
differentiated. All names within the OPC_FB-CLASS must be
unique.

Condition name
For alarm messages the message type is mapped via the condition
entry.

Data type All Freelance basic data types are available for selection.

> Project tree > double-click the OPC_FB-CLASS node

If the user imports OPC items from other systems (not Freelance), it must be
verified if the data format can be handled by Freelance or the user must correct
them manually.
96 Engineering - IEC 61131-3 Programming

3 OPC items Definition of OPC_FB-CLASS

Storage type The storage type determines the usage and runtime availability of
the entry. See below.

Access The Access determines how the variable is used in the OPC_FB-
CLASS. The available Access types are R (read), W(write) and RW
(read write).

Default value Default value

Opt. Y: This interface entry is optional; an instance of this class can be
created without this parameter.
N: This interface entry is mandatory; it is not possible to create an
instance of this class without this parameter.

Comment Any desired comment text for documentation purposes.

Storage type

OPC_Items_06.png

A storage type is assigned to each interface variable of an OPC_FB-CLASS. The
storage type determines how the variable is used inside the OPC_FB-CLASS. The
storage type determines where the runtime value of the variable is to be found.

The available storage types are VAR_VIS, VAR and MESSAGE storage types are
used for internal processing. They do not participate in configuration.

VAR_VIS Internal variable of Freelance Operations.
VAR_VIS variables can only be read or written within Freelance
Operations.

VAR Variable; can be read and written via the OPC server.

MESSAGE Alarm message; can be read and written (acknowledged) via the
OPC server.
 Engineering - IEC 61131-3 Programming 97

Modify an OPC_FB-Classes 3 OPC items

PARA_VIS These entries are not available via the OPC server, but may be
needed or at least useful in the project, for example the tag name
and the short text. These entries can be specified during
configuration of the instances and visualized in the faceplate in
Freelance Operations. PARA_VIS variables cannot be changed
from commissioning mode

Predefined variables

The following predefined variables are for display of general OPC_FB-CLASS data
in the faceplate. Every OPC_FB-CLASS has these variables available and they are
not modifiable from within the class.

3.4.2 Modify an OPC_FB-Classes

The Freelance system provides the user the option to modify OPC_FB-Classes at
any time.

There are three ways in which an OPC_FB-CLASS can be modified.

Add a variable (selector)

It is possible to add variables to already existing OPC_FB-Classes via the OPC_FB-
CLASS interface.

Name
Data
type

Storage type Comment

ClassName TEXT PARA_VIS Contains the name of the OPC_FB-CLASS.

TagName TEXT PARA_VIS Contains the tag name of the block in-
stance.

ShortText TEXT PARA_VIS Contains the short text of the block in-
stance.

LongText TEXT PARA_VIS Contains the long text of the block instance.

SelStat BOOL VAR_VIS Indicates whether the faceplate is selected.
TRUE = Faceplate is selected
FALSE = Faceplate is not selected
98 Engineering - IEC 61131-3 Programming

3 OPC items Modify an OPC_FB-Classes

A corresponding OPC item should be added (created) in the OPC item list.

Once a new variable is added to an OPC_FB-CLASS, all the instances associated
with that OPC_FB-CLASS lose their connection to the tag name.

Delete a variable (selector)

It is possible to delete variables from existing OPC_FB-Classes via the OPC_FB-
CLASS interface.

Change the data type of the variable (selector)

It is possible to change the data type of the variable in the already existing OPC_FB-
Classes via the OPC_FB-CLASS interface.

The data type of the corresponding OPC item should also be changed in the OPC
item list.

Once the data type for the variable is changed in an OPC_FB-CLASS, all the
instances associated with that OPC_FB-CLASS will lose their connection to the tag
name.

All instances of this block class must be created new.

There is no need for re-instantiation of the corresponding block instances.

All instances of this block class must be created new.
 Engineering - IEC 61131-3 Programming 99

Create an OPC_FB-CLASS 3 OPC items

3.4.3 Create an OPC_FB-CLASS

A new OPC_FB-CLASS can be created or an existing OPC_FB-CLASS can be
modified using information from OPC items selected in the Item list.

CreateTagType_new.png

Tag Name Shows a possible tag name. Item names of the selected OPC items
are used to extract a common tag name by using the configured
OPC server pattern.

Tag Type Lib All OPC_FB-CLASS library nodes assigned to the OPC server are
available in this list box.

> Select the OPC item(s) in the OPC item list > Create tag type

The OPC items selected should differ only with respect to the selector part in
their name.
100 Engineering - IEC 61131-3 Programming

3 OPC items Faceplate for an OPC_FB-CLASS

Tag Type Name for the new OPC_FB-CLASS

Check the tag name, select an OPC_FB-CLASS library, define a name for the
OPC_FB-CLASS, check the selectors that should be optional and click OK

Newly created OPC_FB-CLASS are saved to database and added to the project tree.

If an OPC_FB-CLASS with the same structure but a different name already exists, a
warning message is displayed. Click OK to confirm.

If an OPC_FB-CLASS with the OPC_FB-CLASS name already exists, a warning
message is displayed and a new (unique name) must be assigned.

3.4.4 Faceplate for an OPC_FB-CLASS

For each function block class one faceplate can be created to display instance-
specific values in Freelance Operations.

OPC_FB-CLASS faceplates are created with the faceplate editor. The faceplate
editor offers the full functionality of the graphic editor.General description of
faceplate editor

When a faceplate for OPC_FB-CLASS is selected in the project tree, the graphic
editor is started in faceplate mode (faceplate editor).

Creation of the faceplate graphic is nearly the same as the creation of a graphic
display. The difference is in the availability of the variables that can be used for
graphics animation. While in the graphics editor all global variables can be used,
only the entries from the class interface can be used in the faceplate editor. For more
information, see Engineering Manual Operator Station, Graphic display.

If an existing OPC_FB-CLASS is modified and it is used by items in the list, the
column “Tag Name” should be updated and a new plausibility check is needed.

> Right click the selected OPC_FB-CLASS > Insert next level

> Select Faceplate (FB-FPL)

> Project tree > Double-click the OPC_FB-CLASS faceplate (OPC_FB-FPL)
 Engineering - IEC 61131-3 Programming 101

Check OPC_FB-CLASS 3 OPC items

3.4.5 Check OPC_FB-CLASS

The plausibility check of an OPC_FB-CLASS includes checks for the correctness of
the OPC_FB-CLASS interface and the faceplates. The OPC_FB-CLASS is
considered plausible only if there are no errors during the check. The plausibility
check comprises of checking the interface declaration and faceplate plausibility.

3.4.6 Lock OPC_FB-CLASS

It is possible to lock the implementation of a OPC_FB-CLASS with a password.

Such locking makes it possible to hide the internal structure of the OPC_FB-CLASS
(data structure) from the user, i.e. to make the OPC_FB-CLASS instances appear in
their external representation only, like standardized function blocks. Similar to
standardized function blocks, only the parameters are then configurable and can be
commissioned.

A locked user function block cannot be modified.

th015us.png

For the locking operation, the password must be entered twice. To unlock the user
function block, a single entry of the password is sufficient.

When a user function block class is locked, the following actions on the class are no
longer possible.

> Project tree > select user function block class

> Options > Lock/Unlock OPC_FB-CLASS
102 Engineering - IEC 61131-3 Programming

3 OPC items OPC_FB-CLASS comments

3.4.7 OPC_FB-CLASS comments

The comment associated with the project tree junction of the OPC_FB-CLASS is
displayed as help text for the OPC_FB-CLASS instances. Any desired text can be
entered or imported from an existing text for use as comment. The help text is called
up via the HELP button in the OPC_FB-CLASS parameter dialog and displayed in a
special window.

3.4.8 Export / Import

A complete OPC_FB-CLASS or its faceplate can be exported or imported.

3.5 Tag instantiation

The button “Instantiate Tags” starts the instantiation proposal process for the items
selected in the OPC item list.

OPCItemList_instantiate.png

> Project tree > select the OPC_FB-CLASS node

> Project > Comment

> Select the OPC item(s) > Instantiate Tags
 Engineering - IEC 61131-3 Programming 103

Tag instantiation 3 OPC items

Selected items are sorted in groups by finding suitable OPC_FB-Classes for them.
The results are shown in the Instantiate Tags dialog box as shown above.

The tags are grouped in 2 categories:

OPCS The selected items are categorized according to their OPC_FB-
Classes under each OPC server.

Unknown OPC items in the no-match list.

This dialog box has a hierarchical tree view in the top-left pane.

OPC Server /OPC_FB-CLASS/ Tags

Every tree node has a tri-state check box, indicating if the items under the node are
completely, partially or not considered for the instantiation.

In the top-right side window, items contained in the selected tree node are shown.

Ambiguous tags

Tags suiting more than one OPC_FB-Class are listed along with the various
OPC_FB-Classes.

Every tag in this list will be shown along with a drop-down list of the various
OPC_FB-Classes that can be assigned to the tag.

The user can then select the OPC_FB-CLASS from the drop-down list.

Cancel

Exits from the Instantiate Tags dialog box without instantiating any tags.

OK

After clicking on OK the rename dialog box for tag name will be displayed. This
dialog box will give the user the option of renaming tags. The OPC_FB-CLASS is
instanced with the tag name. The Tag name columns in the OPC items dialog box
will be updated after the tag instantiation.

> Apply > OK
104 Engineering - IEC 61131-3 Programming

3 OPC items Instantiate All

3.5.1 Instantiate All

The Instantiate All button is used to instantiate tags for all items in the lists. All the
OPC items except ambiguous tags will be instantiated. The Rename dialog box for
tag names is displayed. This dialog box gives the user the option of renaming tags.
For more information on renaming dialog refer to rename dialog of Assign
Variable.

When all the unique tags are instantiated and on clicking the Instantiate All button,
a message box indicating the result of the instantiation will be displayed.

> OPC items dialog box > Instantiate All

All OPC_FB-Classes that are modified (i.e. new selector added or the data type
of the selector changed) have to be reinstantiated.

Instantiation of OPC_FB-Classes can be done also for variables of structured data
types, if the OPC server maps tag classes are identical to structured data types.
For example, a Freelance OPC server maps variables of structured data types as
<variable name>.<component name> like tags as <tag name>.<component
name>.

If a project contains a function block class and a structured data type with the
same components, function block instances may be created during instantiation
from instances of structured data types and vice versa.

This issue is addressed by renaming the components of the structured data type to
make the descriptions unique. If this is not possible, ignore the unwanted entries
in the renaming dialog during instantiation or delete the unwanted entries
manually in the tag list after instantiation.
 Engineering - IEC 61131-3 Programming 105

Instantiate All 3 OPC items

106 Engineering - IEC 61131-3 Programming

4 Libraries

4.1 Library – User interface
In the left pane of Freelance Configuration a list of available function block libraries
can be shown instead of the project tree. During configuring of the programs thus
the blocks can be accessed in a comfortable way, blocks can be selected from the list
and dropped to the editor.

Libraries tab_us.png
 Engineering - IEC 61131-3 Programming 107

Specify own library list 4 Libraries

All function blocks are grouped in libraries. The library entries can be hidden/shown
depending on the filter toolbar icons. The toolbar icons are described in the
following table.

The entries Editor specific elements, Favorites list, All blocks and User function
blocks are always available and cannot be hidden.

4.1.1 Specify own library list

To customize the library elements list, proceed as follows:

A dialog appears as shown in the figure:

Toolbar
menu

Description

All block libraries are shown.

Only the General block libraries are shown (standard function blocks
without communication function blocks, etc).

Only the Communication block libraries are shown.

Own library list: entries of own library list are shown.

Specify own library list: a dialog opens where you can specify an own
library list.

> Select Specify own library list from Library explorer toolbar
108 Engineering - IEC 61131-3 Programming

4 Libraries Specify own library list

Specify_own_library_list_us.png

The selected function blocks library element is added to the Own library list.

The selected function blocks library element is removed from the Own library list.

> Select required library from Available libraries list

> Click to add the selected function blocks library element or to add all
entries of Available function blocks library to Own library list.

or

> Double-click library element to add to Own library list > OK.

> Select required library from Own library list

> Click to remove the selected library or to remove all the libraries
from Own library list

or

Double-click a library in Own library list to remove > OK
 Engineering - IEC 61131-3 Programming 109

Specify favorites list 4 Libraries

4.1.2 Specify favorites list

The Favorites list contains the list of favorite functions and function blocks. The
entries in the Favorites list are editor-specific and can be called from the Library
explorer or from the block menu. Any standard function and function block can be
added to the Favorites list.

To add a block to the Favorites list, proceed as follows:

Adding to favorites_us.png

The selected item will be added to the Favorites list. If the selected item is already
present in the Favorites list, it will not be added again.

To delete items from the Favorites list, proceed as follows:

The Favorites list is not available for SFC programs.

> Right-click a function or function block in the list or in the editor

> Add to favorites list

> Open Favorites list > right-click an item > Delete selected item
110 Engineering - IEC 61131-3 Programming

4 Libraries All blocks

Delete favorites_us.png

The selected item will be deleted from the Favorites list. The new Favorites list is
saved.

4.1.3 All blocks

All standard function blocks are listed in the All blocks subgroup. This means that
all blocks provided by the Freelance software are listed here, but not the classes of
the user-defined function blocks and not the OPC-block classes.

Filter all blocks items

A filter option is provided in the All blocks subgroup to search easily for a
particular function block name. The Filter text field appears above the items list as
shown in the following figure. When entering text into the text field only those
function blocks are displayed the entry of which contains the entered text.
 Engineering - IEC 61131-3 Programming 111

All blocks 4 Libraries

Filter text_us.png

Clear filter list in the all block bar

To clear the filter text and show the complete list in the All blocks subgroup,
proceed as follows:

Clear filter_us.png

The search is not case-sensitive.

> Delete the text in the Filter Text field

or

> Right-click the list > Clear filter
112 Engineering - IEC 61131-3 Programming

4 Libraries User function blocks

The Clear filter option will clear the filter and also the filter text from the filter text
box.

4.1.4 User function blocks

The User function blocks subgroup items are listed in the User function block bar
as shown in the following figure.

User function blocks_us.png

4.1.5 Sort elements in the list

The following subgroups provide sorting features:

• Favorites list
• All blocks
• User function blocks

The sorting feature is used to sort the list of items alphabetically in ascending or
descending order.
 Engineering - IEC 61131-3 Programming 113

Insert library elements into a program 4 Libraries

Sort ascending_us.png

Sort ascending or descending

To sort the list of items in ascending or descending order, proceed as follows:

4.1.6 Insert library elements into a program

FBD, LD and SFC editor

To select and drop the library elements for a non-text-based editor (FBD, LD and
SFC), proceed as follows:

The selected element is dropped onto the editor.

> Open the list > right-click the list > Sort ascending or Sort descending

> Open the required subgroup in the Library explorer.

> Select an element from the list.

> Move the mouse to an active editor.

> Click the wanted target location to insert the element into the active editor.

If a selected location already contains another element, the element will not be
dropped onto the editor.
114 Engineering - IEC 61131-3 Programming

4 Libraries Hide and show the Library explorer

IL and ST editor

To select and drop the library elements for text-based editors (IL and ST), proceed
as follows:

The corresponding text of the library element is inserted in the selected location.

4.1.7 Hide and show the Library explorer

A pin button is provided on the right top corner of the Library explorer. Click the pin
button to hide the library explorer to provide maximum workspace area.

Hide_libraries_us.png

When moving the cursor to the Explorer field at the left side of the work space, the
library list is displayed temporarily and an entry can be selected.

To display the Library explorer permanently again, click the pin button in the
temporary Library window.

> Select the required location on the IL/ST editor.

> Open the required subgroup in the Library explorer.

> Click the required element in the list.
 Engineering - IEC 61131-3 Programming 115

Hide and show the Library explorer 4 Libraries

116 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD)

5.1 General Description - Function Block Diagram
Function block diagram (FBD) is a graphically oriented IEC 61131-3 programming
language.

The graphical functionality of the FBD permits simple positioning and connecting
of functions, function blocks and their variables.

The working area of an FBD is laid out on 10x10 screen pages. The individual pages
can be accessed by vertical and horizontal scrolling. The entire work area is covered
by a grid. The divisions between the individual pages are shown as dotted lines on
the screen. The printed form of the program contains page-for-page exactly what is
seen on the screen.

An FBD program consists of the following graphic elements:

• Connections and lines

• Variables and constants

• Functions and function blocks

• Comment fields

The signal flow of a FBD is from left to right. The signal flow lines are edited either
with the mouse button and CTRL key pressed simultaneously or alternatively by
activating an appropriate “Line drawing” mode. If the SHIFT key is pressed in
addition to the left mouse key and the CTRL key, the course of the signal line is
automatically determined by the system.

The named variables can be either selected from the list of system wide variables
and copied in, or declared directly in the program. See Section 1, Variables.

In FBD programs the processing sequence of the blocks can be set individually.
 Engineering - IEC 61131-3 Programming 117

Create an FBD program 5 Function Block Diagram (FBD)

As an extension of the IEC language definition, variables and their components of
the structured data types may be used.

After loading the programs in commissioning mode, the editor can be activated if
there is an existing connection to the process stations. The current values in the FBD
program may be displayed.

For further details, refer to Engineering Manual System Configuration,
Commissioning.

5.1.1 Create an FBD program

An FBD program is created in the project tree.

Each new FBD program has a blank graphic region, the check state incorrect and the
creation date as its version identifier. The name and the short comment of the
program list (PL) are taken over and preset as program name and short comment of
the new program; both can be changed easily.

5.1.2 Copy an FBD program

The program is copied and assigned under a new, unambiguous name to a program
list of the project. The respective configuration is copied, including the program
header and program comment. The tag names of the function blocks are not copied.
The copied program is designated incorrect and is allotted the date and time of
copying as a version code.

> Project tree > select insert position in the project tree

> Edit > Insert above, Insert below or Insert next level

> FBD program from “Object selection” > enter a program name and optionally a
short comment

> Select program to be copied from project tree > Edit > Copy or CTRL+C

> Select position to which program is to be copied

> Edit > Paste or CTRL+V

> Depending on position selected, select Above, Below or Level

> Enter new program name
118 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Delete an FBD program

5.1.3 Delete an FBD program

The variables and tag names are preserved in other programs and in the variable/tag
list and can be reassigned.

5.1.4 Call the FBD program editor

A program can be opened by selecting the FBD object in the Project tree. It can be
opened from the Edit menu or by double-clicking the program.The FBD program is
opened as a separate tab in the right pane. It can be closed using the Close button
available at the right side of the opened tab.

The program is displayed with its current content (functions, signal flow lines, etc.)
and can be modified.

5.1.5 Close FBD program

Closes the active FBD tab.

> Select program to be deleted from project tree > Edit > Delete

> Project tree > Edit > Program

or

> Double-click the program

> Editor > Close
 Engineering - IEC 61131-3 Programming 119

Representation of the Function Block Diagram 5 Function Block Diagram (FBD)

5.2 Representation of the Function Block Diagram

5.2.1 User interface of the FBD editor

The operator interface of an FBD program consists of:

FBD_Struct2_us.png

(1) Menu bar The menu entries are adapted to the active window or editor in
Freelance Engineering.

(2) Common toolbar
The common toolbar is accessible from the Project Explorer and the
Editor region.

(3) Editor toolbar
Frequently used commands of FBD are accessible while working in
the FBD editor.
120 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Modify default settings

– Save editor
– Check editor
– Cross references
– Find next cross reference
– Find previous cross reference
– User FB variables (Active only for the configuration of user function

blocks)

(4) Graphic region/Editor region
The function blocks and signal flow lines are configured in the
graphic region of the FBD program.
The graphic region provides a grid in order to facilitate positioning
of the elements, while observing minimum distances. The user can
place the blocks, variables, constants, comments and signal flow
lines only on the grid lines. The visibility of the grid can be
switched on and off.
An FBD program can be up to 10x10 pages in size. The separate
pages are delimited by dashed lines. Care should be taken not to
position objects on the dashed lines, as they would be split over
separate pages in the documentation.

(5) Status bar The status bar indicates the name and the page of the program
which is being edited and name of the user.

5.2.2 Modify default settings

Auto Router

If the Auto Router function is enabled, moving one or more objects automatically
adjusts the connection lines. Furthermore, the simplified line drawing mode is
activated.

> Options > Auto Router
 Engineering - IEC 61131-3 Programming 121

Modify default settings 5 Function Block Diagram (FBD)

Auto Accept

Select Auto Accept to automatically save any changes in the current editor before
switching to another editor.

If the option is not enabled, the following dialog appears for confirmation with each
editor or program change:

Config_FBD_us.png

Switch the raster on and off

All the elements in a FBD sheet are positioned within a grid. This positioning grid is
made visible by this menu selection, if it was hidden and vice versa. The setting is
standard for all FBD sheets in the project.

> Options > Auto Accept
or
Double-click AUTOACCEPT ON/OFF in the Status bar to enable or disable the
Auto accept option

> Options > Raster on

The saved settings of the last program processed are preset. The grid spacing
cannot be changed.
122 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Display program information

Adjust colors

Color_settingFBD_us.png

Select color The color for the selected object can be chosen. The current color is
marked.

Reset The color of the selected object returns to the default value.

Reset all The colors of all objects are reset to the default values.

5.2.3 Display program information

Program version and position in the project structure

The program name, date of last program modification as version identification and
the structure path in the project tree are shown. The structure path can be displayed
in a long or short format, as set in the Options menu of the project tree.

> Options > Colors...

> Select object for which the color is to be changed (e.g. function block frame)

> Select color > select required color

> Options > Version...
 Engineering - IEC 61131-3 Programming 123

Description of FBD program elements 5 Function Block Diagram (FBD)

di0130us.png

Program state

The status bar indicates the name and the current page of the program which is
currently being edited, the position in the project tree, the current user and the
license information.

Editor position (4,1)
Shows the page (line, column) currently being edited, here the
fourth page horizontally and first page vertically.

5.3 Description of FBD program elements

5.3.1Connections and Lines

Horizontal and vertical connections can be made to variables and blocks.
Connections are shown as horizontal or vertical lines. The lines are always drawn on
the grid points, regardless of whether the grid is visible or not.

tl032us.eps

= Splitter

Horizontal
connection

Vertical
connection
124 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Variables and Constants

tl033us.eps

5.3.2 Variables and Constants

Variables and constants can be placed anywhere in the program, and are displayed
and/or edited in a rectangle.

A short and a long rectangle can be selected to display the variable name and/or
constants value.

The short rectangle can display 10 characters. If the space in the rectangle is too
small to display the complete label length, the overflow is indicated by '….'. The
complete label is displayed as ToolTip. Alternatively the long rectangle can be
selected for a permanent display of the complete label length.

Variables can be read and written either via the process image or directly. Reading
or writing via the process image is indicated by @ before the variable name.

Since variables can be placed anywhere in the program, it is essential when inserting
them to specify whether they are to be used for reading or writing. Depending on
whether a variable or constant is to be used for reading or writing, the surrounding
rectangle is provided with either an input or output pin of the appropriate data type.

Function Description

horizontal connection Transports the condition from the left end to the right end.

vertical connection Distributes the conditions from the horizontal connections
on the left to other horizontal connections on the right.

In an FBD program, it is not possible to join multiple horizontal connections
together to form a single horizontal connection.
 Engineering - IEC 61131-3 Programming 125

Blocks 5 Function Block Diagram (FBD)
 5.3.3 Blocks

di0150us.bmp

Frame The block frame limits the selection area of the block. The color
indicates whether the block is selected or not. To change the used
color, please refer to Adjust colors on page 123.

Function block name
Unlike the functions, all function blocks are displayed with a tag
name (max. 16 characters). All the block names are included in the
system-wide tag list. The font color used for the function block

Symbol Description/function:

tl011.bmp

Variable for reading

tl012.bmp

Variable for writing

tl019.bmp

Short version

At most 10 characters can be displayed,

Overflow indication ‘…’

tl020.bmp

Long version

Max. possible label length

tl018.bmp

Read/write via process image

tl023.bmp

REAL Constant
126 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Comment fields

name is used for identifying its processing state (enable/disable),
and can likewise be altered.

Icon The block type is symbolized by an icon in the case of function
blocks, and by a function abbreviation in the case of functions.

Input/output pins
A distinction must be made here between inputs and outputs. In
accordance with the signal flow, inputs are always displayed on the
left and outputs on the right. As with the signal flow lines, the color
and line width conveys information about the data type required or
specified.

Mandatory/ Optional pins (terminals)
Mandatory pins require the supply by the signal flow line in order to
enable the block to operate correctly, while this does not apply for
optional pins. To distinguish the connector pins, the optional pins
are shown shorter. Some optional pins disappear, if they are
configured with fixed value in the parameter dialog.

Terminal identifier
In a function block each input/output pin also has a code that
represents the function of the pin, e.g. EN for enable.

Processing sequence
The code on the lower right of the block defines the processing
sequence within the program.

5.3.4 Comment fields

Comment field can be positioned in the FBD page. By double-clicking or selecting
Edit / Parameters any text can be inserted. Comments do not influence the
program calculation in the process station. They are used only in Freelance
Engineering to describe or comment the program.
 Engineering - IEC 61131-3 Programming 127

Parameterize FBD program elements 5 Function Block Diagram (FBD)

5.4 Parameterize FBD program elements
FBD elements are parameterized by selecting the element and then carrying out one
of the following actions.

Configure variables

tl024us.png

Variable Name of variable
A variable can be selected from the variable list with the F2 key.

Width
short The short version, in which only 10 characters can be displayed,

will be chosen for the variable. If the variable name is longer than
the display space, this is indicated by ‘...’.

long The long version, which can accommodate maximum-length
variable names, will be chosen to display the variable.

5.4.1 Parameter definition of function blocks

Parameter types

The specifications needed for editing and displaying a block in the system are called
parameters, with a distinction being made between the following types:

> Edit > Parameters

or

> Double-click the element

or

> Right-click to open context menu > Parameters
128 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Parameter definition of function blocks

Mandatory parameters
are essential parameters such as the block name and depending on
the block type, the parameters of certain inputs and outputs.

Optional parameters
are not absolutely necessary parameters e.g. short text, long text,
dimension, access facility, message value. They always feature
default values on first positioning the function block.

External parameters
are assigned to a block and vice versa on connecting a signal flow
line.

Internal parameters
must be entered within a parameter dialog. They include
information such as the block name and limit values.

Call parameter dialogs

The first parameter dialog of the function block is opened. All other selected
elements are automatically deselected. After return from the parameter dialog, the
function block is represented accordingly with the modified parameters.

Enter mandatory parameters

The mandatory parameters of the individual function blocks of this program must
be entered in order to be able to terminate an FBD program correctly. All mandatory
parameters feature a red background in the parameter dialog. In all cases, this
applies at least to the block name (max. 16 characters) of a function block.

All block names entered for function blocks are summarized system wide in the tag
list. For a description see Section 2, Tags.

> Select function block to be parameterized

> Edit > Parameters

or

> Double-click function block
 Engineering - IEC 61131-3 Programming 129

Parameter definition of function blocks 5 Function Block Diagram (FBD)

Handling the parameter dialogs

By virtue of the different parameters governing the various function blocks, there is
no uniform parameter dialog. However, certain sections are used similarly in all or
in some parameter dialogs. Besides, there are several parameter dialogs for large
blocks and they can be edited in any order desired.
Using the parameter dialogs of the function block “Continuous ratio controller
C_CR” the basic features are outlined below:

di0627us.png

Header line Name and short designation of the block; if necessary number of the
parameter dialog currently in use.

General data These fields are available in all function blocks; Name, short and
long text to describe the function block and also the processing
status and processing sequence.

Alternative input possibility for the block name:

> Select text field Name > F2 key

> Select block name from tag list. (Only the names defined in the tag but not yet
used are available for selection.)
130 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Parameter definition of function blocks

See also Engineering Reference Manual Functions and Function
Blocks.

Group Some parameters are classified in groups e.g. the message values.
The parameters are placed in a frame and a group name portrays the
parameter function in the upper frame corner.

Input field color
Red background: Mandatory parameters

Text field For entering block name and long text, for example.

The optional parameters, Short text and Long text, can only be
entered after assigning a block name.

Data field For example, for entering parameters such as measuring range start
and measuring range end. In the case of parameters that can also be
specified externally, data can only be entered if no signal flow line
is connected to the respective pin. Conversely, the pin disappears
from the block display if a parameter has been entered. Consult the
block description for the parameters to which this applies.

There are lists where only entries from the preset list can be
selected, eg. lists of message types and priorities. The desired entry
is taken over by clicking the input field.

The block name can also be selected from the tag list via the function key F2.

List

di0165us.png
 Engineering - IEC 61131-3 Programming 131

Parameterize comment fields 5 Function Block Diagram (FBD)

Some lists have an input field that can be freely edited, e.g. the
message text. Either an entry can be selected from the list or a
particular text entered using the keyboard.

5.4.2 Parameterize comment fields

Enter any free text to describe the program or any special functionality. Comments
fields can be resized with the mouse and positioned to any free region in the graphic
region.

5.4.3 Change the processing sequence of the blocks

The unambiguous order in which the program blocks are processed during program
execution is changed.

The processed block is given the newly entered processing number. The processing
numbers of all other program blocks are corrected so that their mutual order is
preserved and no blanks appear in the order. If a number is entered that exceeds the
total number of blocks used in the program, the edited block is given the total
number as its processing number.

To enhance transparency, it is recommended that short and long texts be entered
for the blocks. The parameters of a block are generally preset in such a way that
the block can be used for a standard application without further processing. For a
description of the block parameters, refer to Engineering Reference Manual
Functions and Function Blocks.

A block input or output that is linked with a signal flow line cannot be assigned
internal parameters and vice versa.

Short and long text can only be entered after allotting one of the block names.

> Select block > Edit > Processing sequence

> Enter processing number in block (the previous one is marked for overwrite)

or

> Modify processing sequence in the parameter dialog of the function block
132 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Define favorites list

The processing number is assigned automatically in the chronological order in
which the blocks are positioned.

In the example on the right, the modules cannot be directly calculated in the defined
sequence. Variables internal to the system are used to save intermediate data. If the
configuration of such a program is modified, this modification may be loaded on the
controller because with each program modification, all internal variables are
initialized with the value 0.

5.4.4 Define favorites list

Functions and function blocks that are required frequently for configuration can be
grouped together in a separate list and block menu for easy access.

For details refer to Specify favorites list on page 110.

5.5 Edit an FBD Program

5.5.1Draw signal flow lines

Signal flow lines can either be drawn explicitly or created automatically by the
system. To draw the lines explicitly, horizontal and vertical “line sections” are
defined; if the signal paths are to be determined automatically it is necessary only to
specify the start and end points of the signal flow.

Since the blocks are generally not placed in the program in the order in which
they are to be processed during operation, it is advisable that all blocks be
checked after linking and the order changed if necessary.

di0143.bmp

Reasonable order
di0142.bmp

Unreasonable order

> Options > Define favorites list
 Engineering - IEC 61131-3 Programming 133

Edit an FBD Program 5 Function Block Diagram (FBD)

Explicit draw of signal flow lines

The FBD editor has a special line/draw mode to enable the drawing of horizontal
and vertical signal flow lines. Line-draw mode is activated as follows:

A single click determines the beginning of the line. When the mouse is moved either
a horizontal or vertical line is drawn if the cursor is at the start of the line (within the
snap) and does not cut across a block.

Every additional click terminates the current line and simultaneously defines the
start of a new line. A mouse click directly on the snap of the starting point of a line
or outside the snap finishes a line.

The illustration below shows the line draw mode. The snap is exactly two grid units
in width.

tl030us.eps

> Edit > Draw lines

or

> Right-click (context menu) > Draw lines

The mouse pointer will change to a cross.

horizontal run

area in both runs

line begin

possible lines

vertical run
134 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Edit an FBD Program

Draw line

When the left mouse button is released, this defines a horizontal or vertical line
section. Releasing the CTRL key has the effect of exiting line-drawing mode.

Deactivate line-draw mode

Automatic drawing of signal flow lines

Auto Router enabled:

In order to draw signal flow lines automatically, click the FBD element pin. This
will automatically change to the auto connect mode and will draw the connection
line until you release the mouse button again. If you click any other part of the FBD
element, the element is selected for other editing options.

Auto Router disabled:

Pressing the CTRL and SHIFT keys allows for automatic drawing of lines from
every point in the FBD. When the left mouse button is pressed, the start point of the

> Right-click with the mouse to define the start and end of line.

or

> Simultaneously press the CTRL key and left mouse button to directly draw a
signal flow line.

> Right-click with the mouse

or

> ESC key

Start of a signal flow line:
> Click the pin available in the FBD element > drag the mouse to draw the line.

End of a signal flow line:
> Release the mouse button
 Engineering - IEC 61131-3 Programming 135

Edit an FBD Program 5 Function Block Diagram (FBD)

signal flow line is defined. The end point is defined where the left mouse button is
released.

When the start point has been defined, the cursor is moved with the mouse button.
The possible path of the signal flow line from the start point to the current cursor
position is indicated. When the mouse button is released, the signal flow line is
finally defined.

Move element with/without signal connection

Auto Router enabled:

When the elements are moved in the FBD/LD editor, the signal connections are
retained.

Auto Router disabled:

When the elements are moved in the FBD/LD editor, the signal connections are
removed.

To move the elements without removing the signal connections, execute the
following steps.

If there is not sufficient free space available in the drawing area, the signal flow line
will not be drawn.

Display signal flow lines

The signal flow lines indicate the data type transported. Selected and incorrect
signal flow lines are displayed by different colors.

> Click once to determine the start of the line.

> Select FBD element (Variable/Block) > move element in the editor

> Select object >Start moving it with the mouse > press and hold the CTRL +
SHIFT keys while moving the object
136 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Edit an FBD Program

The state or transported data type of the signal flow line can be recognized from the
line width and color, while the color can be set as desired by the user (see Adjust
colors on page 123).

The relation between data type, processing state, line width and preset color are
shown in the following diagram:

Data type/
Processing state

Color Display Example

BOOL

BYTE

DINT

DT

DWORD

INT

REAL

TIME

UDINT

UINT

WORD

STRING

STRUCT

Error state

selected objects

not connected

black

gray

grass-green

dark yellow

magenta

light green

black

light yellow

brown

turquoise

dark blue

black

black

red

turquoise

black

narrow

wide

wide

wide

wide

wide

wide

wide

wide

wide

wide

wide

wide

narrow

narrow

di0152.bmp
 Engineering - IEC 61131-3 Programming 137

Insert FBD elements 5 Function Block Diagram (FBD)

5.5.2 Insert FBD elements

Variables, blocks and comments can be inserted from the Library explorer or from
the main menu.

For more information on the Explorer pane, refer to Section 4, Libraries.

FBD_Elements options_us.png

After the element to be inserted has been selected, the cursor takes on the shape of
the selected element. The element can then be positioned in the active tab in the
workspace pane by left-clicking with the mouse. If the element should not fit in, the
cursor reassumes its normal shape. This clears the selection of the element from the
clipboard memory.

If the placing was performed successfully, the insertion operation is ended
automatically.

Insert variables

Since variables can be placed anywhere in the program, it is essential to specify
whether they are to be used for reading or writing. Depending on whether a variable
or constant is to be used for reading or writing, the surrounding rectangle is
provided with either an input or output pin of the appropriate data type. As long as
the variable is not connected with a line, access can be switched between read and
write mode via the shortcut menu with Toggle read access.

After inserting a variable element, the name of a variable must be entered. You can
enter the name of a variable already known in the project or a new name.

(

> Explorer pane > Libraries tab > Select element to be inserted

or

> Elements > Blocks/Variable read/ Variable write/ Comment

> Select element to be inserted
138 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Insert FBD elements

Previously defined variables or I/O components can be selected directly from the
list.

Once a new name has been entered, the dialog box described in the previous section
for declaring a variable is displayed automatically.

di0133uk.png

Data type Identify the data type of the newly defined variable. The standard
data types and all user-defined data types can be selected from the
list.

Resource Sets the allocation of variables to resources. Each variable must be
allocated to exactly one resource. Access to this variable by other
resources is read-only.

Process image The variable is to be accessed by the process image. The
process image is an integral part of the task and is updated at the
beginning and end of the task execution cycle.

See also Engineering Manual System Configuration, Project tree.

Export Variable is enabled for reading by other resources.

Comment Any desired text can be added to a variable for clarification.

Once the variables have been defined, this setting is automatically adopted in the
system-wide variable list and can be used in other programs. See Section 1,
Variables.

> F2 key > Select one of the variables or I/O components already existing in the
project from the list
 Engineering - IEC 61131-3 Programming 139

Insert FBD elements 5 Function Block Diagram (FBD)

Multiple reading use of the same variable in a program results in a warning, but is
permissible. Multiple writing use of the same variable in a program is not
permissible and results in an error.

Select and position blocks in the program

Once a block has been selected, it can be inserted in the graphic region. While being
positioned, it is displayed schematically. After positioning is complete, a new
outline is used to indicate that another block of the same type can be inserted.

Blocks with a selectable number of inputs (for example, AND, OR or EXOR) are
displayed in minimal size during positioning. After they have been placed, their size
can be changed immediately. When pulled vertically with the mouse, more inputs
become visible.

The new block will have the lowest processing sequence number not yet assigned in
this program. Blocks that take parameters have a parameter dialog with default
values but no block name.

An I/O component can only be exported via a variable, not directly. This means it
cannot be read in other resources by using the component name.

> Elements > Blocks > choose the wanted block type.

> Move with the mouse to the desired location in the graphic region.

> Place with the left mouse button (for blocks with a variable number of inputs,
the size must now be set by using the mouse to make a vertical adjustment; click
to confirm).

> Position another block of the same type

or

> End positioning at any time with ESC key or right mouse button.

The screen representation of the block must not cover other program elements. A
minimum distance of three grid units for input or output pins and two grid units
for other blocks must be maintained.
140 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Change number of inputs

5.5.3 Change number of inputs

The number of input terminals of the function block will be changed.

The function block terminals already connected are firmly positioned and are not
moved by changing the number of inputs. Hence the number of inputs can be
changed without affecting the terminals already connected.

di0140.png

If the procedure is interrupted, the block retains its old state.

> Select block > Edit > Change number of inputs
> Move mouse up or down until the required number of inputs is displayed
> Confirm with the left mouse button
> End positioning at any time with ESC key or right mouse button.

or

> Double-click the lower boundary line of the block
> Move mouse up or down until the required number of inputs is displayed
> Confirm with the left mouse button.

Changing the number of inputs of the selected block must be permissible, as with
AND, OR and EXOR, for example.

For assignment of inputs to the blocks (analog, binary, etc.) see Engineering
Reference Manual Functions and Function Blocks.

If inputs already connected but no longer needed are to be removed from a block,
the signal flow lines belonging to the inputs must first be disconnected from the
block.
 Engineering - IEC 61131-3 Programming 141

Display and change data types 5 Function Block Diagram (FBD)

5.5.4 Display and change data types

di0131us.png

The data types of the block terminals are displayed as text and graphically. On
changing, the display is adapted to the new data types. The display of connected
signal flow lines changes accordingly.

Consult the respective block descriptions for the data types possible for each block.
For more information, refer to Engineering Reference Manual Functions and
Function Blocks.

> Select block > Edit > Change data type

> Set and enter the required data type with >> and <<.

The data types of the selected block can only be changed if the block permits
other data types. They can only be changed identically for all terminals.
Irrespective of this, some data types can also be converted using the converter
blocks *_to_* and Trunc.
142 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Invert a block terminal

5.5.5 Invert a block terminal

The values of the Boolean inputs and outputs of a function block can be inverted at
the block. A negation is set or reset, for the selected terminal. Added inversion
markers are treated as a component of the function block.

All blocks have non-negated terminals as default.

5.5.6 Change variables

The new variable name is taken over into the program and variable list. The old
variable remains in the variable list.

> Press and hold Ctrl > left-click the block terminal to be inverted

 di0151_us.png

Block with negated terminal

The block connection to be inverted must be of the BOOL (binary) data type.

> Double-click the variable to be changed > Change variable name > Enter

> Define new variable in the “Insert new variable” dialog.

The window entries are omitted if the variable already exists in the project.

or

> Double-click the variable to be changed > F2 key > Select one of the variables
already existing in the project in the “Select Variable/Component” window.

If the modified variable had been used in several programs of the project, they are
not affected.

Unused variables remain in the variable list and must be explicitly deleted there.
 Engineering - IEC 61131-3 Programming 143

Cross references 5 Function Block Diagram (FBD)

5.5.7 Cross references

The cross references can be selected directly from the FBD program, as follows:

The following dialog shows the programs where the selected variable or tag is used.

CrossRef_us.png

In contrast to the variables, no read or write access is defined for the tags.

Show program
For a variable:
Call a program with prior selection of these variables, or call the
module with prior selection of the I/O component.
For a tag:
Call the program with prior selection of this tag, or call the module
in the hardware structure.

Show Declaration
For a tag, the tag list is called, for a variable the variable list is
called. If an I/O component is used directly in the program, the I/O
editor of this component is opened.

> Select a variable, I/O component or tag

> Edit > Cross references

or

> F5 key
144 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Insert or delete columns and rows

Filter A filter enables only those variables to be displayed for which read-
only access or write-only access exists in the programs concerned.

After activation it is possible to branch to the programs listed as cross references.

Show next / previous cross reference

The next or previous use of the selected variable within the current program is
displayed.

5.5.8 Insert or delete columns and rows

In the current program, parts of the configuration can be “pushed apart” by insertion
of columns or rows or “pushed together” by deleting columns or rows.

If the cursor is moved at the edge of the drawing area, a small double arrow is
superimposed. If the double arrow is in black, it is possible to insert or delete
columns or rows at this point. A red arrow means that insertion or deletion is not
possible.

Insert or delete columns

By clicking with the mouse on the upper or lower network edge on a black double
arrow, a vertical dotted line with two pointed triangles is superimposed at the edge
of the drawing area. This line can be shifted to the right or left by depressing the left
mouse button.

With each shift to the right by one raster unit, a column is inserted into the drawing
area and the part of the configuration to the right of the line shifted to the right by
one raster unit.

With each shift to the left by one raster unit, a column is deleted from the drawing
area and the part of the configuration to the right of the line shifted to the left by one
raster unit.

> Select a variable > Edit > Cross references > Find next or Find previous
 Engineering - IEC 61131-3 Programming 145

Block operations 5 Function Block Diagram (FBD)

tl031us.eps

When columns are inserted or deleted, horizontal connections are extended or
reduced accordingly.

Insert or delete rows

The insertion of rows corresponds to the insertion of columns. The movement
markings run in a horizontal orientation. When rows are inserted or deleted, vertical
lines are extended or reduced accordingly.

5.5.9 Block operations

Select program elements

Select individual program elements.

The entire surface of the program element is valid as selector field. The program
element is selected for further processing and shown accordingly.

> Click the required program element to select

The non-selected state is preset.

Inversions and link points of signal flow lines are never displayed as selected.

Visible region

maximum
possible shift

FBD program
146 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Block operations

Select several program elements concurrently

All elements fully enclosed in the frame are selected concurrently and shown
accordingly. In the case of the signal flow lines, this applies to all segments fully
enclosed in the frame. After selection, the desired operation can now be performed
as in the case of single elements. For example: Edit > Cut.

Select additional program elements

One element is selected in addition to the existing selection and is shown
accordingly.

Deselect program elements

Deselect all selected program elements

The program elements are deselected and shown accordingly.

A selection is canceled automatically on opening another window.

> Press and hold left mouse button > with mouse button pressed, draw a frame
around the elements to be selected

Place a frame
di0147.bmp

Selected program elements
di0148.bmp

Press and hold SHIFT > select another element

It is also possible to select several elements via SHIFT and Place in a frame

> Click on a free point in the graphic region.

or

> Select a non-selected element.
 Engineering - IEC 61131-3 Programming 147

Block operations 5 Function Block Diagram (FBD)

Deselect individual program elements of a selection

An element of the already existing selection is deselected and shown accordingly.

Copy

Copy has the effect of transferring the selected elements to an internal storage
location. Elements transferred there through a previous Copy are overwritten.
Whether or not there are currently any elements in the internal storage can be seen
from the menu choice Insert in the Edit or Context menu. If this menu choice is
disabled, this indicates that the internal storage is empty.

Content of one editor can be copied and pasted to another editor of the same type
(For example: FBD editor content can only be pasted in into FBD editor, not into IL
or ST). This will enable user to modify the programs easily.

When function blocks are copied, the parameter data remain unchanged. However,
the tag name is deleted in the copy, as it must be unique.

Cut / Delete

If the selected elements have been cut, they can then be re-inserted in the program
using Paste. Cut has the effect of overwriting any elements held in the internal
storage at the time.

> Press and hold SHIFT > click element to be deselected

> Edit > Copy

> Edit > Cut or Delete

If elements are deleted, they can only be pasted directly after this, using Undo.
They cannot be pasted at a later time. Deleted elements can only be restored by
quitting the program without saving.
148 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Block operations

When function blocks are cut, their parameter data and tag name are transferred
with them to the internal storage, so that next time they are pasted all the appropriate
data are available.

Paste

The Paste command can be used to insert elements that were previously copied or
cut:

After pasting, a surrounding rectangle with a dashed border appears at the position
in which the block was previously cut or copied.

Pasted blocks are given a new processing sequence number and assigned the status
incorrect. Their assigned parameters are pasted in with them. If more than one
block is pasted at once, their processing sequence relative to one another is
preserved.

Move block

The following possibilities are available for moving a block:

The selected elements are moved to a new position, while the element contours
remain visible. When moving block(s), the signal connection lines will stay
connected except when Auto Router is disabled.

> Edit > Paste

Click on a selected element and hold the mouse button down. The rectangle will
then appear around the selected block

or

If the cursor is moved into the rectangle that appears after a block is pasted, it
changes into a cross with one arrow for each horizontal and vertical direction of
movement.

The block can then be moved by holding the left mouse button down and moving
the mouse. At the destination position the mouse button is released. If it is not
possible to paste at the destination position, then a warning message is displayed
and the surrounding rectangle remains active.
 Engineering - IEC 61131-3 Programming 149

Block operations 5 Function Block Diagram (FBD)

Move block with existing links

If the existing links are to be retained when a block is moved, proceed as follows:

di0141.bmp

Representation of a function block before, during and after being moved with
existing links.

Import block

An “Import FBD block” dialog box appears, containing a list of all the files that
have been generated through Export block with the FBD editor. Once a file has been
selected, the block is imported, and the rectangle surrounding the block appears.
This must then be moved to a suitable position.

Auto Router enabled:
> Click a selected element and drag the element to destination.

Auto Router disabled:
Select the object, then press the left mouse button. Press CTRL + SHIFT and
drag the object to destination.

To move a block without existing links:
Deactivate Auto Router, click a selected element and drag the element to
destination. The block will be moved without existing links.

> Edit > Import block

If the block imported contains variables that are not yet included in the variable
list they are displayed in red. Selecting these variables enables their definition in
the current project.
150 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Undo an action

Export block

The selected elements of a current FBD sheet can be exported to a file. An “Export
FBD blocks” dialog box appears, containing a list of all previously exported files in
the most recently selected export directory.

Tag names of the selected blocks will not be exported.

5.5.10 Undo an action

This function enables one to undo the last action performed. Nonetheless, the
program state continues to be incorrect until the next check.

5.5.11 Program administration functions

Save the program

The program is saved without exiting. Programs that are not correct can also be
saved and then completed at any time.

> Edit > Export block

> Edit > Undo

> Project > Save Tab

If the project is not saved in the project tree on closing or before, changes made to
the program are ineffective.
 Engineering - IEC 61131-3 Programming 151

Program administration functions 5 Function Block Diagram (FBD)

Document the program

The editor for documentation is opened as a separate tab in the right pane. It can be
closed using the Close button available at the right side of the opened tab, and
reopened later from the main menu.

Documentation administration is opened. This is where user specific project
documentation is defined and output. For a description, see Engineering Manual
System Configuration, Documentation.

Program header

A program-specific short comment can be added to the program documentation
header, or this can be edited.

For drawing a header/footer, see Engineering Manual System Configuration,
Documentation.

Edit program comment

A longer program-specific comment can be edited here to describe the functionality.
For a description, see Engineering Manual System Configuration, Project
manager.

Print

The contents of the screen are output to the standard printer.

> Project > Documentation

> Project > Header

> Project > Comment

> Options > Print
152 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Commissioning the Function block diagram (FBD)

Plausibility check

All inputs relevant to operation are checked for syntactical and contextual
correctness. Errors, warnings and notes that are found are displayed in an error list.
If the plausibility check detects errors, the processing state of the program is
implausible.

This plausibility check reviews the accuracy and consistency of the program itself.
To test the correctness in the project context call plausibility from the project tree.
See Engineering Manual System Configuration, Project Tree, plausibility.

Error list

Any errors present in the program is displayed in the error list. Double-click a check
message to jump to the line in the program that caused this error.

See also Engineering Manual System Configuration, Project tree.

5.6 Commissioning the Function block diagram (FBD)
On commissioning, the FBD program is displayed in the same way as in
configuration mode except that in commissioning mode the program cannot be
modified structurally.

The user can go to commissioning mode directly from the editor.

> Editor > Check

The processing state of program elements that are newly entered, copied or
moved is implausible.

> Editor > Show error list

If the program editor is opened in commissioning mode, that for showing the live
value, CPU load can raise approximately up to by 15%.
 Engineering - IEC 61131-3 Programming 153

Commissioning the Function block diagram (FBD) 5 Function Block Diagram (FBD)
 FBD_Comm_us.png

Individual function blocks can be selected and parameters set for them. Operating
modes can also be called up and modified from commissioning mode.

In addition, in commissioning mode certain program test functions are available to
test the configuration.

Boolean values (binary values) are initially displayed directly with their logical state
of 1 or 0.

logical 1 ————————TRUE

logical 0 ----------------------- FALSE

If the cursor is moved over an element of the FBD program, a variable, a pin or a
connection line, the current calculated values are displayed. For function blocks the
current processing state is displayed.
154 Engineering - IEC 61131-3 Programming

5 Function Block Diagram (FBD) Commissioning the Function block diagram (FBD)

Furthermore, variable values and input pins of the function blocks can be written
once within a cycle

Writing a value to an unconnected input pin works as the configuration of a
constant value for the input, but it is not visualized at the function block. This can
be difficult to notice later and should therefore be used with caution.

> Right-click a variable or function block pin

> Write values > Enter new value > OK

The writing of a value should not be confused with forcing in the I/O module.
The value written can be overwritten by the program in the next cycle.
 Engineering - IEC 61131-3 Programming 155

Commissioning the Function block diagram (FBD) 5 Function Block Diagram (FBD)

156 Engineering - IEC 61131-3 Programming

6 Instruction List (IL)

6.1 General Description – Instruction List
Instruction List (IL) is an IEC-61131-3 compliant line-oriented programming
language. The program instructions have operators which act upon an explicit
operand and the accumulator to give an intermediate result which is then itself saved
in the accumulator.

All the functions and function blocks in Freelance Engineering are available in IL.
The functional scope of the functions is, for the most part, covered by IL operators.
When a function block is selected from the menu, however, a CAL operator and a
list of input and output is inserted. The programmer should then fill in this list,
assigning signals by name. Parameters are assigned using the same dialogs as in the
other programming languages.

The functional scope of instruction list (IL) – in contrast to the function block
diagram (FBD) – is extended by jumps and loops that are called by the
corresponding operators and the entry address (label) be terminated.

The signal flow is not as easy to follow or document as in FBD; therefore a
comment can be edited to any instruction line.

The program instructions for IL can be selected from a list by pressing F2. Program
flow automatically follows the order of the instructions (from top to bottom). The
sequence can only be changed by intentionally inserting a jump, return and loop
operator.

IL programs can be up to 1000 lines in length.

As an extension of the IEC language definition, variables and their components of
the structured data types may be used.
 Engineering - IEC 61131-3 Programming 157

Create an IL program 6 Instruction List (IL)

6.1.1 Create an IL program

IL programs can be created or called for editing from an active program list, from
the project pool or from an SFC program (establishing the transition conditions or
the actions for a step). See also Engineering Manual System Configuration,
Project tree and Section 9, Sequential Function Chart (SFC)

An IL program is created in the project tree:

Each new IL program has a blank instruction list, the check state incorrect and the
creation date as the version identifier.
The name and the short comment of the program list (PL) are taken over and preset
as the program name and short comment of the new program; both can be changed
easily.

6.1.2 Copy an IL program

The program is copied and assigned under a new, unambiguous name to a program
list of the project. The respective configuration, including program header and
program comment, is copied. The tag names of the function blocks are not copied.
The copied program is designated incorrect and is allotted the date and time of
copying as version code.

> Project tree > select insert position in project tree

> Edit > Insert above, Insert below or Insert next level

> Select IL program from “Object selection”

> Enter a program name and optionally a short comment

> Select program to be copied from project tree > Edit > Copy or CTRL+C

> Select position to which program is to be copied

> Edit > Paste or CTRL+V

> Depending on position selected, select Above, Below or Level

> Enter new program name
158 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Delete an IL program

6.1.3 Delete an IL program

The variables and tag names are preserved in other programs and in the variable/tag
list and can be reassigned.

6.1.4 Call the IL program editor

A program can be opened by selecting the IL object in the project tree. This can be
opened from the Edit menu or by double-clicking the program. The IL Program will
open as separate tab in the right pane. This can be closed from the close button
available at the right side of the opened tab.

The program is displayed with its current content (instructions) and can be
modified.

6.1.5 Close IL program

Closes the active IL tab.

> Select program to be deleted from project tree > Edit > Delete

> Project tree > Edit > Program

or

> Double-click the program

> Editor > Close
 Engineering - IEC 61131-3 Programming 159

Representation of the Instruction List 6 Instruction List (IL)

6.2 Representation of the Instruction List

6.2.1User interface of IL editor

The configuration interface of the IL editor consists of the following elements:

Il_Struct_us.png

(1) Menu bar The menu entries are adapted to the active window or editor in
Freelance Engineering.

(2) Common toolbar
The common toolbar is accessible from the Project Explorer and the
Editor region.

(3) Editor toolbar
Frequently used commands of IL are accessible while working in
the IL editor.

– Save Editor
160 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Representation of the Instruction List

– Check Editor
– Insert new line
– Cross references
– Find next cross reference
– Find previous cross reference
– User FB variables (Active only for the configuration of user function

blocks)

(4) Editor region

Line The line number is allocated automatically in consecutive sequence
from 1 to 1000. When blank lines or command lines are inserted,
the line numbers of subsequent command lines are automatically
displaced by the number of lines inserted.

Mark All the lines belonging to a function block are labeled here in color
unless the mandatory parameters contained therein are fully
assigned. Once they are fully assigned, these fields become gray.

Label Jump labels L001 up to L999 (label), which act as transfer
addresses for jump operators, are entered in this column. The entry
is not tied to any sequence. It is nevertheless recommended to aim
for an ascending sequence, but to use only full figures of tens at
first, so as to be able to insert further jump labels later in monotone
sequence. The monotone sequence makes searching easier in longer
program listings.

Operator (Op.) Once a field has been selected in this column, the operator can be
entered by key input or by selection from a menu, which can be
called using F2. Depending on the operator type, a (suitable)
argument should then be specified if necessary in the adjacent
column (see Acceptable data types for IL operators and functions
on page 165).
In the case of function block, this field is assigned automatically
following block selection (see Insert function blocks into an IL
program on page 178).

Operand In the case of jump operators, the jump label should be entered here,
whereas logical operators require a constant or a variable as an
argument.
 Engineering - IEC 61131-3 Programming 161

Modify default settings 6 Instruction List (IL)

Special conditions apply here also for function blocks (see Insert
function blocks into an IL program on page 178).

Parenthesis depth ()
When parenthesizing logical operators, a number 1 ... 8 appears
here, which indicates the depth of parenthesis (see Change the
number of inputs to function blocks on page 179).

Commissioning field
If the program is commissioned and processing is in progress, a T
for logical 1 (TRUE) or an F for logical 0 (FALSE) is shown here
when the contents of the accumulator are Boolean.

Comment Explanations can be entered here to aid understanding of the
program run, e.g. on the meaning of variables, the function of the
program section or the function block called.

(5) Status bar The status bar indicates the name of the program which is being
edited and name of the user.

6.2.2 Modify default settings

Auto Accept

Select Auto Accept to automatically save any changes in the current editor before
switching to another editor.

If the option is not enabled, the following dialog box appears for confirmation with
each editor or program change:

auto_accept_IL_us.png

> Options > Auto Accept
162 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Display program information

Adjust colors

Color_settingIL_us.png

Select color The color for the selected object can be chosen. The current color is
marked.

Reset The color of the selected object returns to the default value.

Reset all The colors of all objects are reset to the default values.

6.2.3 Display program information

Program version and position in the project structure

The program name, date of last program modification as version identification and
the structure path in the project tree are shown.
The structure path can be displayed in a long or short format, as set in the Options
menu of the project tree.

> Options > Colors...

> Select object of which the color is to be changed (e.g. Mandatory pin)

> Select color > select required color

> Options > Version
 Engineering - IEC 61131-3 Programming 163

Define favorites list 6 Instruction List (IL)

di0415us.png

Program state

The status bar indicates the name of the program which is currently being edited,
the position in the project tree, the current user and license information.

6.2.4 Define favorites list

Functions and function blocks that are required frequently for configuration can be
grouped together in a separate list and block menu for easy access.

For details refer to Specify favorites list on page 110.

6.3 Edit an IL Program
Due to the list structure of the editing interface, the functions outlined in the
description Variable and Tag list apply by analogy. All operating steps e.g. for
selecting fields, labeling, deleting, moving or copying blocks, are described there
and work in exactly the same way with IL.

Content of one editor can be pasted to another editor of same type (For example, IL
editor content can only be pasted in into IL editor not into FBD or ST). Also see
Section 1, Variables and Section 2, Tags.

> Options > Define favorites list
164 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Acceptable data types for IL operators and functions

6.3.1 Acceptable data types for IL operators and functions

The data types which are possible in Freelance Engineering can be divided into the
classes bit strings (any_bit), integer numbers (any_int), floating-point numbers
(real) and special formats for time and date.

Bit strings and integer numbers are also defined in various data widths and/or with
or without a sign. The 11 formats currently available are entered in the following
table as columns. The table provides information in the form of a matrix showing
which IL operators can process which data types:

any bit any int
time /
date

B

O

O

L

B

Y

T

E

W

O

R

D

D

W

O

R

D

I

N

T

D

I

N

T

U

I

N

T

U

D

I

N

T

R

E

A

L

T

I

M

E

D

T

LD, ST

LDN, STN - - - - - - - - - -

AND, OR, XOR - - - - - - -

ANDN, ORN, XORN - - - - - - -

S, R - - - - - - - - - -

NEG - - - -

DEC, INC - - - - - - -

SL, SR, RL, RR - - - - - - - -

EQ, GE, GT, LE, LT, NE

ADD, SUB - - - - 1) 1)

MUL, DIV, MOD - - - - 2) 2)

 ¹) acceptable: ‹DT› +/- ‹TIME› = ‹DT›
 ²) acceptable: ‹TIME› */: ‹INT› = ‹TIME›
 Engineering - IEC 61131-3 Programming 165

Acceptable data types for IL operators and functions 6 Instruction List (IL)

If blocks are used in Instruction List, the acceptable data types are dictated by the
block type. In the case of blocks for different data formats (see table below), a menu
window is opened in which the data type is selected.

Blocks with several data types:

The conversion block *TO*, which converts a variable of one data type into a
variable of another data type, constitutes a special feature here. Conversion is
implemented at present for the following data types.

See also Engineering Reference Manual Functions and Function Blocks,
Converter Blocks.

any bit any int
time /
date

B

O

O

L

B

Y

T

E

W

O

R

D

D

W

O

R

D

I

N

T

D

I

N

T

U

I

N

T

U

D

I

N

T

R

E

A

L

T

I

M

E

D

T

ABS - - - - - - - -

AVG - - - - - -

MIN, MAX - - - - - -

MUX - - - - -

SEL - - - - -

TRUNC - - - - - - -
166 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Acceptable data types for IL operators and functions

Blocks: TO = *_TO_xx

PA = PACK
EX = EXTRACT

Enter constants

Constant numerical values can be input according to data type with or without a sign
in binary, octal, decimal or hexadecimal format. Floating-point numbers should
always be input with the decimal point, even if accompanied by an exponent.

To differentiate them from decimal numbers, binary, octal and hexadecimal
numbers are preceded by a suitable identification character (2#, 8# or 16#). The
possible data types are described in Section 1, Variables.

Output

Input INT UINT DINT UDINT BYTE WORD DWORD BOOL REAL TIME DT

INT TO TO – – TO – – TO – –

UINT TO – TO – TO – – TO – –

DINT TO – TO – – TO – TO TO –

UDINT – TO TO – – TO – TO TO –

BYTE – – – – PA PA EX – – –

WORD TO TO – – EX PA EX – – –

DWORD – – TO TO EX EX EX TO TO –

BOOL – – – – PA PA PA – – –

REAL TO TO TO TO – – TO – – –

TIME – – TO TO – – TO – – –

DT – – – – – – – – – –
 Engineering - IEC 61131-3 Programming 167

Call IL operators 6 Instruction List (IL)

6.3.2 Call IL operators

tm002us.png

The structure of IL programs is adapted to that of assembler programs of simple
microprocessors with an accumulator. Constants or variables are loaded into this
“accumulator”, combined with other quantities, transformed and saved in a target
quantity.

Operators are the basic elements of the instruction set. They can be subdivided into
the groups Logic, Basic Arithmetic, Comparators, Shift Instructions for Bit Strings
and load, save and other organizational instructions.

Once an operator field has been selected, the list of operator types currently
available can be called using the F2 key and the desired operator selected by means
of the cursor and return keys. The shorthand symbol for the operator may also be
entered directly, bypassing the selection menu (RETURN key in operator field and
enter letter; completion again by means of RETURN key). To separate program
sections from one another by a blank line, the line following the desired point of
separation is selected, Edit is called, the menu item Insert line is selected and
confirmed by pressing the ENTER key.
168 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Call IL operators

Operators to load and save data

All data and signal types are loaded into the accumulator using the operator LD. In
the case of Boolean data/signals the operator LDN may also be used, which loads
the input quantity into the accumulator in inverted form. The corresponding
operators for storing the accumulator contents are ST or STN.

Since a storage operator does not change the accumulator, it can be used several
times in succession to distribute the same contents to various outputs. The output
variables must be of the same type as the accumulator contents, otherwise an
appropriate type corruption message giving the pertinent line number will be
generated during the plausibility check.

Boolean output quantities and variables may also be set to logical 1 by means of the
operator S (= set) and to logical 0 using R (= reset), if the accumulator contents
include a logical 1. The argument variable is thereby treated like a flip-flop.

Logic operations

Boolean and other bit string quantities can be combined with one another using the
operators OR, AND, XOR (= exclusive or). These logical operators can be
combined with the supplements "N" (= negated) or/and "(" (= left parenthesis). A
complete list of all IL operators is featured Overview of IL operators on page 176.

The table below provides information on the meaning of the individual logic
operations. In-depth treatises on the theory of logic operations are to be found in
specialist literature on the subject.

Explanation:

The two states of the accumulator contents to date (line: accumulator = 0 or 1)
combined with the two states of the argument (column: 0 or 1) supply the four
possible results in the accumulator (at the point of intersection of the line/column).

Function AND ANDN OR ORN XOR XORN

Argument 0 1 0 1 0 1 0 1 0 1 0 1

Accu = 0 0 0 0 0 0 1 1 0 0 1 1 0

Accu = 1 0 1 1 0 1 1 1 1 1 0 0 1
 Engineering - IEC 61131-3 Programming 169

Call IL operators 6 Instruction List (IL)

Example:

Accumulator = 1 XORN with argument 0 gives the accumulator result = 0.

Logical operators with parentheses

The supplement “left parenthesis” named in the previous section, together with the
operator ")" (right parenthesis) makes it possible to convert even complex logic
operations into corresponding IL line sequences. In principle, all operations can be
formulated even without parentheses if intermediate results are filed in flags and
reloaded later. However, this calls for more instruction lines, and clarity is reduced.
Nevertheless, the number of lines can be reduced markedly by the skillful use of
partial results in the accumulator. It is often possible to avoid storing intermediate
quantities simply by re-sorting the operations.

Parentheses may be nested up to a depth of 8 levels. The respective parenthesis
depth is shown in Instruction List in the 6th column. Red question marks appear in
this column only if the 8th level is exceeded. The parenthesis depth shown must be
brought back down to 0 again in subsequent lines using right parenthesis operators.

IL without parentheses
with all intermediate

variables

IL without parentheses
intermediate variables

reduced

IL with parentheses [op-
eration converted]

LD bool1 LD bool1 LD bool1

OR bool2 OR bool2 OR bool2

ST z1 ST z1 AND(bool3

LD bool3 LD bool3 OR bool4

OR bool4 OR bool4)

ST z2 AND z1 OR(bool5

LD bool5 ST z7 OR bool6

OR bool6 LD bool5 AND(bool7

ST z3 OR bool6 OR bool8

LD bool7 ST z3)
170 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Call IL operators

OR bool8 LD bool7)

ST z4 OR bool8 ORN(bool5

LDN bool5 AND z3 AND bool6

ORN bool6 ST z8 OR(bool7

ST z5 LDN bool5 AND bool8

LDN bool7 ORN bool6)

ORN bool8 ST z5)

ST z6 LDN bool7 ST boolX

LD z1 ORN bool8

AND z2 AND z5

ST z7 OR z8

LD z3 OR z7

AND z4 ST boolX

ST z8

LD z5

AND z6

ST z9

LD z7

OR z8

OR z9

ST boolX

IL without parentheses
with all intermediate

variables

IL without parentheses
intermediate variables

reduced

IL with parentheses [op-
eration converted]
 Engineering - IEC 61131-3 Programming 171

Call IL operators 6 Instruction List (IL)

Relational operators

Two quantities of the same data type (previous accumulator contents and argument)
are compared with one another using the relational operators EQ ... LE and the
result saved in the accumulator as a Boolean variable (see Insert function blocks into
an IL program on page 178). The relation functions can also be called as blocks, but
are not distinguished by this from the operators.

Numerical operations

The operators ADD, SUB, MULT, DIV, MOD can be used to combine two
quantities (accumulator and argument) of the same data type (exceptions in the case
of TIME and DT data type see Acceptable data types for IL operators and functions
on page 165) numerically. The result is then available in the accumulator for storage
or for further operations. Numerical operations can also be called as blocks.

However, the addition and multiplication blocks are distinguished from the
corresponding operators by the fact that they can be used for multiple inputs (see
Insert function blocks into an IL program on page 178).

Shift operators

The shift operators (SL, SR, RL, RR) can only be used for bit string formats, i.e. for
Byte, Word and DWord. They do not require an argument. The bit string is moved
by one space to the left or right respectively. In the case of SL, SR, the space which
then becomes free is filled by a 0, while in the case of RL, RR the bit pushed out of
the format is reinserted at the other end. Example: RR (10111101) gives 11011110.

The shift instructions called as blocks are not distinguished from the accompanying
operators.

Loop operators

In offering the opportunity to incorporate repeat loops into programs, the IL
language differs markedly from FBD. One of the loop start operators WLC, RPC or
WLNZ respectively appears at the start of the loop, followed by the “loop core”,
which is to be executed several times, consisting of load, processing and storage
operators as well as block calls. At the end of this part, the loop terminate operator
LPE is inserted.
172 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Call IL operators

Loop starting instructions have the following meaning:

Example of an IL program with loop operator:

The program signals a logical 1 following TempFlr if at least one of the
temperatures Temp1...Temp7 is greater than the fixed value 70 °C.

WLC WhiLe
Condition

skips the loop if the accumulator is not logical 1.

RPC RePeat on
Condition

checks the accumulator only at the end of the loop (in
the line with LPE). If it is logical 1, the loop is executed
once more.

WLNZ WhiLe Not
Zero

checks a counter defined by “Argument” with UDINT
format (at the beginning of the loop). If it is zero, the
loop is aborted, otherwise it is executed.

All three types of loop can degenerate into endless loops as a result of poor
programming. It is the programmer's responsibility to prevent this from
happening.

LD MaxKnl maximum number of channels to be mon-
itored

ST UDZLR save > UDZLR

GT 7 if greater than 7

RETC terminate program

LD 1 initial value 1

ST ZLR save > ZLR

WLNZ UDZLR process loop up to LPE, if UDZLR > 0

LD ZLR channel counter as selection criteri-
on for multiplexer

MUX Temp1 Channel 1

 ' Temp2 Channel 2
 Engineering - IEC 61131-3 Programming 173

Call IL operators 6 Instruction List (IL)

Jumps and program calls

Using the jump operators JMP, JMPC, JMPCN the program can be continued at the
point named in the argument: that is the lines lying in between are skipped. The
jump destination must lie below the line containing the jump operator. It should be
entered in the destination line by means of an identifier in the form L001 ... L999.

 ' Temp3 Channel 3

 ' Temp4 Channel 4

 ' Temp5 Channel 5

 ' Temp6 Channel 6

 ' Temp7 Channel 7

GT 70.0 if selected temperature greater than
70.0 °C,

JMPC L030 then jump (with accumulator = 1) >
L030

LD ZLR

INC increment selection channel ZLR by 1

ST ZLR

LPE loop end

LD FALSE since no temperature greater than 70
°C, load logical 0

L030
:

ST TempFlr save accumulator contents > TempFlr

RET program end
174 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Call IL operators

tm003us.png

The jump is always executed if JMP is specified. In the case of JMPC, it is only
executed if the accumulator = logical 1, and for JPMCN only if the accumulator =
logical 0.

For calling function blocks the following calls are available:

CAL unconditional call

CALC call only when accumulator = logical 1

CALNC call only when accumulator = logical 0
 Engineering - IEC 61131-3 Programming 175

Call IL operators 6 Instruction List (IL)

Overview of IL operators

Operator Description

AND Accumulator AND argument to accumulator (= Accu)

ANDN Accumulator AND (argument negated)

AND(Accumulator AND left parenthesis

ANDN(Accumulator AND negated, left parenthesis

OR Accumulator OR argument to accumulator

ORN Accumulator OR (argument negated)

OR(Accumulator OR left parenthesis

ORN(Accumulator OR negated, left parenthesis

XOR Accumulator EXOR argument to accumulator

XORN Accumulator EXOR (argument negated)

XOR(Accumulator EXOR left parenthesis

XORN(Accumulator EXOR negated, left parenthesis

) Right parenthesis

LDN Load argument in inverted form to accumulator

STN Save accumulator in inverted form to argument

LD Load argument to accumulator

ST Save accumulator to argument

S Set argument variable to logical 1 if accumulator = 1

R Set argument variable to logical 0 ("Reset") if accumulator = 1

EQ If accu is equal to argument, logical 1 to accu, otherwise logical 0.

NE If accu is not equal to argument, logical 1 to accu, otherwise logical 0

GT If accu is greater than argument, logical 1 to accu, otherwise logical 0
176 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Call IL operators

GE If accu is greater than or equal to argument, logical 1 to accu, otherwise
logical 0

LT If accu is less than argument, logical 1 to accu, otherwise logical 0

LE If accu is less than or equal to argument, logical 1 to accu, otherwise
logical 0

ADD Accumulator plus argument to accumulator

SUB Accumulator minus argument to accumulator

MUL Accumulator times argument to accumulator

DIV Accumulator divided by argument to accumulator

MOD Accumulator divided by argument, remainder to accumulator

NEG Negate accumulator

INC Increment accumulator (+1)

DEC Decrement accumulator (-1)

NOP No operation

SL Move bit string in accumulator 1x to left, 0 moves up

SR Move bit string in accumulator 1x to right, 0 moves up

RL Rotate bit string in accumulator 1x to left

RR Rotate bit string in accumulator 1x to right

WLC If accumulator = logical 1, execute the following lines as far as LPE

RPC As for WLC, but loop is executed at least once

WLNZ If the integer counter named by argument is not zero, execute the lines
as far as LPE. With every loop the counter will be decremented by 1

LPE End of a repeat loop

JMP Jump to label indicated in argument field unconditionally

JMPC Jump if accumulator = logical 1

Operator Description
 Engineering - IEC 61131-3 Programming 177

Insert function blocks into an IL program 6 Instruction List (IL)

6.3.3 Insert function blocks into an IL program

All the function blocks available in FBD programming can also be called in IL by
way of the menu item Blocks.The function blocks are "named" blocks, i.e. they are
entered into the instruction list using a CAL operator and get a name, a comment
and a parameter dialog. When they are called, a fixed block of IL lines is inserted
into IL ahead of the selected list position. One line is reserved for each input and
output. All lines of the block except the CAL line contain an identifier text, which
identifies the respective signal. The identifiers for necessary inputs/outputs
(mandatory pins) are highlighted in color.

Certain argument fields have a gray background if the relevant input has already
been occupied in the parameters dialog by a constant quantity. Column 2 is marked
in color if all mandatory parameters of the block have not yet been properly entered
or the block has been taken out of processing, otherwise the color marking is gray.
In addition, for functions which are available as an operator and as a block, this
mark shows that a block is used.

JMPCN Jump if accumulator = logical 0

RET Return from program (sub-program) unconditionally

RETC Return if accumulator = logical 1

RETCN Return if accumulator = logical 0

Operator Description
178 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Insert function blocks into an IL program

tm004us.png

The parameters dialog which belongs to the named block is selected as follows:

Specify parameters for function blocks

The parameters dialogs are the same as for FBD programming. Detailed
information on parameter assignment is provided in the Engineering Manual,
Functions and Function Blocks.

The comment field in the last line of the block initially contains a row of 5 hash
signs (#####). This marking indicates that the block has not yet been checked
successfully for plausibility. Following the plausibility check these symbols change
into @@@@@.

See also Section 5, Function Block Diagram (FBD), Description of FBD program
elements on page 124.

Change the number of inputs to function blocks

Some function blocks have a variable number of inputs (AND, OR, XOR, ADD,
MUL, MUX). When such a block is called up, a dialog box pops up and the desired

> Double-click the field PARA-DISP.
 Engineering - IEC 61131-3 Programming 179

Insert function blocks into an IL program 6 Instruction List (IL)

number of inputs within an allowable range must be filled in. The smallest
reasonable value appears as the default. Note that for MUX blocks, the selection
signal (INT range) must also be counted.

Instead of using function blocks with multiple inputs, the corresponding single
operators can be combined appropriately to give the same result. This eliminates the
limitation to 10 inputs.

di0413us.png

Change the data type of inputs and outputs

Some functions can handle different data types as input and output values.

di0131us.png

In the selection dialog the data type of the block terminals are displayed in text and
graphically. The data types of the connected variables must match the selection.

> Select block > Edit > Change data type

> Set and enter the required data type with >> and <<.
180 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Cross references

For more information, refer to Engineering Reference Manual Functions and
Function Blocks.

6.3.4 Cross references

The cross references can be selected directly from the IL program, as follows:

The following dialog shows the programs where the selected variable or tag is used.

CrossRef_us.png

In contrast to the variables, for the tags no read or write access is defined.

Show program
For a variable:
Call a program with prior selection of these variables, or call the

The data types of the selected block can only be changed if the block permits
other data types. They can only be changed identically for all terminals.
Irrespective of this, some data types can also be converted using the converter
blocks *_to_* and Trunc.

> Select a variable, IO/O component or tag

> Edit > Cross references

or

> F5 key
 Engineering - IEC 61131-3 Programming 181

Program administration functions 6 Instruction List (IL)

module with prior selection of the I/O component.
For a tag:
Call the program with prior selection of this tag, or call the module
in the hardware structure.

Show Declaration
For a tag, the tag list is called, for a variable the variable list is
called. If an I/O component is used directly in the program, the I/O
editor of this component is opened.

Filter A filter enables only those variables to be displayed for which read-
only access or write-only access exists in the programs concerned.

After activation it is possible to branch to the programs listed as cross references.

Show next / previous cross reference

The next or previous use of the selected variable within the current program is
displayed.

6.3.5 Program administration functions

Save the program

The program is saved without exiting. Programs that are not correct can also be
saved and then completed at any time.

> Select a variable > Edit > Cross references > Find next or Find previous

> Project > Save Tab

If the project is not saved in the project tree on closing or before, changes made to
the program are ineffective.
182 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Program administration functions

Document the program

The editor for documentation is opened as a separate tab in the right pane. This can
be closed using the Close button available at the right side of the opened tab, and
reopened later from the main menu.

Documentation administration is opened. This is where user-specific project
documentation is defined and output. For a description, see Engineering Manual
System Configuration, Documentation.

Program header

A program-specific short comment can be added to the program documentation
header, or this can be edited.

For Drawing a header / footer see Engineering Manual System Configuration,
Documentation.

Edit program comment

A longer program-specific comment can be edited here to describe the functionality.
For a description, see Engineering Manual System Configuration, Project
manager.

Print

The contents of the screen are output to the standard printer.

> Project > Documentation

> Project > Header

> Project > Comment

> Options > Print
 Engineering - IEC 61131-3 Programming 183

Program administration functions 6 Instruction List (IL)

Plausibility check

All inputs relevant to operation are checked for syntactical and contextual
correctness. Errors, warnings and notes that are found are displayed in an error list.
If the plausibility check detects errors, the processing state of the program is
implausible.

This plausibility check reviews the accuracy and consistency of the program itself.
To test the correctness in the project context call plausibility from the project tree.
See Engineering Manual System Configuration, Project Tree, plausibility.

Error list

Any errors present in the program is displayed in the error list. Double-click a check
message to jump to the line in the program that caused this error.

See also Engineering Manual System Configuration, Project tree.

> Editor > Check

The processing state of program elements that are newly entered, copied or
moved is implausible.

> Editor > Show error list
184 Engineering - IEC 61131-3 Programming

6 Instruction List (IL) Commissioning the Instruction list (IL)

6.4 Commissioning the Instruction list (IL)
The parameters associated with function blocks can be displayed and edited. In
addition, the accumulator state is displayed in a column. Accumulator fields not
calculated remain empty.

tm006us.bmp

Values can be written once within a processing sequence.

If the program editor is opened in commissioning mode, that for showing the live
value, CPU load can raise approximately up to by 15%.

> Select variable

> Window > Write value > Enter value > OK

or

> Context menu > Write value > Enter value > OK

The writing of a value should not be confused with forcing. The value written can
be overwritten by the program in the next cycle.
 Engineering - IEC 61131-3 Programming 185

Commissioning the Instruction list (IL) 6 Instruction List (IL)

186 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD)

7.1 General Description – Ladder Diagram
The Ladder Diagram is a graphically-oriented IEC 61131-3 programming language.

The LD language originates from the field of electromagnetic relay systems and
describes the flow of current through the individual networks of the program
organization units (POU) of a programmable controller.

The work area of an LD program is structured over 10x10 pages. An individual page
can be reached by vertical and horizontal scrolling. A raster is applied to the entire
work area. The breaks between pages are indicated by a dashed line. The program
documentation, which is output on a page-for-page basis, gives an exact picture of
what can be found on a page.

An LD network is delineated on the left and right by the so-called power rails.

An LD network comprises the following graphic elements:

• Connections and lines

• Variables and constants

• Ladders

• Coils

• Conditional and unconditional jumps

• Functions and function blocks

There can be several networks on different levels within an LD program; these will
be processed passing from the top to the bottom unless any explicit jumps have been
programmed in.
 Engineering - IEC 61131-3 Programming 187

Rules for processing a Ladder Diagram program 7 Ladder Diagram (LD)

tn040us.eps

7.1.1 Rules for processing a Ladder Diagram program

An LD program is processed in accordance with the following rules:

1. No network element may be calculated until the states of the inputs have been
calculated,

2. The calculation of a network element is not concluded until the states of the
outputs have been calculated,

3. The calculation of a network is not concluded until all the outputs have been
calculated, even if the network contains jumps - either forward or backward,

4. Networks are processed top-down.

Rule 4, however, is also dependent on the signal flow of the program, as rules 1-3
must also be obeyed. By way of illustration, the following algorithm is used for
determining the processing sequence:

1. Sort all network elements from top to bottom and, within that sort, from left to
right,

2. Search for the first element in which all the inputs are calculated,

3. Calculate that element,

4. If there are other uncalculated elements, go to step 2.

<Label1>:

<Label2>:

network 1

network 2
188 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Create an LD program

In contrast with the FBD language, no explicit processing sequence can be specified
for the blocks, but instead it emerges from the structure of the program. Feedback
messages are also not permitted, as they contravene rule 1.

Within the individual networks the signal flow lines are edited with the left mouse
button.

As an extension of the IEC language definition, variables and their components of
the structured data types may be used.

After loading the programs, in commissioning mode the Editor can be activated if
there is an existing connection to the process stations. The current values in the FBD
program is displayed. For further details see Engineering Manual System
Configuration, Commissioning.

7.1.2 Create an LD program

A LD program is created in the project tree.

Each new LD program has a blank graphic area, the check state incorrect and the
creation date as the version identifier.
The name and the short comment of the program list (PL) are taken over and preset
as program name and short comment; both can be changed easily.

Content of one editor can be copied and pasted to another editor of same type (for
example, LD editor content can only be pasted in into LD editor not into FBD or
ST).

> Project tree > select insert position in the project tree

> Edit > Insert above, Insert below or Insert next level

> LD program from “Object selection”

> Enter a program name and optionally a short comment
 Engineering - IEC 61131-3 Programming 189

Copy an LD program 7 Ladder Diagram (LD)

7.1.3 Copy an LD program

The program is copied and assigned to a program list of the project under a new,
unambiguous name.
The corresponding configuration, including the program header and program
comment, is copied. The tag names of the function blocks are not copied. The
copied program is designated incorrect and is allotted the date and time of copying
as version code.

7.1.4 Delete an LD program

The variables and tag names are preserved in other programs and in the variable/tag
list and can be reassigned.

7.1.5 Call the LD program editor

A program can be opened by selecting the LD object in the project tree. This can be
accessed from the Edit menu or by double-clicking the program.The LD Program is
opened as a separate tab in the right pane. It can be closed using the Close button
available at the right side of the opened tab

The program is displayed with its current content (functions, signal flow lines etc.)
and can be modified.

> Select program to be copied from project tree > Edit > Copy or CTRL+C

> Select position to which program is to be copied

> Edit > Paste or CTRL+V

> Depending on chosen position, select Above, Below or Level

> Enter new program name

> Select program to be deleted from project tree > Edit > Delete

> Project tree > Edit > Program

or

> Double-click the program
190 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Close LD program

7.1.6 Close LD program

Closes the active LD tab.

> Editor > Close
 Engineering - IEC 61131-3 Programming 191

Representation of the Ladder Diagram 7 Ladder Diagram (LD)

7.2 Representation of the Ladder Diagram

7.2.1User interface of the LD editor

The configuration interface of an LD program comprises:

LD_Config1_us.png

(1) Menu bar The menu entries are adapted to the active window or editor in
Freelance Engineering.

(2) Common toolbar
The common toolbar is accessible from the Project Explorer and the
Editor region.

(3) Editor toolbar
Frequently used commands of LD are accessible while working in
the LD editor.

– Save editor
– Check editor
– Cross references
192 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Modify default settings

– Find next cross reference
– Find previous cross reference
– User FB variables (active only for the configuration of user function

blocks)

(4) Graphic region
The function blocks and signal flow lines are configured in the
graphic region of the LD program.
The graphic region is provided with a raster to enable elements to
be positioned in a straightforward manner, and minimum distances
between elements to be preserved. The user can place the elements
of the LD program only within this raster. The visibility of the raster
can be switched on or off.
An LD program can be up to 10x10 pages in size. The separate
pages are delimited by dashed lines. Care should be taken not to
position objects on the dashed lines, as they would be split up over
several pages in the documentation.

(5) Status bar The status bar indicates the name and the page of the program
which is being edited and name of the user.

7.2.2 Modify default settings

Auto Router

If the Auto Router function is enabled, moving one or more objects automatically
adjusts the connection lines. Furthermore, the simplified line drawing mode is
activated.

Auto Accept

Select Auto Accept to automatically save any changes in the current editor before
switching to another editor.

> Options > Auto Router

> Options > Auto Accept
 Engineering - IEC 61131-3 Programming 193

Modify default settings 7 Ladder Diagram (LD)

If the option is not enabled, the following dialog box appears for confirmation with
each editor or program change:

auto_accept_LD_us.png

Switch the raster on and off

All the elements in a LD sheet are positioned within a raster. This positioning raster
is made visible by this menu selection, if it was hidden and vice versa. The setting is
standard for all LD sheets in the project.

> Options > Raster on

The setting that was saved for the last program to be edited is offered as a default.
The spacing of points in the raster cannot be altered.
194 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Display program information

Adjust colors

Color_settingLD_us.png

Select color The color can be chosen for the selected object. The current color is
marked.

Reset all All object colors are reset to the defaults.

Reset The color of the selected object is reset to the default.

7.2.3 Display program information

Program version and position in the project structure

The program name, date of last program modification as version identification and
the structure path in the project tree are shown.
The structure path can be displayed in a long or short format, as set in the Options
menu of the project tree.

> Options > Colors...

> Select object for which the color is to be changed(e.g. Function block frame)

> Select color > select the required color

> Options > Version
 Engineering - IEC 61131-3 Programming 195

Define favorites list 7 Ladder Diagram (LD)

tn032us.png

Program state

The status bar indicates the name and current the page of the program which is
currently being edited, the position in the project tree, the current user and license
information.

Editor position (4,1)
Shows the currently edited page (line, column), here the fourth page
horizontally and first page vertically.

7.2.4 Define favorites list

Functions and function blocks that are required frequently for configuration can be
grouped together in a separate list and block menu for easy access.

For details refer to Specify favorites list on page 110.

7.3 Description of the Ladder Diagram elements

7.3.1Connections and lines

Horizontal and vertical connections can attached to the power rails. A connection
can have a state of either 0 or 1, which characterizes the current flow. Connections
are drawn as horizontal or vertical lines.

> Options > Define favorites list
196 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Description of the Ladder Diagram elements

tn041us.eps

It should be noted that the following expression is valid in LD (for the current flow),
but is not valid in FBD.

tn042.eps

Function Description

Horizontal connection Transports the state at the left-hand end to the right-hand
end.

Vertical connection Links all the states on the left-hand horizontal connection
with a logical (inclusive) OR and applies the result to the
horizontal connections on the right-hand side 1 (wired or).
1 As far as the processing sequence is concerned, this
means that all the results on the left-hand side must be
available.

Left hand power rail Right hand power rail

= Branch

Horizontal
connection

Vertical
connection
 Engineering - IEC 61131-3 Programming 197

Contacts 7 Ladder Diagram (LD)

7.3.2 Contacts

A contact links the state of the left-hand horizontal connection with the Boolean
function of an assigned variable, whereby the value of the assigned variable is not
modified. There are two types each of static and transition-sensing contacts.

The state of the right-hand side of a positive transition-sensing contact can be
obtained from the following table:

Symbol Description/Function

tn001.bmp

Normally-opening contact

The contact is switched when the assigned variable is
TRUE

tn002.bmp

Normally-closing contact

The contact is switched when the assigned variable is
FALSE.

tn003.bmp

Positive transition-sensing contact

The contact is switched when the assigned variable
has a positive transition.

tn004.bmp

Negative transition-sensing contact

The contact is switched when the assigned variable
has a negative transition.

 Previous state of the right-hand side
<VarName>

 0 1

Current state of the right-hand
side <VarName>

0 0 0

1 State of the
left-hand side

0

198 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Coils

The state of the right-hand side of a negative transition-sensing contact can be
obtained from the following table:

As the user specifies the first value in the variable list for <VarName>, there is no
need to define any specific cold-start procedure, which means that both contacts
spark or make their state available when an LD program is calculated for the first
time by means of appropriate initial values in the assigned variables.

7.3.3 Coils

A coil copies the state of the left-hand connection to the right-hand connection and
also stores the result of a Boolean function in the left-hand connection to an
assigned Boolean variable. There are six different coils: normal and negated coils,
setting and resetting coils and two transition-sensing coils. The coils function as
follows:

 Previous state of the right-hand side
<VarName>

 0 1

Current state of the right-hand
side <VarName>

0 0 State of the
left-hand side

1 0 0

Symbol Description/Function

tn005.bmp

Normal coil

Applies the state of the left-hand connection to the as-
signed Boolean variable and to the right-hand connec-
tion.

tn006.bmp

Negated coil

Applies the state of the left-hand connection to the
right-hand connection and assigns the negation of the
state of the left-hand connection to the assigned Bool-
ean variable
 Engineering - IEC 61131-3 Programming 199

Coils 7 Ladder Diagram (LD)

The value of the assigned variable of a positive transition-sensing coil can be
obtained from the following table:

tn009.bmp

Set coil

The assigned Boolean variable is set to TRUE if the
state of the left-hand connection is TRUE, otherwise
the Boolean variable is left unchanged.

tn010.bmp

Reset coil

The assigned Boolean variable is set to FALSE if the
state of the left-hand connection is TRUE, otherwise
the Boolean variable is left unchanged.

tn007.bmp

Positive transition-sensing coil

Applies the state of the left-hand connection to the
right-hand connection. If the last state of the left-hand
connection was FALSE and the current state is TRUE,
then the value TRUE is assigned to the assigned Bool-
ean variable.

tn008.bmp

Negative transition-sensing coil

Applies the state of the left-hand connection to the
right-hand connection. If the last state of the left-hand
connection was TRUE and the current state is FALSE,
then the value TRUE is assigned to the assigned Bool-
ean variable.

 Previous state of left-hand connection

 0 1

Current state of left-hand connec-
tion

0 0 0

1 1 0

Symbol Description/Function
200 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Variables and constants

The value of the assigned variable of a negative transition-sensing coil can be
obtained from the following table:

If in both the above cases the previous state of the left-hand connection were
assigned cold-start value 0, then only the positive transition-sensing coil could fire
in the first calculation cycle. For reasons of symmetry, the initial value of the
previous state of the left-hand connection is set to a negative transition sensing coil
1.

All the contacts and coils come both in a long and a short version. The short version
can display at least 10 characters for the assigned variable or constant. In the case of
longer labels an overflow indication is represented as ‘…’. The long version can
display the maximum number of characters for a variable or constant. A component
of a structured variable can also be declared as the assigned variable.

7.3.4 Variables and constants

Variables and constants can be placed anywhere in the program, and are displayed
and/or edited in a rectangle.

A short and a long rectangle can be selected to display the variable name and/or
constants value.

The short version can display 10 characters. If the space in the rectangle is too small
to display the complete label length, the overflow is indicated by '….'. The complete
label is displayed as a tool-tip. Alternatively the long version can be selected for a
permanent display of the complete label length.

Variables can be read and written either via the process image or directly. Reading
or writing via the process image is indicated by @.

Since variables can be placed anywhere in the program, it is essential when inserting
them to specify whether they are to be used for reading or writing. Depending on

 Previous state of left-hand connection

 0 1

Current state of left-hand connec-
tion

0 0 1

1 0 0
 Engineering - IEC 61131-3 Programming 201

Variables and constants 7 Ladder Diagram (LD)

whether a variable or constant is to be used for reading or writing, the surrounding
rectangle is provided with either an input or output pin of the appropriate data type.
As long as the variable is not connected with a line, access can be switched between
read and write mode via the short-cut menu with Toggle read access.

Symbol Description/function

tn011.bmp

Variable for reading

tn012.bmp
Variable for writing

tn019.bmp

Short version

At least 10 characters can be displayed

Overflow indication ‘…’

tn020.bmp

Long version

Max. possible label length

tn018.bmp

Read/write via process image

tn023.bmp

REAL Constant
202 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Function blocks

7.3.5 Function blocks

tn033us.png

Frame The block frame limits the selection area of the block. The color
indicates whether the block is selected or not. To change the used
color, refer to Adjust colors on page 195.

Function block name
Unlike the functions, all function blocks are displayed with a tag
name (max. 16 characters). All block names are included in the
system-wide tag list. The font color used for the function block
name is used for identifying its processing state (enable/disable),
and can likewise be altered.

Icon The block type is symbolized by an icon in the case of function
blocks, and by a function abbreviation in the case of functions.

Input/output pins
A distinction must be made here between inputs and outputs. In
accordance with the signal flow, inputs are always displayed on the
left and outputs on the right. As with the signal flow lines, the color
and line width conveys information about the data type required or
specified.

Mandatory/ Optional pins
Mandatory pins require the supply by a signal flow line in order to
enable the block to operate work correctly, while this does not apply
for optional pins. To distinguish the connector pins, the optional
pins are shown shorter. Some optional pins disappear, if they are
configured with fixed value in the parameter dialog.

Terminal identifier
In a function block each input/output pin also has a code that
represents the function of the pin, e.g. EN for enable.
 Engineering - IEC 61131-3 Programming 203

Jumps and returns 7 Ladder Diagram (LD)

7.3.6 Jumps and returns

One or more jumps and/or returns are allowed in a network. However, these are not
executed until the end of network processing.

Where there is more than one jump and/or return, the first one is executed according
to the processing sequence.

The targets of jumps are designated by a label. Labels are thus local to a particular
program.

tn043us.eps

Since jumps are not performed until the execution of the network is complete, a
conditional execution must be implemented with several implicit networks.

Example

In the example below all the following actions are performed before the jump: The
FB1 outputs are assigned to Var1 and the FB2 inputs, FB2 is calculated, and the FB2
outputs are assigned to Var2 and Var3.

<Label> unconditional jump

<Label> conditional jump

<VarName>

<Label>:
204 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Jumps and returns

tn044.eps

A conditional action before the FB1 outputs are assigned to … could be
implemented through the following configuration.

tn045.eps

If variable X has the value TRUE, then the network ‘Label1’ is skipped, and
processing continues with the execution of network ‘Label2’.

FB1

FB2

<Var1>

<Var2>

<Var3>

<Label>

<Label2>

<Label1>:

<Label2>:

X

 Engineering - IEC 61131-3 Programming 205

Labels 7 Ladder Diagram (LD)

7.3.7 Labels

Labels can be added at any point on the left-hand power rail, and are shown as a
double horizontal line with the label name displayed at fixed intervals.

The label can be edited in a rectangle on the left-hand power rail, and can be
terminated with a ‘:’. Connections which pass beyond a network boundary are
shown in red and flagged as an error in the plausibility check.

tn046us.eps

Implicit networks are defined through labels. An implicit network begins at a label
or at the beginning of an LD program, and ends at the next label or at the end of the
program.

7.4 Parameterize Ladder Diagram elements
LD elements are parameterized by selecting the element and then carrying out one
of the following actions.

> Edit > Parameters
or
> Double-click the element
or
> Right-click to open context menu > Parameters

<Label1>:

<Label>

Label1 Label1

Error

RETURN

<Label2>: Label2 Label2

Implicit
network
206 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Parameterize a contact

7.4.1 Parameterize a contact

tn036us.png

Variable The variable assigned with the contact is configured. By pressing
F2, a variable can be selected from the variable list.

Width
short/long In the short rectangle about 10 characters can be displayed for the

assigned variable. If the space in the rectangle is too small to
display the complete label length, the overflow is indicated by '….'.
The complete name is displayed as ToolTip. Alternatively the long
rectangle can be selected for a permanent display of the complete
name.

Type
normally open The contact switches when the assigned variable is TRUE.

normally close The contact switches when the assigned variable is FALSE.

pos. transition-sensing
The contact switches when the assigned variables have a positive
transition.

neg. transition-sensing
The contact switches when the assigned variables have a negative
transition.
 Engineering - IEC 61131-3 Programming 207

Parameterize a coil 7 Ladder Diagram (LD)

7.4.2 Parameterize a coil

tn025us.png

Variable The variable assigned with the coil is configured. By pressing F2, a
variable can be selected from the variable list.

Width
short/long In the short rectangle about 10 characters can be displayed for the

assigned variable. If the space in the rectangle is too small to
display the complete label length, the overflow is indicated by '….'.
The complete name is displayed as ToolTip. Alternatively the long
rectangle can be selected for a permanent display of the complete
name.

Type
normal The assigned variable is given the value currently at the coil input.

negated The assigned variable is given the negated value of the signal at the
coil input.

pos. transition-sensing
If there is a positive transition at the coil input, then the assigned
variable is set to TRUE. Otherwise it is given the value FALSE.

neg. transition-sensing
If there is a negative transition at the coil input, then the assigned
variable is set to TRUE. Otherwise it is given the value FALSE.

set If the coil input is TRUE, the assigned variable is also set to TRUE.
Otherwise the value of the variables is not altered.
208 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Parameterize a variable

reset If the coil input is TRUE, the assigned variable is set to FALSE.
Otherwise the value of the variables is not altered.

7.4.3 Parameterize a variable

tn026us.png

Variable The name of the variable is configured.
By pressing F2, a variable can be selected from the variable list.

Width
short/long In the short rectangle about 10 characters can be displayed for the

variable name. If the space in the rectangle is too small to display
the complete label length, the overflow is indicated by '….'. The
complete name is displayed as ToolTip. Alternatively the long
rectangle can be selected for a permanent display of the complete
name.

7.4.4 Parameterize a jump

tn027us.png

Label The name of the label which forms the target for the jump.
 Engineering - IEC 61131-3 Programming 209

Parameterize a label 7 Ladder Diagram (LD)

7.4.5 Parameterize a label

tn028us.png

Label The label name.

7.4.6 Parameterize function blocks

When defining parameters for function blocks, the same procedure is used as in the
FBD editor. See also Section 5, Function Block Diagram (FBD).

7.5 Edit an LD program

7.5.1Representation of the signal flow lines

If the signal flow line is at edit state selected, incorrect or not connected, then this
is displayed, otherwise it shows the transported data type.

The state or transported data type of the signal flow line can be recognized by the
width and color of the line, and the color can be set according to the user’s
preference (see Adjust colors on page 195).

The following table shows the connection between data type, edit state, line width
and the default color:
210 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Draw lines

7.5.2 Draw lines

Signal flow lines can either be drawn explicitly or created automatically by the
system. To draw the lines explicitly, horizontal and vertical “line sections” are
defined; if the signal paths are to be determined automatically it is necessary only to
specify the start and end points of the signal flow.

Data type/
Processing state

Color Display Example

BOOL

BYTE

DINT

DT

DWORD

INT

REAL

TIME

UDINT

UINT

WORD

STRING

STRUCT

Error state

selected objects

not connected

black

gray

grass-green

dark yellow

magenta

light green

black

light yellow

brown

turquoise

dark blue

black

black

red

turquoise

black

narrow

wide

wide

wide

wide

wide

wide

wide

wide

wide

wide

wide

wide

narrow

narrow

di0152.bmp
 Engineering - IEC 61131-3 Programming 211

Draw lines 7 Ladder Diagram (LD)

Explicit drawing of signal flow lines

The LD editor has a special drawing mode in which it is possible to draw horizontal
and vertical lines. Drawing mode is activated as follows:

A single click identifies the beginning of the line, and when the mouse is moved
either a horizontal or vertical line is drawn if the cursor is at the beginning of the
line (within the snap) and as long as the line does not cut across any coil, jump,
return, block or network boundary.

Each additional click terminates the current line and simultaneously defines the start
of a new line. A mouse click directly on the snap of the starting point of a line or
outside the snap finishes a line.

The following diagram clarifies line draw mode. The snap is exactly 2 raster units in
width.

tn047us.eps

> Edit > Draw lines

or

> Right-click (Context menu) > Draw lines

The mouse cursor changes into a cross.

snap

directly snap

starting point

possible line
212 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Draw lines

Dragging a line

A signal flow line can also be drawn directly by pressing the CTRL key and the left
mouse button simultaneously. A horizontal or vertical line is defined by releasing
the left mouse button.

Releasing the CTRL key has the effect of exiting line-drawing mode.

Deactivate draw mode

Automatic drawing of signal flow lines

Auto Router enabled:

This describes the automatic drawing of a pin to pin connection. In order to draw
signal flow lines automatically of a pin to pin connection, system will automatically
be into the auto connect mode, This will draw the connection lines between the two
pins of the LD elements, till the user releases the mouse button. If user clicks on any
other part of LD element, element gets selected for other editing options.

Auto Router disabled:

This describes the automatic drawing from everywhere in the LD editor to
everywhere else. To draw lines with automatic line drawing, press CTRL +SHIFT
and press the left mouse button somewhere in the LD (not on the pin of a block).

> Right-click with the mouse to define the start and end of a line

or

> Simultaneously press CTRL key and left mouse button and draw the line.

> Right-click with the mouse

or

> ESC key

Start of a signal flow line:
> Click one pin with the left mouse button, drag to the next pin.

End of a signal flow line:
> Release the mouse button.
 Engineering - IEC 61131-3 Programming 213

Insert LD elements and function blocks 7 Ladder Diagram (LD)

The possible path of the signal flow line from the start point to the current cursor
position is indicated. When the keys are released the signal flow line is finally
defined.

If there is not sufficient free space available in the drawing area, then the signal flow
line will not be drawn in.

7.5.3 Insert LD elements and function blocks

Variables, blocks and comments can be inserted from the library explorer or from
the main menu.

LD_elements options_us.png

After the element to be inserted has been chosen, the cursor takes on the shape of
the selected element. The selected element can be positioned into the active tab in
the workspace pane with a left mouse click. There are no restrictions on where the
selected elements may be positioned. Contacts, coils, jumps and returns can be
‘dropped’ via existing Boolean lines by pressing the left mouse button, whereupon
they are fitted into existing lines.

If the element should not fit in at the intended destination, the mouse cursor
reassumes it normal shape. This clears the selection of the element from the
clipboard memory.

If the placing was performed successfully, the outline cursor is retained, and further
elements of the selected type can be inserted.

> Explorer pane > Libraries tab > Select the element to be inserted

or

> Elements > Select the element to be inserted
214 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Insert or delete columns and rows

The insertion process is terminated by clicking the right mouse button.

For more information on the Explorer pane, refer to Engineering Manual System
Configuration.

7.5.4 Insert or delete columns and rows

In the current program, parts of the configuration can be “pushed apart” by insertion
of columns or rows or “pushed together” by deleting columns or rows.

If the cursor is moved at the edge of an implicit network, a small double arrow is
superimposed. If the double arrow is in black, it is possible to insert or delete
columns or rows at this point. A red arrow means that insertion or deletion is not
possible.

Insert or delete columns

By left-clicking with the mouse on the upper or lower network edge on a black
double arrow, a vertical line with two pointed triangles is superimposed at the edge
of the hard-clip area. This line can be shifted to the right or left by depressing the
left mouse button.

With each shift to the right by one raster unit, a column is inserted into the drawing
area and the part of the configuration to the right of the line shifted to the right by
one raster unit.

With each shift to the left by one raster unit, a column is deleted from the drawing
area and the part of the configuration to the right of the line shifted to the left by one
raster unit.

If the mouse moves as far as the edge of the visible part of the display, then the
visible region scrolls. The triangle can only be moved if the partial network to be
moved is not touching the right-hand edge of the program and if the vertical line
does not intersect with a network element other than a horizontal connection. The
diagram below should further clarify the procedure for inserting columns.
 Engineering - IEC 61131-3 Programming 215

Cross references 7 Ladder Diagram (LD)

tn048us.eps

When columns are inserted or deleted, horizontal connections are extended or
reduced accordingly.

Insert or delete rows

The insertion of rows corresponds to the insertion of columns. The movement
markings run in a horizontal orientation. When rows are inserted or deleted, vertical
lines are extended or reduced accordingly.

7.5.5 Cross references

The cross references can be selected directly from the LD program, as follows:

> Select a variable, I/O component or tag

> Edit > Cross references or F5 key

<Label>

to see

<Label>

max. move

LD program
216 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Cross references

The following dialog shows the programs where the selected variable or tag is used.

CrossRef_us.png

In contrast to the variables, for the tags no read or write access is defined.

Show program
For a variable:
Call a program with prior selection of these variables, or call the
module with prior selection of the I/O component.

For a tag:
Call the program with prior selection of this tag, or call the module
in the hardware structure.

Show Declaration
For a tag, the tag list is called, for a variable the variable list is
called. If an I/O component is used directly in the program, the I/O
editor of this component is opened.

Filter A filter enables only those variables to be displayed for which read-
only access or write-only access exists in the programs concerned.

After activation it is possible to branch to the programs listed as cross references.
 Engineering - IEC 61131-3 Programming 217

Block operations 7 Ladder Diagram (LD)

Show next / previous cross reference

The next or previous use of the selected variable within the current program is
displayed.

7.5.6 Block operations

Block selection, selection of several program elements

All elements that are completely enclosed within the frame are selected
simultaneously and displayed accordingly. In the case of signal flow lines, this
applies to all sections that lie entirely within the frame. Color for selected elements
can be changed via the Options menu (see Adjust colors on page 195).

Copy

Copy has the effect of transferring the selected elements to an internal storage
location. Elements transferred there through a previous Copy are overwritten.
Whether or not there are currently any elements in the internal store can be seen
from the menu choice Insert in the Edit or Context menu. If this menu choice is
disabled, this indicates that the internal store is empty.

Content of one editor can be pasted to another editor of the same type (For example:
LD editor content can only be pasted in into LD editor not into IL or ST). This will
enable user to modify the programs easily.

> Select a variable > Edit > Cross references > Find next or Find previous

> Drag the mouse to form a rectangle in the graphic area and select all the graphic
elements lying wholly within this rectangle.

or

> Press and hold SHIFT key > right-click the elements to be selected

> Edit > Copy
218 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Block operations

When function blocks are copied, the parameter data remain unchanged. However,
the tag name is deleted for the copy, as it must be unique.

Cut / Delete

After the selected elements have been cut, they can then be re-inserted in the
program using Paste. Cutting has the effect of overwriting any elements held in the
internal store at the time.

When function blocks are cut, their parameter data and tag name are transferred
with them to the internal store, so that next time they are pasted all the appropriate
data are available.

Paste

After pasting, a surrounding rectangle with a dashed border appears at the position
in which the block was previously cut or copied.

> Edit > Cut or Delete

If elements are deleted, they can only be pasted directly subsequently using
Undo, they cannot be pasted at a later time. Deleted elements can only be
restored by quitting the program without saving.

> Edit > Paste
 Engineering - IEC 61131-3 Programming 219

Block operations 7 Ladder Diagram (LD)

Move block

The following options are available for moving a block:

While the selected elements are being moved to a new position their outlines remain
visible. Until then blocks that are not assigned mandatory parameters remain in the
“incorrect” status. Parameters already configured are retained.

Move block with existing links

If the existing links are to be retained when a block is moved, proceed as follows:

Click on a selected element and hold the mouse button down. The rectangle will
then appear around the selected block

or

if the cursor is moved into the rectangle that appears after a block is pasted, it
changes into a cross with one arrow for each movement in a horizontal and
vertical direction.

The block can now be moved by moving the mouse. When the destination
position is reached, the left mouse button is released again. If it is not possible to
paste at the destination position, this is signaled by a warning tone, and the
surrounding rectangle remains active.

Auto Router enabled:
> Click on a selected block and drag the block to destination.

Auto Router disabled:
Select the object, then press the left mouse button. Press CTRL + SHIFT and
drag the object to destination.

To move a block without existing links:
Deactivate Auto Router, click a selected element and drag the element to
destination. The block will be moved without existing links.
220 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Block operations

di0141.bmp

Representation of a function block before, during and after being moved with
existing links.

Import block

A “File open” dialog box appears, containing a list of all the files that have been
generated through Export block with the LD editor. Once a file has been selected,
the block is imported, and the rectangle surrounding the block appears. This must
then be moved to a suitable position.

Export block

The selected elements of a current LD sheet can be exported to a file. An “Export
LD box” dialog box appears, containing a list of all previously-exported files in the
most recently selected export directory.

Tag names of the blocks selected are not exported.

> Edit > Import block

Imported variables that are not yet included in the variable list are displayed in
red. Selecting these variables enables their definition in the current project.

> Edit > Export block
 Engineering - IEC 61131-3 Programming 221

Program administration functions 7 Ladder Diagram (LD)

Undoing an action

This function enables the last action performed to be undone. Irrespective of this
function, the program state remains incorrect until the next plausibility check.

7.5.7 Program administration functions

Save the program

The program is saved without exiting. Programs that are not correct can also be
saved and then completed at any time.

Document the program

The editor for documentation is opened as separate tab in the right pane. It can be
closed using the Close button available at the right side of the opened tab, and
reopened later from the main menu.

Documentation administration is opened. This is where user-specific project
documentation is defined and output. For a description, see Engineering Manual
System Configuration, Documentation.

> Edit > Undo

or

> Context menu > Undo

> Project > Save Tab

If the project is not saved in the project tree on closing or before, changes made to
the program are ineffective.

> Project > Documentation
222 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Program administration functions

Program header

A program-specific short comment can be added to the program documentation
header, or can be edited.

For drawing header / footer, see Engineering Manual System Configuration,
Documentation.

Edit program comment

A longer program-specific comment can be edited here to describe the functionality.
For a description, see Engineering Manual System Configuration, Project
manager.

Print

The contents of the screen are output to the standard printer.

Plausibility check

All inputs relevant to operation are checked for syntactical and contextual
correctness. Errors, warnings and notes that are found are displayed in an error list.
If the plausibility check detects errors, the processing state of the program is
implausible.

> Project > Header

> Project > Comment

> Options > Print

> Editor > Check

The processing state of program elements that are newly entered, copied or
moved is implausible.
 Engineering - IEC 61131-3 Programming 223

Commissioning the Ladder diagram (LD) 7 Ladder Diagram (LD)

This plausibility check reviews the accuracy and consistency of the program itself.
To test the correctness in the project context call plausibility from the project tree.
See Engineering Manual System Configuration, Project Tree, plausibility.

Error list

Any errors present in the program is displayed in the error list. Double-click a check
message to jump to the line in the program that caused this error.

See also Engineering Manual System Configuration, Project tree.

7.6 Commissioning the Ladder diagram (LD)
On commissioning the ladder diagram, the program is displayed in the same way as
in configuration mode except that in commissioning mode the program cannot be
modified structurally.

> Editor > Show error list

 If the program editor is opened in commissioning mode, that for showing the live
value, CPU load can raise approximately up to by 15%.
224 Engineering - IEC 61131-3 Programming

7 Ladder Diagram (LD) Commissioning the Ladder diagram (LD)
 LD_Commissioning_us.png

Individual function blocks can be selected and parameters set for them. Operating
modes can also be called up and modified from commissioning mode

Thereafter, certain program test functions are available to whoever is
commissioning the system.

Boolean values (binary values) are initially displayed directly with their logical state
of 1 or 0.

When the variables or terminals of a block are overrun, the current calculated values
should be read.

After this, values within a cycle can be defined only once. Function block pins can
also be defined to analog or binary values.

logical 1 TRUE
logical 0 FALSE

Input pins of function blocks which are not loaded can thus be assigned
permanent values. This can be difficult notice later and should therefore be used
with caution.
 Engineering - IEC 61131-3 Programming 225

Commissioning the Ladder diagram (LD) 7 Ladder Diagram (LD)

> Right-click the variable or function block pin > Input values > OK

The writing of a value should not be confused with forcing in the I/O module.
The value written can be overwritten by the program in the next cycle.
226 Engineering - IEC 61131-3 Programming

8 Structured Text (ST)

8.1 General Description – Structured Text
Structured text is a text-oriented program language of IEC 61131-3.

Program processing is determined by statements

All functions and function blocks in Freelance Engineering can also be called up in
ST programs. The scope of the functions is partly covered by the ST operators.
Function blocks can be used after declaration in the ST program. They are
parameterized in the same way as in the ladder diagram or in the function block
diagram.

Unlike the function block diagram (FBD), the functional scope of the structured text
is extended by conditional statements and loop statements that are called up by
corresponding keywords.

The processing sequence is obtained by the arrangement of the statements in the ST
editor (left to right and top to bottom). The sequence can only be deliberately altered
by inserting loop statements.

There is no limit to the working range of an ST program.

After loading the programs and if there is a connection to the process stations, the
ST editor can be called up in commissioning mode. The current values in the ST
program can be displayed. See also Engineering Manual System Configuration,
Commissioning.
 Engineering - IEC 61131-3 Programming 227

Create an ST program 8 Structured Text (ST)

8.1.1 Create an ST program

ST programs are created in the.

Each new ST program has a program body: PROGRAM Program name
END_PROGRAM. The check state is incorrect and the creation date is used as version
identifier.
The name and the short comment of the program list (PL) are taken over and preset
as program name and short comment; both can be changed easily.

Content of one editor can be copied and pasted to another editor of the same type
(for example, ST editor content can only be pasted into ST editor, not into FBD or
IL).

8.1.2 Copy an ST program

The program is copied and assigned under a new, unambiguous name to a program
list of the project.
The respective configuration, including the program header and program comment,
is copied. The tag names of the function blocks are not copied. The copied program
is designated incorrect and is allotted the date and time of copying as version code.

> Select target position in the project tree

> Edit > Insert above, Insert below or Insert next level

> ST program from “Object selection”

> Enter a program name and optionally a short comment.

> Select program to be copied from project tree > Edit > Copy or CTRL+C

> Select position to which program is to be copied

> Edit > Paste or CTRL+V

> Depending on position selected, select Above, Below or Level

> Enter new program name
228 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Delete an ST program

8.1.3 Delete an ST program

The variables and tag names are preserved in other programs and in the variable/tag
list and can be reassigned.

8.1.4 Call the ST program editor

A program can be opened by selecting the ST object in the project tree. This can be
opened from the Edit menu or by double-clicking the program. The ST program is
opened as a separate tab in the right pane. It can be closed using the Close button
available at the right side of the opened tab.

The program is displayed with its current content and can be modified.

8.1.5 Close ST program

Closes the active ST tab.

8.2 Representation of the Structured Text

8.2.1 User interface of the ST editor

The configuration interface of an ST program consists of:

> Select program to be deleted from project tree > Edit > Delete

> Project tree > Edit > Program

or

> Double-click the program

> Editor > Close
 Engineering - IEC 61131-3 Programming 229

User interface of the ST editor 8 Structured Text (ST)

ST_Config1_us.png

(1) Menu bar The menu entries are adapted to the active window or editor in
Freelance Engineering.

(2) Common toolbar
The common toolbar is accessible from the Project Explorer and the
Editor region.

(3) Editor toolbar
Frequently used commands of IL are accessible while working in
the ST editor.

– Save editor
– Check editor
– Cross references
– Find next cross reference
230 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Syntax coloring

– Find previous cross reference
– Instantiate
– User FB variables
– Toggle breakpoint

(4) Text area The application is programmed in the ST editor text area.
The cursor can be positioned anywhere in the text area. The
tabulator width is adjustable.
The text area for an ST program is unlimited.
There is a mark column on the left of the text field.

(5) Status bar The status bar indicates the name and the page of the program
which is being edited and name of the user.

8.2.2 Syntax coloring

All input in the ST editor is text-oriented. Certain important words in the text are
color-highlighted for emphasis. These are:

• Comments
• Keywords
• Keywords not supported (acc. to IEC 61131-3)1

• Numeric constants
• Numeric constants are defined in the program flow.
• Symbolic constants
• Symbolic constants are defined in a CONST END_CONST block.
• Strings
• Blocks that cannot be edited

All other text is shown in black.

1. These include data types such as SINT, for example, that are not supported.
 Engineering - IEC 61131-3 Programming 231

Modify default settings 8 Structured Text (ST)

8.2.3 Modify default settings

Auto Accept

Select Auto Accept to automatically save any changes in the current editor before
switching to another editor.

If the option is not enabled, the following dialog box appears for confirmation with
each editor or program change:

config_ST_us.png

Adjust colors

Color_settingST_us.png

> Options > Auto Accept

> Options > Colors...

> Select the object for which the color is to be changed (e.g. symbolic constants)

> Select color > select required color
232 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Display program information

Select color The color for the selected object can be chosen. The current color is
marked.

Reset all The colors for all objects are reset to the default colors.

Reset The color for the selected object is reset to the default color.

Tabulator width

to003us.png

The program code already created is not changed by the alteration in tabulator
width. The new tabulator width is used for all subsequent editing steps.

8.2.4 Display program information

Program version and position in the project structure

The program name, date of last program modification as version identification and
the structure path in the project tree are shown.
The structure path can be displayed in a long or short format, as set in the Options
menu of the project tree.

to004us.png

> Options > Tabulator width...

> Enter the desired tabulator width

> Options > Version
 Engineering - IEC 61131-3 Programming 233

Define favorites list 8 Structured Text (ST)

Program state

The status bar indicates the name and the current cursor position of the currently
edited program, the edit mode (Insert or Overwrite), the position in the project tree,
the current user and license information.

Editing position
(4,1) - Shows the current position of the cursor (row and column).

Editing mode (INS) - Insert
(OVR) - Overwrite

8.2.5 Define favorites list

Functions and function blocks that are required frequently for configuration can be
grouped together in a separate list and block menu easy access

For details refer to Specify favorites list on page 110.

8.3 Description of the ST program elements

8.3.1Language elements

Special symbols and reserved words

Special symbols and words control the flow in an ST program and these must not be
used as identifiers in the program. Each special symbol has a particular meaning. ST
interprets the following characters as special symbols:

+ - * / & = < > [] . , () : ; ’ @ # $

In addition, combinations of special symbols are used as operators and/or
delimiters:

:= => Assignment operators

<> <= >= Relational operators

> Options > Define favorites list
234 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Description of the ST program elements

** Exponentiation operator

.. Subareas

(* *) Beginning and end of comment

There is no case distinction for reserved words. ST reserves the following words,
which are all printed in boldface in this manual:

All standard data types are also treated as keywords. Names of function block inputs
and outputs that are identical with keywords start with an underline character to
distinguish them from the keywords, e.g.:

pin_dt(_DT => dt1);

AND FUNCTION_BLOCK(2)

ARRAY IF
BY MOD
CASE NOT
CONST(1)

(1) These keywords are extensions of IEC 61131-3.

OF
DO OR
ELSE PROGRAM
ELSIF REPEAT
END_CASE RETURN
END_CONST(1) THEN
END_IF TO
END_FOR TRUE
END_FUNCTION_BLOCK(2)

(2) These keywords are only used in user-defined function blocks.

UNTIL
END_PROGRAM VAR
END_REPEAT VAR_EXTERNAL
END_VAR VAR_INPUT(2)

END_WHILE VAR_OUTPUT(2)

EXIT WHILE
FALSE XOR
FOR
 Engineering - IEC 61131-3 Programming 235

Description of the ST program elements 8 Structured Text (ST)

Identifier

All types, variables, constants, functions, function blocks and arrays are identified
by identifiers. Identifiers within an ST program are words with
• more than one letter (leading numeric characters are allowed)
• one letter, except ’E’ or ’e’
• the letter ’E’ or ’e’ at the beginning or end.

Examples of identifiers:
123block Valid identifier
123e Valid identifier
123e2 Syntax error
123.0e2 Real number
block-e Syntax error

Case is significant in identifiers. Identifiers must not include any special symbols
(see Special symbols and reserved words on page 234). Therefore a dash (which
could also be a minus sign) must not occur in a identifier. There is no limit to the
length of identifiers within ST programs.

The following identifiers are already defined for standard data types:

There is no distinction between upper and lower case in standard data types.

Identifiers of global variables must also obey the rules for variable names. See
Structure of the variable list on page 23. Identifiers for function blocks also follow
the rules for tag names. See Call the tag list on page 59. Unlike other programming
languages such as ladder diagram and function block diagram, tag names consisting
only of numeric characters are not allowed in ST programs.

Constant

A constant declaration declares a identifier which stands for a particular value
within the ST program. Constants are declared in a block CONST END_CONST. The
constant is only valid within the ST program.

BOOL INT STR64 UINT
BYTE REAL STR128 WORD
DINT STR8 STR256
DT STR16 TIME
DWORD STR32 UDINT
236 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Description of the ST program elements

Constant expressions must not contain any variables or function calls but they can
include constants that have already been defined. Example:

CONST
 max := 100;
 max2 := max * 2;
END_CONST

The value of a constant expression is calculated by code generation. Constants can
be used in expression and for defining areas in arrays. Example:

VAR
 MyArray: ARRAY [0..max-1] OF int;
END_VAR

The data type of constants is only defined when they are used. The defaults for data
types must be observed when entering constants.

See Overview of simple data types on page 22.

Integer constants are always processed internally as DINT values. If a different data
type is needed in the program flow then an explicit type change must be inserted.
Example:

CONST
 BITFIELD := 16#c2420000;
END_CONST

VAR
 var1 : UINT;
 var2 : REAL;
END_VAR

var1 := BITFIELD;
(* This statement leads to a plausibility error. *)
(* The constant BITFIELD is greater than MAX-DINT. *)

var1 := to_di(BITFIELD);
(* With the external type change the value of *)
(* BITFIELD is limited to MAX-DINT. *)

 Engineering - IEC 61131-3 Programming 237

Description of the ST program elements 8 Structured Text (ST)

var2 := to_re(to_dw(BITFIELD));
(* Bit field is converted to a REAL value *)

Program

An ST program is enclosed between the keywords PROGRAM and END_PROGRAM.

PROGRAM STprg1
;
END_PROGRAM

No executable statements may be written before PROGRAM. All statements after
END_PROGRAM will be disregarded. Every ST program needs a program name. The
name of the ST program is preset as a program name in the project tree. The
program name is a identifier in the ST program.

In the ST program the declarations of constants and variables must be entered at the
beginning. The program code follows.

User-defined function block

User-defined function blocks in structured text are included in the keywords
FUNCTION_BLOCK and END_FUNCTION_BLOCK.

FUNCTION_BLOCK UFBprg1
;
END_FUNCTION_BLOCK

No executable statements may be written before FUNCTION_BLOCK. All statements
after END_FUNCTION_BLOCK will be disregarded. The name of the user-defined
function block is a identifier in the ST program. The interface definition is added
into the user-defined function block as a non-editable block. In other respects the
programming rules for ST programs apply.

Comment

The purpose of comments is to clarify the program code. They are not taken into
account when the code is generated. Comments are enclosed in brackets with a star:

An empty ST program must contain at least one empty statement.
238 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Types

(* This is a comment *)

Comments can be included at any point in an ST program. Nested comments are
allowed:

(* Comment (*This is a nested comment *) *)

Nested comments are an extension of IEC 61131-3.

Program line

There is no limit to the length of a program line. A program line may include more
than one statement.

8.3.2 Types

Every declaration of a variable must give the type of the variable. The type defines
the value range of the variable and determines the operations that can be executed
with it. See also Overview of simple data types on page 22.

Simple types

Simple types define ordered quantities of similar values.

Integer types

Integer values are a partial quantity of the whole numbers. The following integer
types can be used in ST programs: INT, UINT, DINT and UDINT.

Two integer values can only be linked via a binary operator (i.e. addition,
multiplication etc.) if the types are the same. If the types are different, an explicit
type conversion must be used, e.g.:

VAR
 myInt: INT;
 myDint2, myDint1: DINT;
END_VAR
 myDint2 := TO_DI(myInt) + myDint1;
 Engineering - IEC 61131-3 Programming 239

Types 8 Structured Text (ST)

Bitfield types

Bitfield types define bit fields of differing length. Bitfield types BYTE, WORD and
DWORD can be used in ST programs.

Operations on two bit fields via a binary operator (i.e. bit-by-bit AND, bit-by-bit OR
etc.) are only possible if the types are the same.

Boolean types

Boolean types can only take on the predefined values FALSE or TRUE, Where
FALSE = 0 and TRUE = 1.

REAL type

The real type is a subset of the real numbers. A real value n has three components.
Here m*2e = n, where m and e are whole numbers.

Strings

A string is a fixed-length sequence of characters. The following string types can be
used in ST programs: STR8, STR16, STR32, STR64, STR128 and STR256. Strings
are stored in ASCII code.

Structured types

A structured type, identified by the type of structure, contains more than one value.
All defined structured data types can be used in ST programs. For a definition of
structured data types, see Structured data types on page 54.

The components of structured types can be accessed with variable name.component
name.

Arrays

Arrays have a set number of components of a single type. Simple and structured
types are both permissible data types. The validity range of the data type for the
array index is defined as DINT (-2 147 483 648 .. +2 147 483 647). The number of
elements of each dimension is determined by the data type of the array index. The
start and end of the definition of the range must be within the range of validity of the
array index.

Arrays are defined by the keyword ARRAY, the range and the data type, e.g.
240 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Variables and function blocks

ARRAY [0..100] OF REAL;

If the component type of a array is also a array, it is treated as a multidimensional
array. Up to four dimensions can be used for each array declaration, e.g.

ARRAY [0..100, 0..10, -2..2] OF INT;

The components of arrays can be accessed with
 variable name[Index1, Index2].

 The components of structured data type arrays can be accessed with
 variable name[Index1, Index2].component name.

The array index is checked for validity at the time of running in the process station.
If the array index is outside the defined range, the task state changes to not
executable.

8.3.3 Variables and function blocks

Declaration of variables

Variables must be declared before use. The variable declaration states the type of
variable. All standard data types and structured data types that have already been
defined can be used. The variable name and data type are separated by a colon, e.g.

VAR
 x, y: INT;
END_VAR

ST programs distinguish between local variables and global variables. If a local
variable has the same name as a global variable, the local variable takes precedence.

Global variables

Global variables are also valid outside the ST program. All variables defined in the
variable list can be used as global variables in ST programs. New variables can also
be created in an ST program. After declaration in the ST program, new variables
also have to be entered in the variable list, i.e. they must be instantiated. Instantiate

Arrays can only be used within ST programs. It is not possible to exchange arrays
between different ST programs.
 Engineering - IEC 61131-3 Programming 241

Variables and function blocks 8 Structured Text (ST)

on page 267 gives further details. Global variables are declared within the keywords
VAR_EXTERNAL END_VAR, e.g.

VAR_EXTERNAL
 TIC1379_PV: REAL;
 TIC1379_MODE: INT;
 TCP_Data_IN01: structTCP12;
 (* structTCP12 is a structured data type *)
END_VAR

It is not possible to assign the data type to a list of global variables. Each global
variable must be declared individually.

I/O components of hardware objects cannot be declared directly. The hardware
object has to be declared as a function block in the ST program.

Local variables

Local variables are only valid within the ST program. The names of local variables
only need to be unique within the ST program. The same data type can be assigned
directly to a comma-delimited list of variables. Arrays can only be defined as local
variables. Initialization is possible at the variable declaration point. Local variables
are declared within the keywords VAR END_VAR, e.g.

VAR
 x, y, z: INT
 F1: ARRAY [0..40] OF REAL;
 TIC1379_OUT: REAL := 10.0;
 a, b, c: INT := 1;
 (* a, b and c are initialized at 1 *)
END_VAR

When initializing multidimensional arrays the elements of each individual
dimension are given in square brackets. A bracketed pair at the same level is
separated by a comma. The initialization

VAR
 F2: ARRAY [-1..1, 10..11] OF INT :=[[1,2],[3,4],[5,6]];
END_VAR

is equivalent to assignment with the following values:
242 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Variables and function blocks

F2[-1, 10] := 1;
F2[-1, 11] := 2;
F2[0, 10] := 3;
F2[0, 11] := 4;
F2[1, 10] := 5;
F2[1, 11] := 6;

Initial values are assigned to the variables when the program is loaded.

System variables

By definition, system variables are known in the ST program. There is no need to
declare them explicitly. The ST program uses system variables as variables with a
structured data type, e.g.

Date_Time := ps12.DateTime;

Inputs and outputs

Inputs and outputs can be defined for user defined function blocks. They are defined
in the interface editor of the user defined function block and the definition is
displayed within the keywords VAR_INPUT END_VAR and VAR_OUTPUT END_VAR,
e.g.

VAR_INPUT (* declaration of inputs *)
 IN: REAL;
 MD: BOOL;
END_VAR

VAR_INPUT (* declaration of outputs *)
 IN: REAL;
 STA: INT;
END_VAR

Inputs and outputs can only be edited in the interface editor of the user-defined
function block.

Keywords must not be used for the names of inputs and outputs.

The names of inputs and outputs should not exceed 3 characters. Longer names are
permissible. The long name (>3 characters) must be used in the class definition. If
 Engineering - IEC 61131-3 Programming 243

Variables and function blocks 8 Structured Text (ST)

instances of this function block are used in ST programs the long name is truncated
to the first 3 characters.

Function blocks

Like variables, function blocks must be declared before they are used in an ST
program. The names of function blocks must be unique throughout the project, i.e.
they may only be called up once in the project. In ST programs all standard function
blocks and plausible user-defined function blocks can be used (see also Limits of
the system on page 257). Local variables and function blocks can be declared in the
same block.

All function blocks defined in the tag list can be used in ST programs. New function
blocks can also be created directly in an ST program. After declaration in the ST
program, new function blocks also have to be entered in the tag list, i.e. they must be
instantiated. Instantiate on page 267 gives further details. Function blocks are
declared within the keywords VAR END_VAR, e.g.

VAR
 TI1379: AI_TR;
 TIC1379: C_CU;
 TY1379: AO_TR;
 TI1379_LIN: LIN2;
 (* LIN2 is a user-defined function block type *)
 m: INT;

END_VAR

It is not possible to assign the function block type to a list of function blocks. Every
function block must be declared individually.

To access the I/O components of hardware objects, the hardware object must be
declared as a function block in the ST program in the section VAR_EXTERNAL
END_VAR, e.g.

VAR_EXTERNAL
 DAI02_1_0_1: DAI02;
END_VAR

The components are then accessed, with
h := DAI02_1_0_1.Ch0;
244 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Expressions

8.3.4 Expressions

Syntax of expressions

An expression is a construct which supplies a value when calculated. Expressions
consist of operators and operands. An operand can be a constant, a variable or
another expression. Most operators in ST link two operands and are therefore
referred to as binary. The remaining operators work with one operand and are
therefore referred to as unary.

Binary operators use the common algebraic form, as in A + B. A unary operator
always immediately precedes its operand, as in -B.

Operators

Operators have an order of precedence which governs the sequence of calculation.

Operation Symbol
Order of

precedence

brackets (expression) highest

function evaluation identifier (argument list)
e.g. MAX(x, y), LN(a), etc.

exponentiation **

negation

complement

-

NOT

multiplication

division

modulo

*

/

MOD

addition

subtraction

+

-

comparison <, > <=, >=

equality

inequality

=

<>
 Engineering - IEC 61131-3 Programming 245

Expressions 8 Structured Text (ST)

Calculation of an expression consists in applying the operators to the operands in
the sequence defined by the order of precedence. The following rules apply to the
calculation of long expressions:

• An operand between two operators of different priorities is always associated
with the higher-ranking operator.

• An operand between two operators of the same priority is always associated
with the operator to the left of it.

• Expressions in brackets are considered as a single operand and always
evaluated first.

The expressions below give the following results:

a := 1; b := 2; c := 3; d := 4;
a * b + c (* Result = 5 *)
a + b * c (* Result = 7 *)
(a + b) * c (* Result = 9 *)
a * b + c * d (* Result = 14 *)
a + b * c + d (* Result = 11 *)
(a + b) * (c + d) (* Result = 21 *)

Function calls

Functions must be called as elements of expressions that consist of the function
name followed by a list of arguments in brackets. All standard functions can be
used.

Boolean AND

Boolean AND

&

AND

Boolean exclusive or XOR

Boolean OR OR lowest

It is not possible to define user-specific functions.

Operation Symbol
Order of

precedence
246 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Statements

Examples of function calls:

SQRT(a)
SIN(a)
MAX(a, b, c)

The function call
 ADD(a, b)
has the same value as the expression
 a + b

If constants are transferred exclusively to a polymorphic function as the argument,
at least one explicit type change is needed, e.g.

CONST
 CstVal := 12;
END_CONST

VAR
 i: INT;
END_VAR

i := add(to_in(CstVal), 42);

8.3.5 Statements

Statements are all constructs that declare an action that can be carried out by the
process station. Statements must end with a semicolon.

Simple statements

Simple statements are assignments.

Assignments replace the value of a variable with a new value that is given by an
expression. This expression can include identifiers of functions that are thereby
activated and supply the corresponding values.

An assignment must consist of a variable on the left, followed by the assignment
operator :=, followed by the expression to be evaluated. The statement

:= Expression ;Variable
 Engineering - IEC 61131-3 Programming 247

Statements 8 Structured Text (ST)

 A := B;

replaces the value of the variable A by the value of the variable B. Both variables A
and B must be of the same data type. The following are valid assignments:

 x := y + z;
 Done := (i >= 1) AND (i<100);
 m := 3.0 + SIN(n);
 a := feld[i, j].content;

The assignment of arrays is not possible. The following assignment leads to a check
error:

VAR
 Arr1 [1..10] OF BOOL;
 Arr2 [1..10] OF BOOL;
END_VAR

Arr2 := Arr1

Global variables can be accessed directly in statements, or via the process image. As
in other program editors, an @ must be placed in front of variable names to access
the process image:

 A := SQRT(B); (* direct access *)
 @A := SQRT(@B); (* access via process image *)

Constants in expressions are always calculated internally with the data type DINT.
If constants with data type UDINT are appropriate, an explicit type change must be
provided, e.g.

VAR
 L_Int: UDINT;
END_VAR
 L_Int := 10;
 L_Int := L_Int * TO_UD(256345984);

Unlike other program editors, ST programs no longer require explicit assignment of
data types to functions with more than one data type set. The ST editor recognizes
the data types needed and automatically assigns the appropriate data type set.

An empty statement consists of just a semicolon.
248 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Statements

Function block calls

Function blocks are called by an statement consisting of the name of the function
block followed by a list of value assignments in brackets.

The sequence of input and output assignments is not significant. When the function
block is called, assignments only have to be supplied to and retrieved from the
mandatory pins. Inputs are supplied by := and outputs are retrieved by =>, e.g.

VAR
 LI347_LIN: LIN;
END_VAR
VAR_EXTERNAL
 LI347_CH0: REAL;
 LI347: REAL;

END_VAR
 LI347_LIN (IN:= LI347_CH0, OUT=> LI347);

Each function block may only be used in one assignment in the ST program.

Optional function block pins can also be accessed outside the function block
assignment with
function block name.pin name.

VAR
 FIC251: C_CU;
 RATIO, BIAS: REAL;
END_VAR
VAR_EXTERNAL
 FIC251_PV: REAL;

(Input := ValueTag name ,

,

Output => Variable);

,

 Engineering - IEC 61131-3 Programming 249

Statements 8 Structured Text (ST)

 FIC251_OUT: REAL;
 TIC251_OUT: REAL;
 TRD3_ASP: REAL;
END_VAR
 (* supplying inputs *)
 FIC251.SP := TIC251_OUT * RATIO + BIAS;
 (* calling the function block *)
 FIC251(PV:= FIC251_PV, OUT=> FIC251_OUT);
 (* sending outputs *)
 TRD3_ASP := FIC251.ASP;

Conditional statements

A conditional statement chooses one of its assignments (or a group of them), of
which it is made up, on the basis of a specified condition. Conditional statements are
IF and CASE.

IF statement

The IF statement can be shown with the following syntax diagram:

The result of the expression must be of the data type BOOL. If the result is TRUE,
the part following THEN is carried out, if it is not, the part following ELSE is carried
out. ELSE is optional. If this branch is not available, the IF statement has no effect,
i.e. it carries nothing out whatever. A couple of examples:

IF y<>0.0 THEN
 z := x / y;
ELSE

 z := 3.4e38;
END_IF;

IF Expression THEN Statement

ELSE Statement END_IF;
250 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Statements

IF p <> 0 THEN
 a := SIN(b + c);
END_IF;

If the statement in an ELSE part is another IF statement, this can be summarized as
ELSIF. The following IF statement:

IF e1 THEN
 s1:=1;
ELSE
 IF e2 THEN
 s1:=2;

 END_IF;
END_IF;

is the same as:

IF e1 THEN
 s1:=1;
ELSIF e2 THEN
 s1:=2;
END_IF;

Serial nesting levels with IF .. THEN .. ELSE are syntactically ambiguous. In
the following example, it is not possible to determine without doubt which IF the
last ELSE refers to:

IF e1 THEN IF e2 THEN s1:=1; ELSE s1:=0; END_IF; END_IF;

It is therefore specified that for each definition, ELSE refers to the most recent IF.
The statement shown above is therefore interpreted as follows:

IF e1 THEN
 (IF e2 THEN
 s1:=1;
 ELSE
 s1:=0;
 END_IF;)
END_IF
 Engineering - IEC 61131-3 Programming 251

Statements 8 Structured Text (ST)

CASE statement

A CASE consists of an expression (the selector) and a list of branches, which can be
of any length. Each of these branches is preceded by one or more constants or the
keyword ELSE. The selector must be an integer data type.

Constants must not be defined more than once and must also conform to an integer
data type that is compatible with the selector type. A branch that is preceded by a
constant is carried out if the value of the constant is equal to that of the selector. The
same applies if a range includes the value of the selector. If the value of the selector
does not agree with either a constant or a range, the branch following ELSE is
carried out. If no ELSE branch is defined, the program continues with the next
statement following the CASE statement.

A few examples:

CONST
 plus:= 1;
 minus:= 2;
 times:= 3;
END_CONST
CASE operator OF
 plus: a := b + c;
 minus: a := b - c;
 times: a := a * b;
END_CASE;

CASE Expression OF Constant

ELSE Statement

END_CASE;Statement

Constant .. Constant

,

:;
252 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Statements

CASE state OF
 0: display_text := ’O.K.’;
 1,5: display_text := ’Excessive temperature’;
 2 .. 4: display_text := ’Torque’;
 7: display_text := ’No feedback’;
 6, 8 .. 10: display_text := ’No auxiliary power’;
 ELSE display_text := ’Unknown error’;
END_CASE;

Loops

Loops specify parts of programs that are repeated. If the number of repetitions is
known in advance, use of the FOR statement is recommended. If not, WHILE or
REPEAT should be used.

FOR statement

The FOR statement carries out a loop in which new values are assigned to a variable
(the controlled variable). The controlled variable must be an integer data type.

The definition of a loop with FOR includes identification of a starting and ending
value and a step size. The starting value, step size and ending value are expressions.
These expressions must be of an integer data type that is compatible with the type of
the controlled variables. Identification of the step size with BY is optional. If the step
size is not explicitly stated the loop is carried out with step size 1.

At the start of the loop the controlled variable is set to the starting value and each
time the loop is run through it changes by the step size until the ending value is
reached or exceeded. The expressions for the step size and ending value are
calculated once at the start of the loop and stored as constants for subsequent use in
the loop.
 Engineering - IEC 61131-3 Programming 253

Statements 8 Structured Text (ST)

Every time the loop is run through the statement in the body of the loop is carried
out once.

After the loop is completed the controlled variable has the value
ending value + step size.

This value must not exceed the maximum value that is defined by the data type of
the controlled variable.

A couple of examples:

Maximum := MAX_VAL;
FOR lw := 2 TO 63 DO
 IF Data[lw] > Maximum THEN
 Maximum := Data[lw];
 MaxIdx := lw;

 END_IF;
END_FOR;

Sum := 0;
FOR i := 10 TO 1 BY -1 DO
 FOR j := 1 TO 2 DO
 IF FLag THEN EXIT; END_IF;
 Sum := Sum + j;
 END_FOR;
 Sum := Sum + i;
END_FOR;

FOR Controlled variable := Start value

Statement END_FOR;

End value

TO

BY Step size DO
254 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Statements

If the ending condition of a loop is already satisfied before it runs the first time (i.e.
ending value < starting value), the loop and all the statements it contains are
skipped. The following loop is skipped:

FOR lw := 2 TO 1 DO
 s1:=5;
END_FOR;

REPEAT statement

The REPEAT statement contains an expression whose truth value determines
whether it is to be repeated by the REPEAT UNTIL block that is included. The result
of the expression must be of the data type BOOL.

The statement is carried out repeatedly until the expression takes on the value TRUE.
The statement is carried out at least once because the expression is not evaluated
until UNTIL is reached. A couple of examples of the REPEAT statement:

j := -4;
REPEAT
 j := j + 2;
UNTIL j > 60
END_REPEAT;

REPEAT
 a := in1 + in2;
 b := 2 * in1;
 c := in1 * in2;
UNTIL EndCondition
END_REPEAT;

REPEAT ExpressionUNTILStatement END_REPEAT;
 Engineering - IEC 61131-3 Programming 255

Statements 8 Structured Text (ST)

WHILE statement

The WHILE statement contains an expression whose truth value determines whether
or not the statement that follows DO is to be carried out again. The result of the
expression must be of the data type BOOL.

The expression is evaluated each time before the part of the program to be repeated
is carried out. If the value FALSE is returned before the statement is carried out for
the first time, the block that follows DO is not carried out at all. Otherwise it is
repeated until the expression takes on the value FALSE.

A couple of examples:

WHILE i > 0 DO
 i := i - in1;
 lw := lw+ 1;
END_WHILE;

i := StartValue;
WHILE Data[i] <> x DO
 i := i + 1;
END_WHILE;
Index := i;

The essential difference between WHILE and REPEAT is that WHILE repeats a loop
for as long as the expression returns TRUE. REPEAT repeats the loop until the
expression takes on the value TRUE. Unlike WHILE, a REPEAT statement is run
through at least once.

Control statements

The statement EXIT offers the option of exiting a loop before the ending condition
is reached. If the EXIT statement is inside nested loops, only the loop level
concerned is exited with EXIT, e.g.

WHILE i > 0 DO
 lw := lw+ 1;
 IF lw > MAX_LW THEN

WHILE Expression DO Statement END_WHILE;
256 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Limits of the system

 EXIT;
 END_IF;
 i := i - in1;
END_WHILE;

After the EXIT statement, the program continues with the statement that follows
END_WHILE.

The statement RETURN causes an ST program to be prematurely abandoned.
RETURN interrupts the processing of the current program and control of the program
flow is transferred to the next level up. That can be:

• the program list which called an ST program or

• the program that called a user-defined function block.

RETURN is used first and foremost in user-defined function blocks, e.g.

CASE error_state OF
 2 .. 4: OUT := hold_value;
 5: OUT := 0.0; RETURN;
 6, 8 .. 10: OUT := fix_value;
 ELSE OUT := 0.0;
END_CASE;

8.3.6 Limits of the system

Local elements

The number of local elements is limited to 65526 for each ST program. Local
elements are the local variables, every element of a structured variable and every
individual array element and intermediate store within the program.

Programming of loops

Every ST program is processed in the context of a user task. In other words, the ST
program is carried out once in the space of the task cycle time.

When loops are used, a part of the ST program, the statements within the loops, is
run through many times in a task cycle. This leads to increased runtime for the user
task. The time spent executing a loop should not exceed 5 ms.
 Engineering - IEC 61131-3 Programming 257

Limits of the system 8 Structured Text (ST)

When programming loops, there is a risk of creating endless loops. The following
loop is not ended:

REPEAT
 i := i +1;
 sEnd := FALSE;
UNTIL sEnd
END_REPEAT;

This loop is repeated continuously with the result that none of the other programs in
the user task can be processed.

Memory occupancy

Structured text is a high-level language that is translated into machine code by code
generation. The complex statements mean that the machine code produced is
substantially longer than the source text.

In multidimensional arrays the number of individual elements increases very
rapidly. The array
ARRAY 1 .. 100, 1 .. 100] OF REAL
contains 10,000 elements and requires approximately 39 K bytes of storage space.

User-defined function blocks

Names of inputs and outputs

User-defined function blocks with identical input and output names cannot be used
in ST programs. During class definition these blocks have acquired input and output
names with more than 3 characters. The first three characters of some inputs and/or
outputs are identical.

In ST programs, the inputs and outputs of function blocks are accessed by their
names, not their position on the block. There is no unambiguous supply to inputs or
collection from outputs for identical names of a user-defined function block.

Class names

Class names of user-defined function blocks must not contain any special ST
symbols
258 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Examples

 + - * / & = < > [] . , () : ; ’ @ # $
These user-defined function blocks cannot be used in ST programs.

Since the class name of the user-defined function block is interpreted in ST as a
identifier, the use of special symbols is not allowed.

8.3.7 Examples

Simple control loop

The following example shows the programming of a simple control loop in ST. The
I/O signals are accessed using component names. The external set point is set as a
function of the global variable TIC2106_AUTO, which also determines the
operating mode. The global variables and I/O components are accessed via the
process image.

PROGRAM control loop
CONST
 (* Definition of constants *)
 MAN_SP := 20.0;
END_CONST
VAR
 (* declaration of function blocks *)
 FI2104: AI_TR;
 FIC2104: C_CU;
 FY2104: AO_TR;
 (* declaration of local variables *)
 rLocalVar1, rLocalVar2: REAL;
END_VAR
VAR_EXTERNAL
 (* declaration of HW objects for I/O access *)
 DAI01_2_0_3: DAI01;
 DAO02_2_0_4: DAO01;
 (* declaration of global variables *)
 FIC2104_SETP: REAL;
 TIC2106_AUTO: BOOL;
 FIC2104_ALM: BOOL;
END_VAR

 Engineering - IEC 61131-3 Programming 259

Examples 8 Structured Text (ST)

 (* call input transformation *)
 FI2104(IN:= @DAI01_2_0_3.Ch3, OUT=> rLocalVar1);
 (* assign external set point *)
 IF @TIC2106_AUTO THEN
 FIC2104.SP := @FIC2104_SETP;
 ELSE
 FIC2104.SP := MAN_SP;
 END_IF;
 (* assign operating mode *)
 FIC2104.MA := @TIC2106_AUTO;
 FIC2104.MM := NOT(@TIC2106_AUTO);
 (* call control function blocks *)
 FIC2104(PV:= rLocalVar1, OUT=> rLocalVar2);
 (* further use of outputs *)
 @FIC2104_ALM := FIC2104.SL1 OR FIC2104.SL2 OR FIC2104.SL3;
 (* call output transformation *)
 FY2104(IN:= rLocalVar2, OUT=> @DAO02_2_0_4.Ch2);
END_PROGRAM

This ST program carries out the same functionality as the following FBD program:

to005.bmp

Linearization

The following is an example of linearization. The array Curve is initialized at the
declaration position. A FOR loop is used to search through the array for the
260 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Examples

appropriate input range. When the condition is satisfied the loop is terminated after
calculation of the output value.

PROGRAM lin
VAR
 (* declaration of local variables *)
 Curve : ARRAY [1..10, 1..2] OF REAL :=
 0.0, 0.0, (* X1, Y1 *)
 8.0, 12.0, (* X2, Y2 *)
 13.0, 24.4, (* X3, Y3 *)
 32.6, 28.4, (* X4, Y4 *)
 47.0, 16.0, (* X5, Y5 *)
 62.0, 58.0, (* X6, Y6 *)
 78.4, 82.0, (* X7, Y7 *)
 83.5, 85.0, (* X8, Y8 *)
 92.0, 63.7, (* X9, Y9 *)
 100.0, 100.0; (* X10, Y10 *)
 Index : INT;
END_VAR
VAR_EXTERNAL
 (* declaration of global variables *)
 IN: REAL;
 OUT: REAL;
END_VAR

 (* start of linearization *)
 FOR Index:=1 TO 10 DO
 IF IN <= Curve[Index,1] THEN (* range found*)
 IF Index = 1 THEN (* low limit *)
 OUT := Curve[Index,2];
 EXIT; (* exit FOR loop *)
 END_IF;
 (* calculate output from straight line equation *)
 (* Y := (((Y2 - Y1) / (X2 - X1)) * (X - X1)) + Y1; *)
 OUT := (((Curve[Index,2] - Curve[Index-1,2]) /
 (Curve[Index,1] - Curve[Index-1,1])) *
 (IN -Curve[Index-1,1])) + Curve[Index-1,2];
 EXIT; (* exit FOR loop *)
 Engineering - IEC 61131-3 Programming 261

Examples 8 Structured Text (ST)

 ELSE
 IF Index = 10 THEN (* high limit *)
 OUT := Curve[Index,2];
 EXIT;
 END_IF;
 END_IF;
 END_FOR;
END_PROGRAM

MIN_MAX - user-defined function block

In its running time the user-defined function block MIN_MAX determines the
maximum and the minimum of the sampled input signal IN. The maximum and
minimum can be reset via the RES input.

FUNCTION_BLOCK MIN_MAX

(* the following declarations originate from the interface- *)
(* definition of the user-defined function block *)
(* and cannot be altered in the ST program. *)
 VAR_INPUT
 IN : REAL;
 RES : BOOL;
 END_VAR
 VAR_OUTPUT
 MAX : REAL;
 MIN : REAL;
 END_VAR
 VAR (* VAR_DPS *)
 END_VAR
 VAR (* PARA_DPS *)
 END_VAR
 (* PARA_VIS
 ClassName : TEXT;
 TagName : TEXT;
 ShortText : TEXT;
 LongText : TEXT;
 SelState : BOOL;
262 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Examples

 END_VAR *)
(* End of interface definition *)

(* declarations *)
CONST
 MAX_REAL := 1.0e38;
END_CONST
VAR
 intMax : REAL := -MAX_REAL;
 intMin : REAL := MAX_REAL;
END_VAR
(* program *)
IF RES THEN
 (* RES input is set *)
 MAX := 0.0;
 MIN := 0.0;
 intMax := -MAX_REAL;
 intMin := MAX_REAL;
ELSE
 (* normal function *)
 intMax := Max(IN, intMax);
 intMin := Min(IN, intMin);
 MAX := intMax;
 MIN := intMin;
END_IF;
END_FUNCTION_BLOCK
 Engineering - IEC 61131-3 Programming 263

Edit an ST program 8 Structured Text (ST)

8.4 Edit an ST program

8.4.1Insert ST elements

To simplify the processing of ST programs, ST elements with the basic syntax can
be inserted directly into the text.

An IF statement is inserted into the ST program in the following form:

IF Expression THEN
 ThenStatementList;
ELSE
 ElseStatementList;
END_IF;

For the following ST elements the syntax can be inserted into the program:

• VAR
• VAR_EXTERNAL
• CONST
• Date & Time
• Time
• IF
• CASE
• FOR
• WHILE
• REPEAT
• RETURN
• EXIT
• Assignment

> Elements > Insert ST Syntax > select element to be inserted

or

> Context menu > Insert ST Syntax > select element to be inserted.

or

In Explorer pane:
> Libraries tab > ST Elements > select element to be inserted.
264 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Insert variables and function blocks

8.4.2 Insert variables and function blocks

Before variables and function blocks are used in ST programs they must be
declared, i.e. made known to the ST program. Variables and function blocks can be
directly entered as text. This does not enter them in the variable list or the tag list.
Entering them there is done via instantiate. Functions can be used in ST programs
without declaration.

Variables that are already available can be used directly in an ST program.

Insert variable

Within an ST program, variables that have already been defined can be inserted
directly. If the cursor is in the VAR_EXTERNAL END_VAR block a variable
declaration is inserted. The variable name is inserted in the program code for
subsequent use in the program:

New variables can also be created directly in an ST program:

The following dialog appears for creating a new variable in the variable list:

di0133us.png

> Elements > Select global variable or F2 key

> Select an existing variable in the project from the list

> Position the cursor in the VAR_EXTERNAL END_VAR block

> Elements > Create global variable
 Engineering - IEC 61131-3 Programming 265

Insert variables and function blocks 8 Structured Text (ST)

Name name of the new variable.

Data type Identify the data type of the newly defined variable. The standard
data types and all user-defined data types can be selected from the
list.

Resource Specify the assignment of the variable to the resource. Every
variable is assigned to exactly one resource. Access to this variable
by other resources is read-only.

Variable via process image
 Access via the process image is preset for all uses of the

variables.

Export Variable is enabled for reading by other resources.

Comment Any desired text can be added to a variable for clarification.

After definition of the variables is terminated this is automatically adopted in the
system-wide variable list and can be used in other programs (see Section 1,
Variables).

New variables can also be declared as text. The data type must also be entered as
text, e.g.

VAR_EXTERNAL
 TI203: REAL;
 TI203_MODE: BOOL;
END_VAR

With text declaration, the variable is not yet entered in the list of variables. The
variable still has to be instantiated for this to take place. See also Global variables on
page 241.

Insert function blocks

Function blocks can be declared directly within a VAR END_VAR block.

User-defined function blocks with special symbols in class names cannot be used
in ST programs. See Limits of the system on page 257.
266 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Insert variables and function blocks

Outside a VAR END_VAR block, the following syntax is entered into the ST
program, e.g.

<TagName> : LIN;

This text can be moved into an VAR END_VAR block.

New function blocks can also be declared as text. The function block type must also
be entered as text, e.g.

VAR
 TI203: AI_TR;
END_VAR

With text declaration, the function block is not yet entered in the tag list. It still has
to be instantiated for this to take place. See also Function blocks on page 244.

Instantiate

After variables and function blocks have been textually defined (declared) they still
do not appear in the corresponding lists (variable list and tag list). A further step,
Instantiate, is needed for this.

> Position the cursor in the VAR END_VAR block.

> Select the function block either from the Elements > Blocks menu or from the
Explorer pane > Libraries tab

The ST editor opens the dialog.

> Enter a new valid tag name in the dialog.

> If desired, carry out further parameterization.

> Click OK to close the dialog

Function blocks can only be declared within a VAR END_VAR block.

> Elements > Instantiate

or

> Editor menu bar >click Instantiate
 Engineering - IEC 61131-3 Programming 267

Insert variables and function blocks 8 Structured Text (ST)

Instantiate links the parameter data for the function blocks to the ST program. After
the function block declaration has been deleted the parameter data is still stored in
the ST program and can be erased by instantiate.

The dialog summarizes the objects to be instantiated and/or those no longer
required:

to006us.png

These variables will be created
The variables in the field will be entered in the variable list.

These blocks will be created
The function blocks in the field will be entered in the tag list.

These blocks will lose their parameterization
These function blocks have been deleted from the ST program. The
parameter settings for these function blocks are still included in the
ST program and will be deleted when the instantiate is confirmed.

Info-Message This field displays information on objects that cannot be
instantiated.

OK Instantiate is carried out and the parameters for function blocks that
are no longer needed are deleted
268 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Working with variables

8.4.3 Working with variables

Before variables are used in ST programs they must be declared, i.e. made known to
the ST program. Information on inserting variables is given in Insert variables and
function blocks on page 265.

Access to variables

There is read access and write access to variables. Variables to the left of the
assignment operator have write access. All applications to the right of the
assignment operator are read-only access, e.g.

var4 := var1 + SIN(var2 * var3);
(* var4 can be written to *)
(* var1, var2 and var3 are read from *)

Multiple write access to the same variable is allowed in an ST program and does not
lead to errors, e.g.

var1 := 5:
var2 := 3 * var1;
var1 := 42;

Process image

As with other program editors, access to a variable in ST programs can be direct or
via the process image. Access is gained via the process image by placing @ in front
of the variable name, e.g.

var1 := @var4 + var2;
(* var1 can be written to directly *)
(* var4 is read via the process image and var2 is read
directly *)

@var3 := var4 + var5;
(* var3 is written to via the process image *)
(* var4 and var5 are read directly *)
 Engineering - IEC 61131-3 Programming 269

Working with functions 8 Structured Text (ST)

Using system variables

System variables are declared by definition. Explicit declaration in the ST program
is not necessary. System variables can be used like global variables. Access via the
process image is possible, e.g.

load := @ps12.CPU_Load;
date := @ps12.DateTime;

8.4.4 Working with functions

Using functions

Functions can be used directly in ST programs without a declaration.

Functions can also be inserted directly in ST programs by giving the name. Refer to
Engineering Manual, Functions and Function Blocks.

Values are transferred in a bracketed argument list. The individual arguments are
separated by commas:

Function name(Argument_1, Argument_2, .. , Argument_n)

It is also possible to call a function within the argument transfer of another function,
e.g.

CONST
 AllChar :='0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ';
END_CONST

If a variable is read many times in an statement, the same type of access should
be used every time. In the statement
var1 := var2 + SIN(@var2);
inconsistent data supply of var2 may occur, as var2 is read from two different
places (directly and via the process image).

> Elements > Blocks > select function from library

or

In Explorer pane:
> Libraries tab > select elements from a category to be inserted
270 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Working with functions

VAR
 B1, B2: BYTE;
 S1, S2: STR8;
END_VAR

B1 := EXTCT(1, TO_WO(S_FIND(AllChar, S_LEFT(S1, 1)) + 48));
(* changes a 1 character STR8 into a BYTE *)
S2 := TO_STR8(S_MID(AllChar, 1, TO_IN(PBYWO(B2))-48));
(* changes a BYTE into a 1 character STR8 *)

Data type of functions

In ST programs the data types of functions are automatically adapted to suit the
transferred arguments. There is no need for the data type to be adapted explicitly to
the transferred arguments. If necessary, the data type of the argument can be
changed to suit by conversion functions, e.g.

VAR
 i1, i2: INT
END_VAR
(* extract the root from an INT value *)
i2 := to_in(SQRT(to_re(i1)));

The possible data types for a function must be taken from the relevant function
description. See Engineering Manual, Functions and Function Blocks.

If constants are transferred exclusively to a polymorphic function (with different
data types) as the argument, at least one explicit type change is needed, e.g.

CONST
 CONST_VAL := 12;
END_CONST
VAR
 i1: INT;
END_VAR
i1 := add(to_in(CONST_VAL), 42);
 Engineering - IEC 61131-3 Programming 271

Working with function blocks 8 Structured Text (ST)

Number of function inputs

In ST programs the number of function inputs is determined by the argument list,
eg.

VAR
 b1, b2, b3, b4, b5, b6: BOOL
END_VAR
b1 := AND(b2, b3, b4);
b1 := OR(b2, b4, b5, b6);

The number of arguments must not exceed the maximum input number. It is not
possible to set the input number explicitly in ST programs.

8.4.5 Working with function blocks

Before function blocks are used in ST programs they must be declared, i.e. made
known to the ST program. Information on inserting function blocks is given in
Insert function blocks on page 266.

Position function blocks in the program

Function blocks in ST programs are called in statements (see Statements on page
247). The tag name of the function block must be used in the statement to call it, e.g.

VAR
 TI104: LIN; (* Declaration of the function block*)
 in, out: REAL; (* Declaration of local variables *)

END_VAR

(* calling the function block *)
TI104(IN := in, OUT => out);

Function blocks may only be called once in the ST program.

Use function blocks in loops

Certain function blocks need uniform sampling to fulfil their functionality, i.e. they
must be calculated at uniform intervals. Controller blocks are examples of these.
They must not be called within loops.
272 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Working with function blocks

Supply function block pins

A distinction is made between mandatory pins and optional pins for block inputs
and outputs. The two types of pin are represented in the same way in ST programs.

Supply to and retrieval from mandatory pins must take place with the block call. All
mandatory pins can be inserted directly behind the function block call.

A comma-delimited argument list with all mandatory pins is created, e.g.

TI104(IN:= (*REAL*), OUT=> (*REAL*));

The data type is given for each pin in the form of a comment. Inputs are supplied via
the assignment operator :=. They can be supplied directly with constants. Outputs
are written to variables with =>, e.g.

TI104(IN:= 45.0 (*REAL*), OUT=> out (*REAL*));

Supply to and retrieval from optional pins can take place with the block call or at
any point in the ST program. They can be inserted directly at the function block call.

An additional pin is appended to the comma-delimited argument list, e.g.

TI104(IN:= (*REAL*), OUT=> (*REAL*), STA=> (*INT*));

Inputs and outputs that support more than one data type have the comment text
(*Other*), e.g.

VAR
 TIR104: TREND;

User-defined function blocks with identical input and output names cannot be
used in ST programs. See Limits of the system on page 257.

Position the cursor on the function block call (tag name)

> Elements > insert mandatory parameter

> Position the cursor on the function block call (tag name)

> Elements > Insert one parameter

> Select input or output from the list

 (Inputs and outputs are separated by a horizontal line).
 Engineering - IEC 61131-3 Programming 273

Working with function blocks 8 Structured Text (ST)

END_VAR
TIR104(IN1:= (*Other*),IN2:= (*Other*),IN3:= (*Other*));

In addition to block call, optional pins are supplied via assignments. The pin name is
then appended to the tag name with a dot separator, e.g.

(* Assignment of inputs for a PID controller *)
IF @TIC2106_AUTO THEN
 FIC2104.SP := @FIC2104_SETP;
ELSE
 FIC2104.SP := MAN_SP;
END_IF;
FIC2104.MA := @TIC2106_AUTO;
FIC2104.MM := NOT(@TIC2106_AUTO);
(* calling the controller block *)
FIC2104(PV:= @FIC2104_PV, OUT=> @FIC2104_OUT);
(* further use of outputs *)
@FIC2104_ALM := FIC2104.SL1 OR FIC2104.SL2 OR FIC2104.SL3;

The names of the function block pins are described in the Engineering Manual,
Functions and Function Blocks. If the name of a function block pin is the same as
a keyword (see Special symbols and reserved words on page 234), an underline
must precede the pin name, e.g.

VAR
 pin_dt: P_DT;
END_VAR
pin_dt(DAY := 18, MON := 6; YEA:= 2002, _DT=> dt1);

If an input is supplied before the block call and in the block call, the supply in the
block call has precedence, e.g.

VAR
 ana_mon: M_ANA;
END_VAR
ana_mon.L1 := 12.0;
ana_mon(IN := In12, L1 := 42.0);

Function block outputs cannot be written to.
274 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Working with function blocks

The limit value L1 in the function block has the value 42.0.

Function block pin and parameters

In certain function blocks it is possible to select use as an input (pin) or as a
parameter, e.g. the limit value in the M_ANA for individual inputs. Function block
inputs can also be used in ST programs outside the function block call. For this
reason it has been laid down that in cases of simultaneous use as an input and as a
parameter, the input has priority. If both the input and the parameter are used the ST
program issues a plausibility warning.

Configuration example:

to014us.png

VAR
 pin_ana: M_ANA;
END_VAR
pin_ana.L1 := Limit1;
pin_ana.L2 := Limit2;
pin_ana(IN := Input);

The limit values are assigned as follows:

If the value of an output is used before the block call, the initial value or the value
from the most recent calculation cycle is transferred.

Limit value 1 Only the input is configured. The limit present at input L1 is
used as the limit value.

Limit value 2 Input and parameter are configured. The limit present at
input L2 is used as the limit value.

Limit value 3 Only the parameter is configured and the parameter value is
used as the limit value.

Limit value 4 Not configured.
 Engineering - IEC 61131-3 Programming 275

Working with function blocks 8 Structured Text (ST)

Negate function block pins

The values of the Boolean inputs and outputs of a function block can be inverted at
every point of use. The complement operator NOT must be used to do this, e.g.

FIC2104.MM := NOT(@TIC2106_AUTO);

All function blocks have non-negated input and output pins as default.

Parameterize function blocks

The first parameter definition dialog of the function block is called. The function
block can be parameterized as described in Handling the parameter dialogs on page
130.

Check function blocks

In ST programs it is not possible to check function blocks for plausibility from the
parameter dialog. Function blocks may only be checked in the context of the ST
program.

Activation from the error list takes place as in other program editors.

Inputs that can also be configured as parameters have priority over the parameter
in the ST program.

The function block terminal to be inverted must be of the data type BOOL (i.e.
binary).

> Select the tag name of the function block to be parameterized.

> Edit > Parameters

or

> Double-click the tag name of the function block

> Editor > Check

or

> Editor menu > Check editor
276 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Program user-defined function blocks

8.4.6 Program user-defined function blocks

A user-defined function block is created as described in Section 10, User Function
Blocks. If structured text is used as the program, certain special features have to be
observed (see also Limits of the system on page 257).

An ST program is enclosed between the keywords FUNCTION_BLOCK and
END_FUNCTION_BLOCK.

FUNCTION_BLOCK STufb1
;
END_FUNCTION_BLOCK

Interface definition

The interface definition of the user-defined function block (see Interface editor on
page 356) is adopted as a non-editable (grey) block in the ST program. The interface
cannot be modified in the ST program, this must always be done in the interface
editor. All variables defined in the interface that are loaded onto the process station
can be used in the ST program. See also Inputs and outputs on page 243.
 Engineering - IEC 61131-3 Programming 277

Program user-defined function blocks 8 Structured Text (ST)
 to013.bmp

Local variables can be declared in the ST program. There is no access to local
variables from the faceplate.

The keyword VAR_EXTERNAL for declaring global variables must not be used in
user-defined function blocks.

Blocks in the UFB

Function blocks that are used in user-defined function blocks must be declared in a
VAR END_VAR block. This ensures that they always have a name in the class
definition.

In the instance (Zoom to user FB) every embedded function block can be given an
individual name.

This individual tag name is not displayed in the ST program.

> Open parameter dialog for the function block

> Enter tag name
278 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) General processing functions

8.5 General processing functions

8.5.1Bookmarks

Bookmarks are used to identify individual lines in an ST program for rapid
selection. Bookmarks are displayed as a light blue rectangle in the mark column.

to007us.bmp

Bookmarks can be switched on and off. If there is no bookmark in the line the
switch sets it, if there is one it deletes it.

You can jump to a bookmark from any point in the ST program. Thereafter it jumps
to the next bookmark, and so on:

> Position cursor in desired line

> Edit > Toggle bookmark

or

> CTRL + F7 key

To jump forward (towards the end of the program):

> Edit > Goto next bookmark

or

> F7 key
 Engineering - IEC 61131-3 Programming 279

Breakpoints 8 Structured Text (ST)

8.5.2 Breakpoints

Breakpoints are used for tracing faults in programs. See Section 11, Debugger are
displayed as a brown circle in the mark column.

to008us.bmp

Breakpoints can be switched on and off. If there is no breakpoint in the line the
switch sets it, if there is one it deletes it.

Breakpoints that have been set can be disabled and enabled

To jump backwards (towards the beginning of the program):

> Edit > Goto previous bookmark

or

> SHIFT + F7 key

> Position the cursor on the desired line

> Edit > Toggle breakpoint

or

> F9 key

> Position the cursor on the desired line > context menu

> Disable breakpoint / Enable breakpoint
280 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Find and replace

8.5.3 Find and replace

In ST programs, any text can be found. The options Find, Find next and Replace
are used to search or find text in the ST program.

Find and replace starts at the current cursor position. At the end of the ST program
the find continues automatically from the program start and vice versa. If a text area
is selected when the Find & Replace dialog box is opened, this text area is shown
as the default in the Find field.

to009us.png

Find The term entered is searched for in the ST program. Every find term
is saved in a list and can be recalled from the list later.

Replace Replaces the find term with the term that has been entered. Every
replacement term is saved in a list and can be recalled from the list
later. If the field is empty, the find term is deleted.

Match whole words only
 The find term is looked for as a whole word. If the find term is

part of another word it is ignored. Thus, for example, the find term
linear is not found in the word linearization.

> Edit > Find

> Edit > Find next

> Edit > Replace

or

> F3 key
 Engineering - IEC 61131-3 Programming 281

Goto line 8 Structured Text (ST)

Match case sensitive
 The find only finds words with upper and lower case exactly as

in the find term. Only exact matches are found.
 Differences of case are ignored.

Up The find proceeds from the current position towards the
beginning of the program

Down The find proceeds from the current position towards the end of
the program

Find next The next occurrence of the find term is found according to the
settings in the ST program.

Replace The find term is replaced with the term in the Replace field.

Replace all All occurrences of the find term in the ST program are replaced by
the term in the Replace field without prior confirmation.

Close window Ends the search and closes the Find & Replace dialog box.

8.5.4 Goto line

In ST programs it is possible to jump to any line.

The current line is offered when the dialog is called.

to010us.png

Line number Enter the number of the line to jump to.

The current line number is displayed in the state line.

The Replace field is disabled in the Find & Replace dialog box when Find and
Find next options are selected.

> Edit > Goto line
282 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Block operations

8.5.5 Block operations

Select program elements

Select individual program elements

The selection area is the whole text of the program element (e.g. variable name or
tag name). The selection of individual program elements is not highlighted in the ST
program.

After the selection it is possible to open e.g. the parameter dialogs of function
blocks

Mark areas of text

to011.bmp

Inside a line, characters are marked. Otherwise complete lines are marked. After
marking, the desired operation can now be carried out. Example: > Edit > Cut

Extending an area of marked text

The additional characters or lines are included in the marked area.

Select by placing the cursor on the desired program element and clicking the left
button.

> Hold down the left mouse button > mark an area of text

> Press SHIFT key and hold it down > select more characters or lines
 Engineering - IEC 61131-3 Programming 283

Block operations 8 Structured Text (ST)

Deselect program elements

Deselect text area

The text area is deselected and shown as such.

A selection is automatically cancelled by opening a different window.

Reducing an area of marked text

The marking is reduced to coincide with the selected cursor position.

Copy

Before an area of text can be copied it must be marked. Copying places the marked
text into an internal store. Areas of text that have been placed in the internal store by
a previous copying operation are overwritten. To find out whether an area of text is
in the internal store, look at menu item Insert in the Edit menu or in the context
menu. If the menu item is inactive, the internal store is empty.

> Click unmarked point in ST program

> Press SHIFT and hold it down > position cursor within the marked text

> Edit > Copy

or

> CTRL + C

Marked areas of text can also be copied into other ST programs.
284 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Block operations

Cut and delete

If areas of marked text have been cut, they can be put back into the program again
using Paste. When text is cut, areas of text already present in the internal store are
overwritten.

When function blocks are cut the associated parameter data is not transferred to the
internal store but stored in the ST program. When a function block is pasted into the
same ST program the parameter data is retained but when the block is pasted into a
different one it loses its parameter data.

Paste

The following methods of pasting areas of text that have previously been copied or
cut are available:

The copied or cut area of text is inserted at the current cursor position.

Write file

A marked area of text can be written to a file for exchange with other projects and
other editors.

> Edit > Cut

or

> Delete or CTRL + X or DEL

If areas of text are deleted they can only be inserted again immediately afterwards
with Undo, they cannot be re-inserted later. Areas of deleted text can only be
restored by exiting the program without saving.

> Edit > Paste

or

> CTRL + V

> Edit > Write file
 Engineering - IEC 61131-3 Programming 285

Block operations 8 Structured Text (ST)

A Unicode text file with the extension .txt, which can be edited in any Unicode-
enabled text editor, is created. The parameter data associated with function blocks is
not written to the text file. The file thus created can be used for program exchange
with other ST editors.

Read file

An ST program that has been created with another text editor can be read into the
ST editor.

The text file to be read in can be in Unicode or ASCII format. The file format is
automatically recognized when the file is read in. The contents of the text file are
inserted at the current cursor position.

Export block

A marked area of text in an ST program can be exported to a file.

A file is created in a Freelance Engineering specific format. This includes the
parameter data associated with a function block. The complete tag name of the
function block declaration must be included in the area of marked text if the
parameter data is to be exported.

Import block

A block that has been exported from an ST program can be imported.

The contents of the imported file are inserted at the current cursor position. Function
blocks contained in the file are imported, together with their parameter data. If the
tag name already exists, a new tag name is created by appending a serial number.

> Edit > Read file

> Edit > Export block

> Edit > Import block
286 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Cross references

The function blocks are automatically instantiated, i.e. the new tag names are
entered in the tag list. Imported parameter data is assigned to the function blocks.

Undo an action

This function allows the last action taken to be undone. Irrespective of this, the state
of the program remains implausible until the next plausibility check.

8.5.6 Cross references

The cross references can be selected directly from the ST editor:

The following dialog shows the programs where the selected variable or tag is used.

CrossRef_us.png

In contrast to the variables, for the tags no read or write access is defined.

> Edit > Undo

Select a variable, I/O component or tag

> Edit > Cross reference

or

> F5 key
 Engineering - IEC 61131-3 Programming 287

Program administration functions 8 Structured Text (ST)

Show program
For a variable:
Call a program with prior selection of these variables, or call the
module with prior selection of the I/O component.

For a tag:
Call the program with prior selection of this tag, or call the module
in the hardware structure.

Show declaration
For a tag, the tag list is called, for a variable the variable list is
called. If an I/O component is used directly in the program, the I/O
editor of this component is opened.

Filter A filter enables only those variables to be displayed for which read-
only access or write-only access exists in the programs concerned.

After activation it is possible to branch to the programs listed as cross-references.

Show next / previous cross reference

The next or previous use of the selected variable within the current program is
displayed.

8.5.7 Program administration functions

Save the program

The program is saved without exiting. Programs that are not correct can also be
saved and then completed at any time.

> Select a variable > Edit > Cross reference > Find next or Find previous

> Project > Save Tab

If the project is not saved in the project tree on closing or before, changes made to
the program are ineffective.
288 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Program administration functions

Document the program

The editor for documentation is opened as separate tab in the right pane. This can be
closed from the close button available at the right side of the opened tab, and
reopened later from the main menu.

Documentation administration is opened. This is where user specific project
documentation is defined and output. For a description, see Engineering Manual
System Configuration, Documentation.

Program header

A program-specific short comment can be added to the program documentation
header, or this can be edited.

For drawing header / footer, see Engineering Manual System Configuration,
Documentation.

Edit program comment

A longer program-specific comment can be edited here to describe the functionality.
For a description, see Engineering Manual System Configuration, Project
manager.

Print

The contents of the screen are output to the standard printer.

> Project > Documentation

> Project > Header

> Project > Comment

> Options > Print
 Engineering - IEC 61131-3 Programming 289

Program administration functions 8 Structured Text (ST)

Plausibility check

All inputs relevant to operation are checked for syntactical and contextual
correctness. Errors, warnings and notes that are found are displayed in an error list.
If the plausibility check detects errors, the processing state of the program is
implausible.

This plausibility check reviews the accuracy and consistency of the program itself.
To test the correctness in the project context call plausibility from the project tree.
See Engineering Manual System Configuration, Project Tree, plausibility.

Error list

Any errors present in the program is displayed in the error list. Double-click a check
message to jump to the line in the program that caused this error.

See also Engineering Manual System Configuration, Project tree.

> Editor > Check

The processing state of program elements that are newly entered, copied or
moved is implausible.

> Editor > Show error list
290 Engineering - IEC 61131-3 Programming

8 Structured Text (ST) Commissioning structured text

8.6 Commissioning structured text

8.6.1User interface for commissioning

When structured text is commissioned, the program is displayed in the same way as
during configuration, except that in commissioning mode the structure of the
program cannot be changed.

tl027us.png

The individual function blocks can be selected and parameterized. Operating modes
can also be modified from the commissioning mode.

If the program editor is opened in commissioning mode, that for showing the live
value, CPU load can raise approximately up to by 15%.
 Engineering - IEC 61131-3 Programming 291

Display of online data 8 Structured Text (ST)

8.6.2 Display of online data

Online data in the ST program

On going through the text of the ST program the currently calculated values are
displayed.

If the text is found in the variable list or the local variables, the current value of the
variables is displayed. If global and local variables have the same name, the value of
the local variables is displayed.

If the text is a tag name, the processing state of the function block is displayed. The
value of function block pins cannot be displayed in the ST program.

Moreover, values within a cycle can be described once.

Window for online data

As with other program editors, the value window and the trend window can be used
in ST programs. Local variables can be entered in both windows.

To support error tracing, ST programs have an additional window, the watch
window, for online data.

The values in the watch window are not updated on each cycle. See also Section 11,
Debugger, Watch window on page 404.

8.6.3 Error tracing

The debugger can be used for ease of error tracing in ST programs. The debugger is
described in Section 11, Debugger.

> Right-click on a variable or a function block pin > Write value > Enter value
> OK

Writing a value must not be confused with enforced setting on the I/O module.
The value that is written can be overwritten from the program in the next cycle.

> Select variable > Windows > Add value to watch window
292 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC)

9.1 General Description – Sequential Function Chart
The sequential function chart is an IEC 61131-3 programming language for creation
and modification of sequence controls. The sequential function chart enables one to
structure and display complex tasks in a clearly arranged manner. The structure is
similar to a network of elements, with the individual elements of the sequential
function chart denoting the sub tasks of the user program.

The sub tasks are described in the programs which are assigned to the transitions
and steps. These programs can be generated in the function block diagram (FBD),
ladder diagram (LD), instruction list (IL), or structured text (ST). A transition
describes the step-enabling condition for activation of the next step. The steps are
then processed cyclically until the next transition is fulfilled.

The transitions are linked via lines and branches, controlling processing of the
individual elements. A distinction is made between alternative and parallel lines or
branches. In the case of sequence selections, only one string is processed in each
case, where as several steps are processed concurrently in the case of simultaneous
sequence divergences.

Since a step is processed only until the following transition is enabled, advantages
are procured as regards the CPU engagement because only very few steps can be
active simultaneously. However, functions or function blocks, which must be
computed continuously e.g. analog monitoring for alarm value messages, cannot be
configured directly in the SFC programs, since they can no longer be computed
when the SFC switches forward. These programs are entered into the program lists
and are processed cyclically.

The SFC program can be activated automatically as a function of an enable and
start-time specification. A new start time and repeat time permit selective repeats of
the entire SFC program.
 Engineering - IEC 61131-3 Programming 293

9 Sequential Function Chart (SFC)

The SFC program is processed in the Manual of Automatic modes, while there are
also possibilities for regulating the course of the SFC program via operator
interventions. All operator interventions can be individually interlocked. Using the
supplementary package Security Lock, operation of the entire SFC can be assigned
to individual user groups or interlocked for certain user groups.

See also Engineering Manual System Configuration, Commissioning,
Engineering Manual Operator Station Configuration and Engineering Manual
User Access.

Configuration of the SFC program permits easy positioning and linkage of steps and
transitions. It is syntax-oriented, i.e. elementary parts of the sequential function
chart such as identifier can only be stated correctly. To support programming, the
editor is divided into lines and columns in which in each case only certain elements
of the sequence flow chart can be programmed.

The operating range consists of thin and thick lines. The thin lines are used only for
making horizontal or simultaneous sequence selections. The broad columns are
destined for steps and transitions. The maximum number of lines per program and
the maximum number of columns are limited to 512 and 16, respectively. All
function-relevant entries can be checked for plausibility on request.

Displays can be assigned to each step or transitions through their own assignment
editor, and these displays can be then called on the Freelance operator station

The Freelance system offers the options of operating the SFC program in either
the automatic or manual operating mode. In automatic mode, the SFC program
runs automatically and the transitions are stepped through by the program. In
manual mode the operator is able to control the processing of steps and
transitions by using the carry out button.

In manual mode, there are three types of Inching available for preselection as
follows:

• Actions and transitions are not activated

• Actions are activated

• Actions and Transitions are activated

So special care should be taken while creating the logic, if the user wants to run
program in both automatic as well as manual mode.
294 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Create an SFC program

through the context menu of the step or transition. In this manner, the user can get a
better orientation and call up the displays relevant to the process.

Criteria windows can also be defined for the operator interface, in order to give the
user instructions for the current processing activity. Any arbitrary variables can be
depicted in these windows, featuring their current values and a comment. A tag can
also be assigned to each variable. This enables a relevant faceplate to be called up on
the operator station in the operation dialog of the criteria window.

9.1.1 Create an SFC program

SFC programs are created in the project tree. For detailed description, refer to
Engineering Manual System Configuration, Project tree.

9.1.2 Call SFC program editor

A program can be opened by selecting the SFC object in the project tree. This can
be opened from the Edit menu or double-click the SFC program. The SFC program
is opened as separate tab in the right pane. This can be closed from the close button
available at the right side of the opened tab.

The program is displayed with its current content (steps, transitions, etc.) and can be
modified.

9.1.3 Close SFC program

Closes the active SFC tab.

> Project tree > select a task > Edit > Insert next level > SFC program

> Select the SFC program from the project tree > Edit > Program

or

> Double- click the SFC program

> Editor > Close
 Engineering - IEC 61131-3 Programming 295

Basic rules 9 Sequential Function Chart (SFC)

9.1.4 Basic rules

• A sequence control always begins with one initial step

• A step always follows a transition and vice-versa.

• Only one transition is possible before and after a simultaneous sequence
divergence.

• After start and end of a sequence selection convergence, several transitions
always follow.

• A branch is always closed in the same manner as it was opened.

• The last element of an SFC program must always be a transition.

9.1.5 Example of how to edit

di1401.bmp

The following example is given to help better explain the structure of a sequence
control. In the explanation reference made always refer to the lines and columns in
the example.

A sequence control always begins with an initial step (> line 1, column 2).

After that and just as in every step, a sequence selection divergence may follow.
Under the step, a sequence selection divergence start is placed (> line 2, column
2), for every other alternative sequence selection divergence, a sequence selection
divergence add is placed (> line 2, columns 1+4).
296 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Example of how to edit

To bridge columns it is possible to set horizontal seq. selection line (> line 2,
column 3).

After every branching follow transitions (> line 3, columns 1+2+4).

Since steps can only be entered in the thick lines, the next thin line is bridged with a
vertical line (> line 4, columns 1+2+4) to enable steps to be inserted (> line 5,
columns 1+2+4).

A union of the sequence selection steps is effected with sequence selection
convergence add (> line 8, column 1), before or after the next step with sequence
selection convergence end (> line 8, column 2).

Goto (> line 8, column 4) can be inserted in the next thick field after a transition.

A sequence selection divergence follows directly after a transition (> line 11,
column 2). To begin the divergence of the transition, the simultaneous sequence
divergence start is selected (> line 12, column 2).

The other simultaneous steps are begun with simultaneous sequence divergence
add (> line 12, column 2+4).

To bridge columns the function horizontal simultaneous sequence line (> line 12,
column 3) must be selected.

After inserting the steps or before the next transition the divergence with
simultaneous sequence convergence add (> line 14, column 1+4) is ended with
simultaneous sequence convergence end (> line 14, column 2).
 Engineering - IEC 61131-3 Programming 297

Structure of the Sequential Function Chart 9 Sequential Function Chart (SFC)

9.2 Structure of the Sequential Function Chart

9.2.1SFC program user interface

SFC_Struct_us.png

(1) Menu bar The menu entries are adapted to the active window or editor in
Freelance Engineering.

(2) Common toolbar
 accessible from the Project Explorer and the. Editor region.

(3) Editor toolbar
Frequently used commands of SFC are accessed while working in
the SFC editor.

– Save editor
– Check editor
– Grid on/off
298 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Display program information

– Edit parameters of element
– Delete row
– Insert row
– Delete column
– Insert column
– Find next cross reference
– Find previous cross reference

(4) Graphics area
The items for generating a sequence control are entered in the
graphics area. To obtain a better overview, the graphics area is
divided up into grids. Grids and scales can be windowed in and out
(lines 1-512 / column 1-16).

(5) Status bar The status bar indicates the name of the program which is being
edited and name of the user.

9.2.2 Display program information

Program version and position in the project structure

The program name, date of last program modification as version identification and
the structure path in the project tree are shown.

The structure path can be displayed in a long or short format, as set in the Options
menu of the project tree.

di1430us.png

> Options > Version
 Engineering - IEC 61131-3 Programming 299

Drawing help 9 Sequential Function Chart (SFC)

Program state

The status bar indicates the name of the currently edited program, the position in the
project tree, the current user and license information.

9.2.3 Drawing help

Grid

With this menu item the grid of rows and columns can be displayed or hidden. A
hook stands in front of the menu item if the grid is shown.

Row and column numbers

This menu item is used to show and hide the number of lines and columns. A hook
stands in front of the menu item if the numbers are shown.

> Options > Grid

> Options > Row and column numbers
300 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Edit SFC Elements

9.3 Edit SFC Elements

SFC_Element_us.png

All SFC elements can be called from the Elements menu by right-clicking the
editor from the shortcut menu, and also from the corresponding category in the
Library explorer. Depending on the position in the editor, only the respective
admissible elements can be inserted.

In the following, only the selection from the menu is described.

> Elements

> Elements > select required SFC element

or

> Open category in Library pane > select required SFC element

or

> Right-click the editor > select required SFC element
 Engineering - IEC 61131-3 Programming 301

Initial step 9 Sequential Function Chart (SFC)

Additionally the following rules are valid:

• Initial step, Step, Jump and Transition can only be entered into the thick lines.

• The hook in front of an element represents the default value and shows which
elements can be entered by pressing the SPACE key. The default value is stored
line by line, so that the last element entered in a line can be recalled with the
SPACE key.

• The given names (max. 8 characters) must be unique within the SFC program.

9.3.1 Initial step

Each sequential function chart program begins with an initial step. This is the step
of the program which must be accessed on starting the program or with the Return
operator intervention.

Only one initial step is always permitted in an SFC program.

di1431.bmp

9.3.2 Step

The step describes what is to be controlled in this process step. The actions of the
step are described in the assigned programs. These programs can be written in any
of these programs the instruction list (IL), ladder diagram (LD), function block
diagram (FBD), structured text (ST).

Insert a step. The name of the step (max. 8 characters) must be unequivocal within
the SFC program. Up to 8 programs can be assigned to one step.

> Elements > Initial step

In the case of a sequence selection following directly after an initial step, it is not
allowed to jump to the beginning of the sequence.

> Elements > Step
302 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Jump

di1432.bmp

9.3.3 Jump

Jump is one means of going from one branch to another step situated inside or
outside this branch. Jump is used instead of a step.Decisive for the execution of the
jump is the transition at the jump target; this transition must be fulfilled.

Insert a jump. Insert an arrow on the left of the step of the jump destination, if
already available in the SFC program.

di1433.bmp

di1467.bmp

9.3.4 Transition

The transition describes what must be fulfilled in this process step, so that the next
step can be activated. The actions of the step are described in an assigned program.
This program can be written in either the instruction list (IL), ladder diagram,

> Elements > Jump

When entering the name of the jump destination, pay attention to capital and
small letters!

A branch must always be closed in the manner as it was opened. The SFC
structure is incorrect if no element Seq. selection convergence end was set on
jumping from a branch.
 Engineering - IEC 61131-3 Programming 303

Vertical line 9 Sequential Function Chart (SFC)

function block diagram (FBD), or structured text (ST). The result of the transition
(.RESULT) must be logic 1, so that the following step(s) can be activated.

Insert a step-enabling condition. The name of the transition (max. 8 characters) must
be stated definitely.

di1434.bmp

9.3.5 Vertical line

Elements can be linked with a vertical line so that a step can be omitted, thus
conferring more clarity on a string of the SFC structure.

Insert a vertical line to make a line of steps and transitions complete.

di1435.bmp

9.3.6 Horizontal sequence selection line

To omit a step and thus confer greater overall clarity on the SFC structure, it is
possible to link the elements of a sequence selection with the horizontal sequence
selection line.

Insert a horizontal sequence selection line to connect a column to the next but one
column in a sequence divergence. Can only be inserted in the thin lines.

> Elements > Transition

> Elements > Vertical line

A transition is always followed by a step irrespective of the branch, and vice-
versa, a step is always followed by a transition.

> Elements > Horizontal seq. selection line
304 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Sequence selection divergence start

di1436.bmp

9.3.7 Sequence selection divergence start

In the case of a sequence selection, only one of several strings is computed. Each
alternative string begins with a transition. These transitions decide whether or which
string is alternatively computed. The start of a sequence selection is always placed
after a step.

Open the sequence selection divergence of the preceding step. Can only be inserted
in the thin lines.

di1439.bmp

9.3.8 Sequence selection divergence add

Apart from the start of a sequence selection, there is the element Sequence
selection divergence add with which the number of alternative strings can be
increased.

Open the sequence selection divergence add for the underlying transition. Can only
be inserted in the thin lines.

di1438.bmp

> Elements > Seq. selection divergence start

Each started sequence selection divergence must be closed again.

> Elements > Seq. selection divergence add
 Engineering - IEC 61131-3 Programming 305

Sequence selection convergence add 9 Sequential Function Chart (SFC)

9.3.9 Sequence selection convergence add

Apart from the end of a sequence selection, there is the element Simultaneous
sequence divergence start with which the alternative string is closed.

Close the sequence selection convergence of the previous transition. Can only be
inserted in the thin lines.

di1442.bmp

9.3.10 Sequence selection convergence end

In the case of a sequence selection only one of several strings is computed. Each
alternative string begins with a transition and ends with a transition. The last
transition of the active string decides whether or when the sequence selection is
closed. The end of a sequence selection is always placed before a step.

Close sequence selection convergence end of the previous transition and continue in
the sequence control to the next step. Can only be inserted in the thin lines.

di1443.bmp

9.3.11 Horizontal simultaneous sequence line

To omit a string and thus confer greater overall clarity on the SFC structure, it is
possible to connect the elements of a simultaneous sequence divergence with the
sequence selection divergence start.

Insert a simultaneous sequence line from a column to the next but one column in a
sequence divergence. Can only be inserted in the thin lines.

> Elements > Seq. selection convergence add

> Elements > Seq. selection convergence end

> Elements > Horizontal simultaneous seq. line
306 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Simultaneous sequence divergence start

di1437.bmp

9.3.12 Simultaneous sequence divergence start

In the case of a simultaneous sequence divergence all parallel strings of several
strings are computed. Only one transition decides whether or when the parallel
strings begin. The start of a simultaneous sequence divergence is always placed after
a transition.

Open simultaneous sequence divergence start of previous transition. Can only be
inserted in the thin lines.

di1445.bmp

9.3.13 Simultaneous sequence divergence add

Apart from the end of a simultaneous sequence divergence, there is the element
Sequence selection convergence add with which the parallel string is closed.

Open simultaneous sequence divergence add for the underlying step. Can only be
inserted in the thin lines.

di1444.bmp

9.3.14 Simultaneous sequence convergence end

In the case of a simultaneous sequence divergence, all strings are computed
simultaneously. A simultaneous string always ends with only one transition, with
this last transition being placed after the simultaneous sequence convergence, and

> Elements > Simultaneous seq. divergence start

Each started simultaneous sequence divergence must be closed again.

> Elements > Simultaneous seq. divergence add
 Engineering - IEC 61131-3 Programming 307

Simultaneous sequence convergence add 9 Sequential Function Chart (SFC)

deciding whether or when the simultaneous sequence divergence is closed. The end
of a simultaneous sequence divergence is thus placed before a step.

Close simultaneous sequence selection after one step. Can only be inserted in the
thin lines.

di1441.bmp

9.3.15 Simultaneous sequence convergence add

Apart from the end of a simultaneous sequence divergence, there is the element
Horizontal simultaneous sequence line with which the parallel string is closed.

Close simultaneous sequence convergence after one step and continue in the
sequence control to the next transition. Can only be inserted in the thin lines.

di1440.bmp

> Elements > Simultaneous seq. convergence end

> Elements > Simultaneous seq. convergence add
308 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Edit SFC structure

9.4 Edit SFC structure

SFC_Edit menu_us.png

The following steps require prior selection of an element or a block. A made
selection can be recognized by a color inversion of the element or field. An element
is selected by clicking with the mouse.

The following are possibilities for selecting a block:

• Click the first element with the mouse. With a mouse key pressed only a frame
can be drawn to contain all elements to be selected. If the frame is drawn only
within the first element, this is marked as a block (edges of the field will be
black).

> Edit

di1446.bmp

Element not selected
di1447.bmp

Element selected
 Engineering - IEC 61131-3 Programming 309

Shift blocks 9 Sequential Function Chart (SFC)

• Click the first element with the mouse and click the next with the SHIFT key is
pressed. Everything within the frames of these two elements will be selected.

9.4.1 Shift blocks

After selecting a block, shift it by clicking and keeping the mouse key pressed. The
new insertion point can be selected by shifting the marked border lines. If the block
cannot be positioned because it would otherwise cover existing elements, an error
message will follow and the block can be positioned at another place.

di1450us.png

9.4.2 Undo

Only the last edited block function, i.e. cut, delete or insert, can be undone.

di1448.bmp

Block not selected
di1449.bmp

Block selected

> Edit > Undo
310 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Edit columns / lines

9.4.3 Edit columns / lines

Column insert

A dialog is shown to enter the number of columns to be inserted.

di1408us.png

The selected column is shifted to the right by the number of columns to be inserted.

If the number of columns to be inserted is too big, an acoustic signal will follow and
the insert will be rejected. A smaller number can now be stated or the process can be
canceled. A message will also be given if, due to the insert, elements must be shifted
right out of the grid (maximum of 16 columns).

Column delete

A dialog is shown to enter the number of columns to be deleted.

> Edit > Column insert...

di1451.bmp di1452.bmp

After inserting a column After inserting a column

> Edit > Column delete
 Engineering - IEC 61131-3 Programming 311

Edit columns / lines 9 Sequential Function Chart (SFC)

di1409us.png

The elements right of the selected column are shifted to the left by the given number
of columns.

Insert row

A dialog is shown to enter the number of rows to be inserted.

di1410us.png

Insertion of lines can be done anywhere in the structure. The selected row is shifted
downwards by the number of rows to be inserted. If the number of rows to be
inserted is too big, an acoustic signal will follow and the insert will be rejected. A
smaller number can now be stated or the process can be canceled. A message will

Only columns can be deleted which do not contain any elements.

di1453.bmp di1454.bmp

Before deleting a column After deleting a column

> Edit > Row insert
312 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Edit columns / lines

also be given when due to the insert elements must be shifted down out of the grid
(maximum of 512 lines).

Delete row

A dialog is shown to enter the number of rows to be deleted.

di1411us.png

The elements which are located underneath the number of rows to be deleted will be
shifted upwards by the stated number of rows.

The general structure of an SFC program cannot be changed; in any case four
numbered rows - a step, a connection line, a transition and another connection
line - form a unit.
Thus for inserting rows, always four numbered rows are counted as one row to be
inserted.

di1455.bmp di1456.bmp

Before inserting two rows After inserting two rows

> Edit > Row delete
 Engineering - IEC 61131-3 Programming 313

Edit columns / lines 9 Sequential Function Chart (SFC)
 Delete element

Each element or field of the SFC structure can be deleted. The selected element is
deleted after a confirmation by the user.

di1457.bmp di1458.bmp

Before deleting two rows After deleting two rows

Only empty rows can be deleted; a block of four empty lines must be empty to
delete one row.

> Edit > Delete element

di1460.bmp di1461.bmp

Before deleting an element After deleting an element
314 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Parameterize SFC program elements

9.4.4 Parameterize SFC program elements

Parameterize steps

If a step has been previously selected, the parameter definition dialog for steps will
be displayed:

di1413us.png

SFC program
Name Displays the name of the SFC program

Step
Name The step name can be edited.

Comment The short comment of the step can be edited.

> Edit > Parameters of element

> Double-click on step
 Engineering - IEC 61131-3 Programming 315

Parameterize SFC program elements 9 Sequential Function Chart (SFC)

Program selection

All FBD, LD, IL, or ST programs that are available in the project
pool, can be selected. They will be processed when the selected step
is active. The desired program is selected and inserted into the
program list of the step with the OK button.

Remove The selected program is removed from the step program list and
stored in the pool.

Edit The program selected in the step program list is called up in the
corresponding editor (IL, FBD, LD, ST), so that modifications can
be done. Before the editor is called up, however, the SFC program
must be stored.

Create A new program can be created. To do this, the desired type of
program is selected in the object selection dialog and inserted into
the program list of the step with OK. To be able to continue editing
in the corresponding editor, see > Edit.
The SFC program must be stored when changing to the FBD, IL,
LD or ST editor.

Up The program selected is moved up for one position in the
processing sequence.

Down The program selected is moved down for one position in the
processing sequence.

Insert

di1414us.png
316 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Parameterize SFC program elements

Step parameters
Waiting time TWA:

The waiting time TWA is the minimum dwell of the SFC program
in one step. Even if the transition is fulfilled subsequent transitions
will be enabled only after expiry of the TWA. A constant value as
well as a variable may be entered. If both values are entered the
current value of the variable will be taken during run time.

Monitoring time TMO:
The monitoring time TMO is the maximum desired dwell in a
step. On overshooting the TMO an alarm message with the
configured priority level 1 ... 5 (see Parameterize SFC program on
page 330) will be generated. A constant value as well as a variable
may be entered. If both values are entered during run time the
current value of the variable will be taken.

Step program

In each step program the two local SFC variables .X and .T may be used. These
variables are only valid within a particular step and have the same names in all steps.

The variable .X shows the current state of the step. If the step is active the variable.X
is set to TRUE. When the subsequent transition is fulfilled the programs of the step
are calculated once again. The variable .X is then set to FALSE. If actions are to be
reset, this can be done with this variable.

The current step run time is available in the local SFC variable .T.

If the step parameters TWA or TMO are changed directly in the parameter
definition dialog of the step and loaded during processing of the SFC program,
this leads to an initialization and restart of the SFC program.

Use the waiting / monitoring time variables instead of changing the step
parameters via the configuration to avoid restarting the SFC program.

Structured variables cannot be used together with step parameters of elements in
the SFC. Please use standard data types instead.
 Engineering - IEC 61131-3 Programming 317

Parameterize SFC program elements 9 Sequential Function Chart (SFC)

Example of a step program

di1462us.bmp

The following example shows how the steps are calculated after the transition is
switched.

tp002us.bmp
318 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Parameterize SFC program elements

With Transition 1 fulfilled Step 1 is first calculated for a further cycle with .X =
TRUE. After this there follows another cycle with .X = FALSE.

Step 2 is only calculated in the second cycle after the transition is switched, and in
this cycle the calculation of step 1 is always completed before the calculation of step
2 commences. The system flag .X is also only set to TRUE in the second cycle.

Parametrize transitions

If a transition has been previously selected, the parameter dialog for transitions is
displayed:

di1416us.png

SFC program
Name: Displays the name of the SFC program

Transition
Name: Transition name can be edited

Comment: Short comment of the transition can be edited

> Edit > Parameters of element

or

> Double-click transition
 Engineering - IEC 61131-3 Programming 319

Parameterize SFC program elements 9 Sequential Function Chart (SFC)

Select program

Only one of the FBD, IL, LD or ST programs available in the pool
can be selected. It will be processed when the selected transition is
active. The desired program is selected and inserted in the transition
program list with the OK button.

Remove The selected program is removed from the transition program list
and stored in the pool.

Edit The program selected in the transition program list is called up in
the corresponding editor (IL, FBD, LD, ST), so that modifications
can be done. Before the editor is called up, however, the SFC
program must be stored

Create A new program can be created, when no other program has been
inserted into the program list of the transition. To do this, the
desired program is selected in the object selection dialog and added
to the program list of the transition with OK. To be able to
continue editing in the appropriate editor see > Edit.

Transition program

In each transition program the local SFC variables .RESULT must be set. This
variable is only valid within a particular transition and has the same name in all
transitions.

Insert

di1414us.png
320 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Edit program

A transition is successfully concluded, when the variable .RESULT is set to
TRUE. If the variable .RESULT is already set to TRUE during first calculation, the
corresponding step is calculated once with .X=TRUE and in the next cycle with
.X=FALSE.

Example of a transition program

di1463us.bmp

When the calculation of the translation is started, the variable .RESULT is
initialized with FALSE. If .RESULT is used in a conditional command it must be
ensured that .RESULT can be set to TRUE. In the following example .RESULT is
not set to TRUE and, therefore, the transition is never fulfilled:

IF i<5 AND i>9 THEN
 .RESULT := TRUE;
END_IF;

9.4.5 Edit program

The same windows are called up as in Parameters of elements.

However, in the respective program list only the programs assigned to the step or the
transition are displayed.

By clicking on Edit the program corresponding to the chosen step or transition is
displayed in the respective edit mode (FBD, LD, IL, or ST).

9.4.6 Define criteria window

Criteria windows can be defined for the operator interface, in order to give the user
instructions for the current processing activity. Variables whose state or value can be

> Edit > Edit program
 Engineering - IEC 61131-3 Programming 321

Define criteria window 9 Sequential Function Chart (SFC)

later polled in the Freelance operator station at the appropriate step can be selected.
Variables can be entered on the one hand from the system wide variables list, on the
other hand, from the programs assigned to the step. To this end, however, the
corresponding programs (FBD, LD, IL, or ST) must have been entered during
parameter definition. Up to 20 variables of any data type can be entered. Variables
of data type REAL, WORD or also INT can be newly written in the operator
interface. Access = Yes must have been configured for this purpose.

A tag can also be assigned to each variable. This enables a relevant faceplate to be
called up on the operator station in the operation dialog of the criteria window.

The criteria window for transitions is divided into three section &&, >=1 and of any
data type. Each variable of data type BOOL is marked later in color on the operator
station, if a previously defined state has been assumed. The variables of the third
section can be of any arbitrary type and are used for displaying values. All entered
variables can be controlled by the operator.

Define step criteria window

If a step has already been selected, the dialog for setting parameters for the step
criteria window is displayed.

> Edit > Define criteria window
322 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Define criteria window
 di1468us.png

Step Name of the selected step, cannot be changed here

Comment Comment for the Criteria window, appearing later on the operator
interface.

Access Write (operator intervention) of the selected value is permitted.
 Engineering - IEC 61131-3 Programming 323

Define criteria window 9 Sequential Function Chart (SFC)

Variable list

A variable can be selected from the global variable list and taken
over by clicking OK.

Remove The selected variable is removed from the variable list without any
prompt for confirmation.

Up / Down These buttons can be used to define or alter the display order of
variables in the associated criteria window for the sequential
function chart. UP moves the selected variable one position
upwards in the variable list, DOWN does the opposite.

Assign tag These buttons can be used to show a selection list of the tags
already configured in the system, in order to assign just one tag to
the selected variable. This enables a faceplate to be chosen for the
selected variable in the user interface (Freelance Operations). The
tag's faceplate then makes direct operator action on that tag
possible.

Release tag The tag assigned to the variable is released again. It is thus not
possible in the user interface to select any tag's faceplate for this
variable.

Insert

di1469us.png
324 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Define criteria window

Program list
Edit The program selected (highlighted) in the program list is called up

in the appropriate editor (FBD, LD, IL, or ST) to enable, for
example, changes to be made to it. Before the editor is called up, the
program must be stored through the following dialog.

A list is displayed containing all the variables belonging to the
program selected under the step's program list. Only one variable
may be selected. Comment and resource name are also displayed.
Where an input or output has been specified, the slot, module and
channel are also displayed. When OK is clicked, the variable is
copied across and inserted in the variable list in the criteria
window.

Variables

di1470us.png
 Engineering - IEC 61131-3 Programming 325

Define criteria window 9 Sequential Function Chart (SFC)

Define transition criteria window

If a transition has already been selected, the dialog for setting parameters for the
transition criteria window is displayed.

di1471us.png

Transition Name of the selected transition, cannot be changed here

> Edit > Define criteria window
326 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Define criteria window

Variables list

A variable can be selected from the global variable list and taken
over by clicking OK.

Remove The selected variable is removed from the variable list without any
prompt for confirmation.

Up / Down These buttons can be used to define or alter the display order of
variables in the associated criteria window for the sequential
function chart. Boolean variables can also be linked together with
the operators &, >=1. UP moves the selected variable one position
upwards in the variable list. DOWN does the opposite.

Assign tag These buttons can be used to show a selection list of the tags
already configured in the system, in order to assign just one tag to
the selected variable. This enables a faceplate to be chosen for the
selected variable in the user interface (Freelance Operations). The
tag's faceplate then makes direct operator action on that tag
possible.

Insert

di1469us.png
 Engineering - IEC 61131-3 Programming 327

Define criteria window 9 Sequential Function Chart (SFC)

Release tag The tag assigned to the variable is released again. It is thus not
possible in the user interface to select any tag's faceplate for this
variable.

Comment Comment for the Criteria window, appearing later on the operator
interface.

Access Write (operator intervention) of the selected value is
permitted.

Mark at True The selected variable's state can be inverted simply by
clicking on it. Another click will reset the state.

Program List
Edit The program selected (highlighted) in the program list is called up

in the appropriate editor (AWL or FBD) to enable, for example,
changes to be made to it. Before the editor is called up, the program
must be stored through the following dialog: Yes, No, Cancel.

A list is displayed containing all the variables belonging to the
program selected under the step's program list. Only one variable
may be selected. Comment and resource name are also displayed.

Variables

di1470us.png
328 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Define display access

Where an input or output has been specified, the slot, module and
channel are also displayed. When OK is clicked, the variable is
copied across and inserted in the variable list in the criteria
window.

9.4.7 Define display access

Displays and logs might be allocated for each transition and each step. Thus, it is
possible for the operator to call these via the context dialog on the operator station.
Here, either all displays or only those of one operator station are presented.

di1473us.png

The selector lists show for the respective display or log type the corresponding
project elements of all D-OS resources.

See also Engineering Manual Operator Station Configuration, Standard displays.

> Edit > Define display selection
 Engineering - IEC 61131-3 Programming 329

Parameterize SFC program 9 Sequential Function Chart (SFC)

9.4.8 Parameterize SFC program

s

di1421us.png

General data
Name Name of the SFC program; the name will be included in the tag list.

Short text Short text to the SFC program; up to 12 characters, all characters
are permitted.

Long text Long text to the SFC program; up to 30 characters, all characters
are permitted.

TMO message
Prio Priority level 1 to 5 for message “Monitoring time overflow”.

Message Select message text from list or enter free text.

Upon overshooting the monitoring time TMO, an alarm message with the selected
priority level and the configured message text is generated at the process station.

> Edit > Parameters of SFC
330 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Parameterize SFC program

SFC operating time
Restart time Restart time is the time for restarting the sequence control. Contrary

to the repeat time, the new start time represents just one time for
starting the sequence control. Changing the new start time together
with the repeat time also influences the time for a cyclical execution
of the sequence control. By activating the operation mode Access,
the change of the Restart time by the operator at the operator station
is permitted.
Input format:
year-month-day-h:min:s.ms
Example:
DT#1994-12-31-23:59:59.999

Repeat time Repeat time is the waiting time between two sequence control starts.
Upon stating the repeat time and reaching the start time or new start
time, the sequence control is executed. If the new start time is fixed,
this is dominant against the repetition time. If the repetition time is
smaller or equal to the runtime of the sequence control, the
sequence control is restarted immediately after completion of the
sequence control.
By activating the operation mode Access, the change of the Repeat
time by the operator at the operator station is permitted.
The input is effected according to IEC 61131-3 notations.
The set Restart time is dominant against the Repeat time.

SFC operating mode
Enable By activating the operating mode Enable, the sequence control is

enabled automatically when the start conditions are fulfilled.

Activation of daylight saving time affects the display of time points. When
operator enters a time value, the user must specify whether the edited time is a
daylight saving time or not. A daylight saving time must be identified by an “S”
as suffix following the time value. If this “S” is missing, the time value input is
interpreted as local time. If an “S” is specified for a time when daylight time is
not in effect, a message is sent to the user requesting a correction. For example,
Input “..16:00..” produces 16:00 at the station; an input of “..16:00..S” produces
(daylight saving time)15:00 for CET time zone.
 Engineering - IEC 61131-3 Programming 331

Parameterize SFC program 9 Sequential Function Chart (SFC)

Access By activating the operating mode Access, user access on the
operator station is allowed to be activated.

Auto/Manual By activating the SFC operating mode Auto, transitions are enabled
throughout the Program. With Manual the transitions are enabled
by the operator of Freelance Operations.
Configuration of variables of type BOOL allows the program to
take control over switching manual and automatic mode.

Access By activating the operating mode Access, the changeover between
auto/manual by the operator at the operator station is permitted.

SFC operation
Instructions for the execution of the SFC program on the process
station are defined in this part of the parameter definition dialog.
With Access the accessibility of the respective options can be
activated or deactivated by the operator at the operator station.

Waiting time (TWA)
is the minimum dwell time of the SFC program in a step. Because
of the activation of edit, subsequent transitions will be step enabled
only after the expiry of TWA.

Monitoring time (TMO)
is the maximum dwell time desirable in a step. If the TMO is
overshot, an alarm with the configured priority stage P1 - P5 (see
Parameterize SFC program on page 330) will be sent.

Actions If the step is active and is edit enabled, all actions assigned to the
step will be edited. The actions assigned to the step will not be
edited if the edit is not activated.

Transitions If the transition is active and is edit enabled, the transition is edited
and the transition state checked. The transition will not be edited if
the edit is not activated.

Steps carry out
If Access is , the operator at the operator station can positively
switch all enabled transitions whose transition state has been
fulfilled.
332 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Parameterize SFC program

Reset With this operation mode activated, the operator at the operator
station can reset all states of the SFC program.

Step / Transitions operation
Step permanent off access

The actions of the steps are always suppressed. The step must be
selected in the sequence control display.

Step permanent on access
Actions are forced; compulsory execution.

Transition blocking access
The execution of a transition is suppressed. The SFC interpreter
runs to this transition and waits for an operation mode. Suppressing
the transition is tantamount to setting a breakpoint in a program.

Transition forcing access
If the transition is enabled, it can be forced and positively operated.
The forcing of a transition is only valid for one run of the SFC
interpreter on the process station.

Waiting time (TWA) access
The waiting time in a step can be changed by the operator at the
operator station.

Monitoring time (TMO) access
The monitoring time can be changed by the operator at the operator
station.
 Engineering - IEC 61131-3 Programming 333

Parameterize SFC program 9 Sequential Function Chart (SFC)

Variables of an SFC program

di1472us.png

Enable Enable can be set for the SFC program via a freely configurable
Boolean variable. The current Enable state can be routed to a further
Boolean output variable. The Enable variable and the Enable
operator parameter are interconnected via an OR function.

Manual/Auto The operating mode can be set via two freely configurable Boolean
variables. The same operating philosophy applies as for the
controller function blocks. The variables are dominant vis-a-vis the
modes operation parameter, the Manual variable is dominant vis-a-
vis the automatic variables.

Operation mode
The current mode can also be routed to a freely configurable
Boolean output variables. Automatic=TRUE.

> Edit > Parameters of SFC >
334 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Edit elements

Reset Reset can be effected via a freely configurable Boolean variable.
The reset variable and the reset operation parameter are
interconnected according to an OR function. The reset signal is
evaluated only in the manual mode.

TMO state The state indicating that the monitoring time has expired on at least
one step can be routed to a freely configurable Boolean output
variable. This variable is then also set to TRUE if no TMO message
has been configured.

9.4.9 Edit elements

Cut

If only elements without any parameters (steps / transitions) are selected, these will
be removed from the working area and stored in a buffer memory (see also >
Insert).

Is the selection at least a step or a transition, a window will appear to question, if the
block should be deleted.

Yes Cut out and store elements in a buffer memory.

No Retain and store elements in a buffer memory (see also > Insert).

Copy

The selected elements are stored in a buffer memory and can now be inserted at
another place.

Paste

Elements previously stored in a buffer (see also > Cut and > Copy), are inserted at
the cursor position.

> Edit > Cut

> Edit > Copy

> Edit > Paste
 Engineering - IEC 61131-3 Programming 335

Edit elements 9 Sequential Function Chart (SFC)

If steps or transitions are inserted, provide them with new names. To do this, insert a
window for each of these elements so that names can be changed.

di1424us.png

New Insert new name

OK Element is inserted at the appropriate place with the new name. The
parameters of the new element have been reset.

Cancel The entire insert action is interrupted.

Next The displayed element is not inserted. The next element is
presented for renaming.

If there is inadequate space for the insert at the marked point for all elements, the
following message will be given:

di1425us.png

By acknowledging this message with OK, the block can be positioned anew with
the left mouse key pressed. Cancel the function by either pressing ESC or the
right mouse key.

After cutting the parameterized elements, their parameters are reset after the
insert, i.e. inserted programs become available again in the POOL.

If the parameter definition should be retained, do not shift it with Cut - Paste (see
Shift blocks on page 310).
336 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Export and import blocks

Delete

Delete selected elements. If steps or transitions are contained in the selection, a
window will appear with the question if the block should be deleted.

di1422us.png

9.4.10 Export and import blocks

The export and import of blocks permits re-utilization of project parts in the existing
project or in other projects.

Export block

This is used to export the entire contents of the selected block into an AS file which
can be re-imported with the menu item import block. Assign the file name in the
open window “Sequential function chart export”.

Import block

This is used to import the contents of a block from a .as-file which had previously
been generated with export block to the preselected position in the SFC program.

> Edit > Delete

> Edit > Export block

> Edit > Import block
 Engineering - IEC 61131-3 Programming 337

Program administration functions 9 Sequential Function Chart (SFC)

9.4.11 Program administration functions

Save the program

The program is saved without exiting. Programs that are not correct can also be
saved and then completed at any time.

Document the program

The editor for documentation is opened as a separate tab in the right pane. It can be
closed using the Close button available at the right side of the opened tab, and
reopened later from the main menu.

Documentation administration is opened. This is where user specific project
documentation is defined and output. For a description, see Engineering Manual
System Configuration, Documentation.

Program header

A program-specific short comment can be added to the program documentation
header, or this can be edited.

For drawing header / footer, see Engineering Manual System Configuration,
Documentation.

> Project > Save Tab

If the project is not saved in the project tree on closing or before, changes made to
the program are ineffective.

> Project > Documentation

> Project > Header
338 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Program administration functions

Edit program comment

A longer program-specific comment can be edited here to describe the functionality.
For a description, see Engineering Manual System Configuration, Project
manager.

Print

The contents of the screen are output to the standard printer.

Plausibility check

All inputs relevant to operation are checked for syntactical and contextual
correctness. Errors, warnings and notes that are found are displayed in an error list.
If the plausibility check detects errors, the processing state of the program is
implausible.

This plausibility check reviews the accuracy and consistency of the program itself.
To test the correctness in the project context call plausibility from the project tree.
See Engineering Manual System Configuration, Project Tree, plausibility.

> Project > Comment

> Options > Print

> Editor > Check

The processing state of program elements that are newly entered, copied or
moved is implausible.
 Engineering - IEC 61131-3 Programming 339

Commissioning the SFC program 9 Sequential Function Chart (SFC)

Error list

Any errors present in the program is displayed in the error list. Double-click a check
message to jump to the line in the program that caused this error.

See also Engineering Manual System Configuration, Project tree.

9.5 Commissioning the SFC program
While commissioning an SFC program, it is possible for the program to be operated
using functions similar to those available in an SFC display at an operator station.

From commissioning it is thus possible to

• Switch the SFC program between automatic and manual.
• Release or block the SFC program.
• Display the current state of the step or transition.
• Execute all active transitions and steps manually once.
• Execute steps in manual mode and, in contrast to Freelance operator station, in

automatic mode also. The processing of steps or transitions is controlled by the
Options setting.

• Change time parameters, such as restart time, repeat time and wait time.
• Switch steps permanently on or off.
• Block or force transitions on a one-time basis.

> Editor > Show error list
340 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Commissioning the SFC program
 di1581us.png

The individual steps and transitions are displayed depending on their state and the
type of action execution in the display area of the SFC program. The section of the
display can be moved using the horizontal and vertical scroll bars.

During the processing of a sequential control program, no more than 8 steps may be
active simultaneously.

The background color in the display area depends on the operating mode. In
Automatic mode the background is transparent and in Manual mode it is blue. The
display of steps and transitions is the same in both modes.

In contrast to Freelance operator station, it is also possible to change the state of
steps and transitions in automatic mode.

In commissioning, it is not possible to change the structure of the SFC program.
This is only possible in configuration.

.Each new load of the SFC program results in a restart with the initial step.
 Engineering - IEC 61131-3 Programming 341

Operation dialog SFC program 9 Sequential Function Chart (SFC)

9.5.1 Operation dialog SFC program

di1552us.png

Settings entered within the operation dialog are valid for the entire SFC program.
The operation dialog is broken down into the areas of Operating Mode, Options
and Times.

Operating mode
In the Auto operating mode the transitions are stepped through by
the program. In the Manual operating mode transitions and steps
can be activated by the operator.

Step and transition execution
Enable Allows the execution of the SFC program. If enable is activated and

the new restart time or repeat time has been reached, the initial step
of the SFC program is executed.

Reset The SFC program in the process station is reset to the initial step.

Carry out All transitions in the enabled state, are stepped through once. The
processing of steps or transitions is controlled by the Options
setting (check boxes of TWA, TMO, steps and transitions).

TWA If this field is checked, the minimum wait time (TWA) for all steps
in the SFC program is monitored.

TMO If this field is checked, and one is in manual operating mode, the
respective monitoring times (TMO) of the active steps are
monitored. In auto operating mode monitoring always takes place.

> Operation > SFC program...

The enabling of the SFC program is independent of whether the operating mode
is auto or manual.

Reset is only possible in manual mode!
342 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Operation dialog SFC program

Steps If this field is checked, then the respective actions of the active steps
are executed.

Transitions If this field is checked, the programs which are linked to the
transitions are executed. The transition criteria are tested.

If this field is not checked, the programs which are linked to the
respective transitions will not be executed, and the transition criteria
are always taken as fulfilled.

Options With the activation of one of three buttons, it is possible to set a
predefined profile for the processing of actions and transitions e.g.
for the monitoring of the times TWA and TMO

Times in the SFC program
The times in the global operation dialog are valid for the entire SFC
program. The start time and run time cannot be changed!

Start The activation time of the initial step of the SFC program is defined
as the start time. With each new run, the actual time is entered in
the process station.

Runtime The run time is the elapsed time since the start. The run time is
reset to 0 s when the initial step is repeated.

Restart time The restart time is the time for a new start of the SFC program. In
contrast to the repeat time, the restart time represents a single point
in time for restarting the SFC program. When the restart time is

TWA, TMO, actions and transitions are not activated.

Actions activated.

Actions and transitions activated.
 Engineering - IEC 61131-3 Programming 343

Step operating dialog 9 Sequential Function Chart (SFC)

changed in connection with the repeat time, the time point for the
interval processing of the SFC program is influenced.

Repeat time The repeat time is the minimum wait time between two starts of the
SFC program.

If the restart time is fixed, it will take precedence over the repeat
time. If the repeat time is less than or equal to the run time of the
SFC program, then the SFC program is started again immediately
after ending.

Changing the restart or repeat time

Changes are made by entering the new value from the keyboard. The entry must be
in IEC 61131 - 3 date and time notation.

The restart time is entered in the Date and Time format (DT):

Example: DT#1999-12-31-23:59:59.99

The repeat time is entered in time format (TIME):

Example: T#3m30s

9.5.2 Step operating dialog

Activation of daylight saving time effects the display of time points. When
operator enters a time value, the user must specify whether the edited time is a
daylight saving time or not. A daylight saving time must be identified by an “S”
as suffix following the time value. If this “S” is missing, the time value input is
interpreted as local time. If an “S” is specified for a time when daylight time is
not in effect, a message is sent to the user requesting a correction. Example: Input
“..16:00..” produces 16:00 at the station; an input of “..16:00..S” produces
(daylight saving time)15:00 for CET time zone.

Position the cursor on the Restart time > Double-click

Select step with left mouse button > Operation > Step...
344 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Transition operation dialog

di1358us.png

Close The operation dialog step is closed.

Operating mode
In the Auto operating mode, the transitions are stepped through by
the program. In the Manual operating mode, transitions and steps
can be activated by the operator.

Action execution
This section of the operation dialog is used to fix the action
execution of a step.

Normal The step is processed normally.

Permanent off The step is never processed.

Permanent on The step is always processed.

Times The times in this dialog can only be seen for a single step.

Start The start time shows the beginning of the execution of the selected
step. With each new execution of a step the start time is updated.

Run time The run time shows the time that the active step has been active.
With each new execution of a step, the run time is reset to 0s

TMO Monitoring time for this step. If this time is exceeded, a message is
generated.

TWA Minimum waiting time for one step.

9.5.3 Transition operation dialog

di1359us.png

> Select transition with left mouse button > Operation > Transition...
 Engineering - IEC 61131-3 Programming 345

Step states 9 Sequential Function Chart (SFC)

Close The operation dialog for transitions is closed.

Operating mode
In the Auto operating mode, the transitions are stepped through by
the program. In the Manual operating mode, transitions and steps
can be activated by the operator.

Transition criteria
This section of the operating dialog is used to influence the manner
in which the selected transition is made. In the Auto operating
mode, transitions are always made in the Calculated mode.

Normal The transition is made in the calculated mode.

Blocked The transition is blocked. The transition is not made even if the
transition criteria are fulfilled.

Force Immediately after the transition is enabled, the transition is made,
independent of the transition criteria. The processing of the
transition is controlled by the Options setting of the SFC (refer to
Operation dialog SFC program). Forcing is also possible for a
blocked transition.

9.5.4 Step states

Steps in the Freelance system can have the states inactive, active, was active and
faulty.

inactive A step is inactive when it is not run through during a cycle. While a
step is inactive, the programs linked to it are not executed.

active A step is set to the active state when the transition criteria of the
previous transition have been fulfilled. Once a step is active,
programs linked to it, are executed.

was active After a step has been run through during a cycle, the step goes from
the active state to the was active state.

faulty The monitoring time of a step has been exceeded.
346 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Step action execution

9.5.5 Step action execution

The Freelance system offers the user the modes normal, permanent off and
permanent on for the execution of step-related actions.

normal If a step is active, the actions related to that step are executed.

permanent off The actions related to that step are never executed.

permanent on The actions related to that step are always executed.

9.5.6 Display of steps in the SFC program

The appearance of steps in the SFC program display depends upon the step state and
the action execution mode.

Action execution is independent of step state.

tg014.bmp

initial step

tg015.bmp

normal step

tg016.bmp

permanent off step

tg017.bmp

permanent on step

tg018.bmp

jump out

tg019.bmp

jump in
 Engineering - IEC 61131-3 Programming 347

Transition states 9 Sequential Function Chart (SFC)

Colors used to display steps depending on their state and action execution mode.

9.5.7 Transition states

In the Freelance system, transitions can take on the states not enabled, enabled,
fulfilled or completed.

not enabled Not all preceding steps have been active > transition criteria not
evaluated

enabled All preceding steps have been active > transition criteria evaluated

fulfilled The transition criteria are fulfilled. All preceding steps become
inactive and all dependent steps become active - transition is made.

completed All dependent steps are active, transition has been completed.

Step state
Symbol
section

Action execution

normal permanent off permanent on

inactive

Background gray gray gray

Lines black dark blue signal green

Text black black black

active

Background dark green dark blue signal green

Lines black black black

Text white white black

faulty

Background dark green dark blue signal green

Lines black black black

Text red red red

was active

Background gray gray gray

Lines black dark blue signal green

Text dark green dark green dark green
348 Engineering - IEC 61131-3 Programming

9 Sequential Function Chart (SFC) Display of transitions in the SFC program

9.5.8 Display of transitions in the SFC program

The appearance of transitions in the SFC program display depends on their state.

Colors used to display transitions depending on their state.

enabled or fulfilled

not enabled or completed

Transition
state

Symbol
section

Execution of the Transition criteria

normal blocked forced

not enabled

Background gray gray gray

Lines black dark blue signal green

Text black dark blue signal green

enabled

Background dark green dark blue signal green

Lines black black black

Text white white black

fulfilled

Background gray gray gray

Lines black dark blue black

Text dark green black dark green

completed

Background gray gray gray

Lines black dark blue black

Text dark green dark blue dark green
 Engineering - IEC 61131-3 Programming 349

Display of transitions in the SFC program 9 Sequential Function Chart (SFC)

350 Engineering - IEC 61131-3 Programming

10 User Function Blocks

10.1 General Description – User Function Blocks
The user function block (UFB) facility makes it possible for users to create their
own function blocks. This means that function blocks can be designed to meet the
specific needs of particular sectors.

In working with user function blocks, classes and instances will be differentiated.

The specifications of a user defined function block class will determine the
functionality and the appearance of a function block. As such, the class
encompasses the user-created program in its entirety, with its functions, function
blocks and variables, as well as the faceplate and the parameter dialog.

The configuration of a user function block class is done in the project tree under
Function block pool P-FB. Every user function block class gets a class name
which can be freely chosen; with this name the block can be called from inside other
programs.

The user function block program can be written in one of the programming
languages Function Block Diagram (FBD), Ladder Diagram (LD), Instruction List
(IL) or Structured Text (ST). The rules of the language used govern the structure of
inputs and outputs, positioning, parameterization, etc.

Only after passing the plausibility check in the project tree, a user function block
can be used. It can then be found for later use under the Elements > Blocks > User
function blocks menu.

For actual use, instances of a user function block class must be created. Each
instance has a parameter dialog, which contains at least a tag name, short text and
long text. Each user function block instance must be assigned a unique tag name.

User function blocks can be called from all programming languages: IL, LD, FBD,
ST and SFC.
 Engineering - IEC 61131-3 Programming 351

10 User Function Blocks

Changes to user function blocks are made to the function block class and effect all
function block instances of that class in place. If new pins are added to a block, the
function block instances must be replaced and the new pins must be connected.

User function blocks can be locked by the user with a password. They then appear
only in their external representation: function blocks nested within them are no
longer visible.

For licensing of user function blocks refer to Getting Started Manual.

The faceplate of a user function block is created in the faceplate editor. The
faceplate editor offers the full functionality of the graphic editor.

Schematic representation of user-defined function block

di0280uk.bmp

Creation of a user-defined function block:

• In the project tree, open the function block pool, P-FB

• Create a user function block class in the pool

• With the Interface editor, enter the variable names for the function block class -
User FB variables
352 Engineering - IEC 61131-3 Programming

10 User Function Blocks User function block - classes and instances

• Then, choose creation of a user function block program in IL, LD, FBD or ST

• Create the program

• Then, choose creation of a user function block faceplate

• Create the faceplate

• Save, then run the plausibility check in the project tree

• The user function block so created is callable from other programs under User
blocks

10.1.1 User function block - classes and instances

To create a user function block, the user first creates the user function block class.
Only as a next step can he or she create instances of this class.

A user function block class encompasses the full functionality and appearance of the
function block. The information required is entered with the interface editor, the
program editor and the faceplate editor.

A class itself cannot be run in a process station. For execution, an instance of the
class must first be created. There can be as many instances of a class as desired.

An instance is the executable form of a class. Different instances are identified by
their tag names. Each instance works with values specific to that instance (local
variables and parameters).

In a function block instance, all local and output variable values are retained from
one execution to the next. This means that the function block instance has an
internal state, with the result that the same inputs need not always result in the same
outputs.

Any user function block which has already been declared can be used in the
declaration of another user function block.
 Engineering - IEC 61131-3 Programming 353

Create user function block pool 10 User Function Blocks

10.1.2 Create user function block pool

10.1.3 Create a user function block class

di0281us.png

Under P-FB the individual function block classes are shown by name as objects in
the project tree. A user function block class name may be a maximum of 12

> Select SOFTWARE node from project tree

> Edit > Insert next level

> Choose User Function Block Pool P-FB from object selection window

> Enter pool name, max. 4 characters

Only one user function block pool may be created per project. All user function
blocks are present in this; an unlimited number of user function block classes can
be declared.

> Select User function block pool (P-FB) from project tree

> Edit > Insert next level

> Select User function block class from object selection window

> Enter class name
354 Engineering - IEC 61131-3 Programming

10 User Function Blocks Create a user function block program

characters long, must follow the Freelance naming conventions and must be unique
on a project-wide basis. As UFB class names are used in the editors for
programming the application, no special characters such as

+ - * / & = < > [] . , () : ; ’ @ # $

may be used in the names.

10.1.4 Create a user function block program

The program to be executed as a user function block consists of one and only one
FBD, LD, ST or IL program. A combination of programs of different types is
possible by nesting user function blocks inside one another.

For details how to define the program of a user function block refer to User function
block program on page 374.

10.1.5 Create a user function block faceplate

Instance-specific values of a user function block instance can be displayed in
Freelance operator station with the faceplate.

Class names should be chosen in such a way that collisions with possible
available classes are avoided during import in other projects. The same basic
principle applies to the allocation of tag names when defining the UFB class.

> Select class name FB-CLASS from project tree

> Edit > Insert next level

> Choose either FBD, IL, LD or ST program from object selection window

> Enter program name

> Select class name FB-CLASS from project tree

> Edit > Insert next level

> Select Faceplate FB-FPL from object selection window

> Enter faceplate name
 Engineering - IEC 61131-3 Programming 355

Definition of User Function Block Classes 10 User Function Blocks

User function block faceplates are created with the faceplate editor. The faceplate
editor offers the full functionality of the graphic editor.

10.2 Definition of User Function Block Classes
A user function block class is made up of the following components

• Interface
• Parameter dialog
• Text list
• Program
• Faceplate

10.2.1 Interface of a user function block

Interface editor

The variables used in the user function block program must be entered in the
Interface editor under User FB variables. The parameter dialog is created and the
text list administered in the Interface editor.

Each user function block has one and only one faceplate.

> In User FB program > System> User FB variables

> Double-click User FB class node (FB CLASS)
356 Engineering - IEC 61131-3 Programming

10 User Function Blocks Interface of a user function block

di0283us.png

Legend:

The individual entries can be selected with a double click or using the menus.
Entries can be made directly in the Name, Initial value, Min. value, Max. value
and Comment fields. The Data type, Storage type and Ref.-parameter fields can
only be filled in using the pop-up windows that appear.

Name Freely choose variable name. Conventions for the naming of
variables apply.

Data type A window with the different data types is opened with a double
click. Choose desired data type and confirm with OK.

Storage type The storage type selection window is opened with a double click.
Choose desired storage type and confirm with OK.

Initial value Enter a starting value using the appropriate data format.

Minimum value
Enter a minimum value using the appropriate data format.

:= May be edited
:= May not be edited and pre-allocated or no reasonable entry possible
 Engineering - IEC 61131-3 Programming 357

Interface of a user function block 10 User Function Blocks

Maximum value
Enter a maximum value using the appropriate data format.

Reference parameter
The reference parameter window is opened with a double click.
Select the desired parameters and confirm with OK.

Comment Any desired comment text, 32 characters maximum.

Names of the user FB variables

For values with storage types VAR_IN and VAR_OUT, the first three characters of
the name become the pin identifier. Upper or lower case are both allowed and are
differentiated. The first three characters of two pins may not be identical, otherwise
a plausibility warning results.

The order in the declaration follows the displayed pin layout in the user function
block instance.

Data type

th001us.png

Instances of user function blocks with identical pin names may only be used to a
limited extent in other programs.

All defined variable names are valid only within the user function block class in
which they were defined.
358 Engineering - IEC 61131-3 Programming

10 User Function Blocks Interface of a user function block

All Freelance data types are allowable as user function block variables. User-
defined data types cannot be used.

The additional data type UNICODE-Text is available for storage type PARA_VIS,
only. This data type makes it possible to enter texts in different languages.

Message points are displayed with SYSTEM data type.

Storage type

Select storage type_UFB_us.png

Every user function block variable has a storage type. The storage type determines
how the variable is used inside the user function block. The storage type determines
where the runtime value of the variable is to be found.

There is a basic distinction between the VAR_... and PARA_... storage types.
VAR_... Storage types are used for internal processing. They do not participate in
configuration, while PARA... Storage types do appear in the parameter dialog
during configuration of the user function block instances.

VAR_IN represent inputs to the user function block. VAR_IN variables
cannot be written to the user function block program. They can be
displayed in the faceplate. At runtime, the user function block
instance will be supplied at the cycle rate with values from the
associated signal lines for further processing.

VAR_OUT represent the outputs of the user function block. The values are
calculated by the user function block program and can also be
displayed in the faceplate. At runtime, signal lines associated with
VAR_OUT variables are updated at the cycle rate.

The data type of variables with the PARA_EXT storage type depends on the data
type of the nested function block.
 Engineering - IEC 61131-3 Programming 359

Interface of a user function block 10 User Function Blocks

VAR_DPS are local variables used by the user function block running on the
process station. They are used to hold intermediate values.
VAR_DPS variables can be read from the faceplate. They are used
for internal calculation in the faceplate.

PARA_DPS variables are used in the configuration of values that effect the
processing at the process station, for example, operating mode
switching. They can be read and written from the faceplate.
PARA_DPS variables can be commissioned i.e. they can be written
or corrected in commissioning mode.

PARA_VIS variables are used in the configuration of variables which are only
used in the faceplate, such as instance-specific display text, and
operation locking. PARA_VIS variables cannot be changed from
commissioning mode.

PARA_EXP variables are used to reference data of nested function blocks
(standardized or user function blocks). They inherit their other
characteristics from the parameters they are used to reference. Each
variable with the PARA_EXP storage type can be used to reference
one and only one parameter of a nested function block.

MP_EXP variables are used to reference message data from nested function
blocks. Each one references a complete message structure,
comprising message type, message priority, hint data and message
text.

Storage
type

Data
source

(1) (2) (3) (4) (5) (6) (7) Use

VAR_IN PS x x x - - - - Input pin

VAR_OUT PS x x x x - - - Output pin

VAR_DPS PS x x x x - - - Internal variable on
the process station

VAR_VIS Op. x x - - - - - Internal variable of
Freelance Operations

PARA_DPS PS x x x x x x x Parameter on the pro-
cess station
360 Engineering - IEC 61131-3 Programming

10 User Function Blocks Interface of a user function block

Initial value

Value that the variable takes on each time the user function block instance is loaded.

Min. value / Max. value

The min. and max. values limit the range of values of a variable of storage type
PARA_DPS. Staying within these limits is a plausibility criterion which is checked

PARA_VIS Op. x - - - - - x Parameter in Free-
lance Operations

PARA_EXP PS x x - - x x x Nested FB parameter

MP_EXP PS x - - - - - x Nested FB message
data

Legend
PS Process station
Op. Freelance Operations
x Function available
- Function not available

(1) Read from Freelance
Operations

Variable can be accessed from Freelance Opera-
tions.

(2) Write from Freelance
Operations

Variable can be changed (WRITE) from Freelance
Operations or through a gateway.

(3) Download to PS This variable is loaded into the process station and
may be used in the program.

(4) Write from PS Variable can be changed by the program on the pro-
cess station.

(5) Write from Freelance
Engineering

Variable can be changed (WRITE) from Freelance
Engineering in commissioning mode.

(6) Correct from Freelance
Engineering

Variable can be “corrected” from Freelance Engi-
neering in commissioning mode.

(7) Conf. in parameter dia-
log

The variable may be altered by Freelance Engineer-
ing in configuration mode (parameter dialog).

Storage
type

Data
source

(1) (2) (3) (4) (5) (6) (7) Use
 Engineering - IEC 61131-3 Programming 361

Interface of a user function block 10 User Function Blocks

during configuration. If the limits are not upheld, the user function block instance
will not be deemed plausible.

Ref-parameter

Reference to a value of a nested function block. The nested function block must
have a name if it is to be referenced.

Comment

Comment relating to the variable for documentation purposes. The comment can
have a maximum of 32 characters.

Predefined variables

The following predefined variables are for display of general function block data in
the faceplate. Each user function block class has these variables available and they
are not modifiable from within the class.

Name
Data
type

Storage type Comment

ClassName TEXT PARA_VIS Contains the name of the user function
block class.

TagName TEXT PARA_VIS Contains the tag name of the user function
block instance

ShortText TEXT PARA_VIS Contains the short text of the user function
block instance

LongText TEXT PARA_VIS Contains the long text of the user function
block instance

SelStat BOOL VAR_VIS Indicates whether the faceplate is selected.
TRUE = Faceplate is selected
FALSE = Faceplate is not selected
362 Engineering - IEC 61131-3 Programming

10 User Function Blocks Edit interface of a user-defined function block

10.2.2 Edit interface of a user-defined function block

Undo

The last change is canceled and the text is shown as it was before the last change. If
the last change cannot be undone, the Undo menu item will not be active.

Copy/insert variable

Depending on the cursor position, either a new variable will be inserted (cursor on
an empty name field) or an existing variable copied (cursor on an existing variable
name).

For an empty field, a new variable name must be entered.

For a copy operation, a dialog is displayed with the old and new variable names. The
new name field is initially filled with the old name and must be changed.

Edit field

The contents of the selected field may be changed. After the change has been made,
a new window may appear, requesting confirmation and asking whether the change
is to apply throughout the project or just in specific programs.

> Edit > Undo

> Edit > Copy/insert variable

> Select desired field with double click (highlight box)

The cursor appears on the last item of the entry

> Click desired item of entry in the field

> Enter changes
 Engineering - IEC 61131-3 Programming 363

Edit interface of a user-defined function block 10 User Function Blocks

Delete field

A variable may be deleted by selecting an entire line in the list.

A list entry may be deleted directly using the mouse and the DEL key as follows:
click on the field to move the cursor into it, then move the cursor to the beginning of
the section to be deleted; mark the section to be deleted by dragging the cursor over
the text with the left mouse button depressed. Finally, press the DEL key to delete
the marked text.

Cut

The selected block is removed from the list and saved in a buffer.

The block in the buffer can then be reinserted at any point using the Paste
command.

Copy

The selected block is copied and saved in a buffer.

This block can then be reinserted at any point using the Paste command.

> Select desired field (highlight box, cursor appears on the last item of the entry)

> Edit > Delete field

Entries in some specific fields cannot be deleted with this command.

Those fields are the name and type fields in the user FB variable list.

> Select block >Edit > Cut

> Select block > Edit > Copy
364 Engineering - IEC 61131-3 Programming

10 User Function Blocks Edit interface of a user-defined function block

Paste

A block which has been saved in the buffer by Copy or Cut is inserted at the cursor
position.

Delete

The selected block is deleted from the list.

Check

The interface editor data (user function block variables) are checked for plausibility.

Close

This closes the editor.

Print

The screen contents are output to a printer.

> Select block > Edit > Paste

If variable names have been changed appropriately, the same window appears as
with the menu item Insert new variable.

> Select block > Edit > Delete

> FB variables > Check

> FB variables > Close

> Options > Print
 Engineering - IEC 61131-3 Programming 365

Parameter dialog of a user function block 10 User Function Blocks

 Color setting

The color of the fields that cannot be edited by the user can be set

Save column settings

The column width setting is saved.

10.2.3 Parameter dialog of a user function block

Dialog editor

Every user function block class has a default parameter dialog. With this default
parameter dialog the tag name and the short and long text can be configured.

The dialog editor can be used to create a customized parameter dialog for a user
function block class. This parameter dialog can then be used to assign other
instance-specific parameter values.

The elements for use in the parameter dialog are the parameters and messages of the
user function block class. All variables available to the user function block class are
shown in the left portion.

The dialog editor makes it possible to specify a text for display and input control
(handling) setting for each parameter. In addition, the parameter dialog can be
spread across multiple pages and the dialogs subdivided into group areas.

> Options > Color setting

> Options > Save column settings

> Edit > Dialog editor

If the default dialog is extended, it must be given a new page.
366 Engineering - IEC 61131-3 Programming

10 User Function Blocks Parameter dialog of a user function block

th003us.png

Parameter list List of parameters available for use in the parameter dialog of the
user function block class

Name Parameter name in interface editor (under user FB variables).

Data type Data type of the parameter

Dialog description
Area for the definition of the parameter dialog for this user function
block class. Every parameter dialog must begin with PAGE.

Control Structuring element or parameter name

Label Text with which the structuring element or parameter will be
displayed in the parameter dialog.

The Export, Import, Text Export and Text Import buttons are not supported.

PAGE introduces specifications for a new page in the
parameter dialog

GROUP introduces specifications for a new group in the
parameter dialog
 Engineering - IEC 61131-3 Programming 367

Parameter dialog of a user function block 10 User Function Blocks

Handling Input control which will govern how parameter data is entered. May
be specified for parameters only.

OK Close dialog editor and save changes.

Cancel Close dialog editor and discard any changes.

Delete Delete the selected dialog entry.
A variable that has been assigned will continue to appear in the
parameter list after deletion.

new Page A new dialog page is created.

new Group A new dialog group is created.

Test Switch the dialog editor into test mode.

Check Check the dialog for plausibility.

Procedure to create a parameter dialog:

1. Create new page

2. Copy all parameters requiring configuration; if necessary create additional
page.

3. Enter texts for display.

4. If required, correct the input control (handling) settings.

5. If required, structure the parameter dialog by dividing the parameters into
groups.

6. Run plausibility check

7. Test the parameter dialog

A dialog page must be given a name.

The dialog editor can only be switched into test mode when the dialog has passed
the plausibility check.
368 Engineering - IEC 61131-3 Programming

10 User Function Blocks Parameter dialog of a user function block

Variables that are to participate in the parameter dialog must be copied from the
parameter list to the parameter description.

Every message or parameter line in the dialog editor corresponds to a line in the
actual dialog. If the maximum number of lines possible in a dialog is exceeded, an
error will occur during the plausibility check.

Each parameter is assigned input control (handling). A parameter’s handling
determines its appearance in the parameter dialog.

The possible input control settings depend on the data and storage type of the
variable.

Edit control

Edit control permits entering values for parameters of any data type.

In the actual dialog, the edit control field will have a fixed length. The entered data
can be scrolled in the field. For exported parameters, the permissible input length is
inherited from the nested function block.

Check box

Check boxes are used to specify the state of a parameter with data type BOOL.

> Mark parameters individually or in a block >’-->‘

Input control Data type Example

Input field all data types ex-
cept BOOL th008us.bmp

Check box BOOL
th010us.bmp

<n> radio but-
tons

all integer data
types th009us.bmp

Message point Message (SYS-
TEM)

th011us.bmp
 Engineering - IEC 61131-3 Programming 369

Parameter dialog of a user function block 10 User Function Blocks

<n> radio buttons

Radio button fields are used to specify discrete states. They can only be used with
data types INT, UINT, DINT and UDINT. A min. and max. value must be specified
for the parameter. With a field of <n> radio buttons, n texts for display must be
entered in the form <text1>;<text2>;...;<textn>

Message point

The message point control consists of the components of a message point,
analogous to the standardized function blocks.

For messages with adjustable set point, the selection list for a set point type (Type)
will be displayed, otherwise that field will be missing.

The standard buttons used in the standardized function blocks appear in the button
area:

OK Close parameter dialog and save values.

Save Save values from the dialog.

Cancel Close parameter dialog without saving.

Reset Restore the saved values to the parameter dialog.

Check Check the dialog for plausibility.

Help Call up help text for the parameter dialog.

Test

In test mode, the functioning of the parameter dialog created can be tested. The
plausibility check is not available from this mode.

Test mode is only available with parameter dialogs which have passed the
plausibility check.
370 Engineering - IEC 61131-3 Programming

10 User Function Blocks Text list

UFB parameter dialog, example

UserFB Parameter_us.png

10.2.4 Text list

Texts for display are required both in the configuration of a user function block
instance in Freelance Engineering and in the graphic displays for operation and
logging in the Freelance operator station.

All texts for a user function block are referenced internally by their text ID’s. The
text contents are stored in the text list.

A new text can be defined during creation of a parameter dialog or a text object in
the faceplate editor. In both cases, a text which has been previously specified for this
function block can be selected from the list which is called up with the F2 key. If a
new text is entered, a new text ID will be assigned, even if the text is identical with a
text already in the list.

In order to facilitate translation outside of Freelance Engineering, user function
block texts can be exported and imported. Exported texts can be edited with any text
editor.
 Engineering - IEC 61131-3 Programming 371

Text list 10 User Function Blocks

Importing or editing a text list does not affect the plausibility of either user function
block classes or instances.

Export text list

The text list of the user function block will be written to a data carrier (e.g. hard
disk) in Unicode format. A window appears in which the path and filename must be
entered. This file can later be imported to other user function blocks in the same or
other projects with Import text list

The file can be processed by other programs (e.g. word processors). The individual
texts are arranged in lines with the following format:

< text ID >;< text >;< faceplate references >;< dialog references >

Example: 1;MAN;1;0
2;AUTO;1;0
3;Operating mode:;0;1
4;"MAN;AUTO";0;1
5;Extern;0;0

Import text list

A file that has been previously saved can also be read in from a data carrier (e.g.
hard disk). A window appears in which the path and filename must be entered.
Imported texts will be integrated into the text list; if an imported text has the same
text ID as one already in the list, the text in the list will be replaced by the imported
text. If any line in the file being imported deviates from the format described above,
the import operation will be broken off at that point and none of the texts following
the bad line will be imported.

> Edit > Export text list

> Edit > Import text list
372 Engineering - IEC 61131-3 Programming

10 User Function Blocks Text list

Show text list

The user function block text list is displayed in a separate window.

th005us.png

ID Text ID of the text list entry

Text Text entry

FPL Number of faceplate editor references

DLG Number of dialog editor references

Close Close the text list window

> Edit > Show text list
 Engineering - IEC 61131-3 Programming 373

User function block program 10 User Function Blocks

Delete unused
Delete all text entries which are not used (FPL and DLG references
both equal to 0).

New text entries cannot be made in the text list here. The references are assigned by
Freelance Engineering.

10.2.5 User function block program

User function block program

Virtually all standardized function blocks and all functions are available in the
configuration of a user function blocks. The positioning, parameterization, the
drawing of connecting lines, shifting and plausibility checking are not different from
configuration in user programs. For program creation, see for more information:

• Section 5, Function Block Diagram (FBD),

• Section 6, Instruction List (IL),

• Section 7, Ladder Diagram (LD), or

• Section 8, Structured Text (ST).

It is not necessary to assign names to nested function blocks. If a name is given them
at the user function block class level, it will be ignored by the user function block
instances.

After choosing a variable field and pressing the F2 key, a window with the user
FB variables list appears. The desired variable is then selected from this list. It is
also possible to make entries directly in the input or output fields, but the variable
entered must exist in the user FB variables list. New variables can only be entered
under System > User FB variables.

Process display variables (@) and exportable variables (#) may not be selected.
374 Engineering - IEC 61131-3 Programming

10 User Function Blocks User function block program

Variable selection

di0287us.png

User FB variable
List of all variables which have been defined by the user for this
function block. Depending on the filtering in effect, all variables
will be displayed or just selected ones.

Filter Only the selected storage types are displayed in the User FB
variable window.

Storage type Shows the storage types of the selected user-defined variables.

Data type Shows the data types of the selected variables.

There are some limitations regarding the standardized function blocks that can be
used. Particular exceptions are function blocks having an equivalent in the Freelance
operator station (such as trend acquisition blocks) or accessing special hardware
(such as the Modbus interface block).

Existing user function blocks that have passed the plausibility check can be used in
other user function blocks. A maximum of 8 levels of nesting is allowed. Recursive
calling is not supported for user function blocks.

Messages

Message generation by user function blocks is accomplished by using nested
function blocks. Any standardized or user function block with messages can be
used.
 Engineering - IEC 61131-3 Programming 375

User function block faceplate 10 User Function Blocks

The degree to which the message type can be changed, depends on the nested
function block. The message type of all messages that refer to limit values can be
changed in the user function block. All other message types are determined by the
nested block and cannot be changed at the user function block level.

A message point comprises the following components:

• Message type (limit value type), refer to Engineering Manual, Functions and
Function Blocks, Abbreviations

• Message priority

• Message text

• Hint text

• Display assignment

• Wave file

If the message point of a nested block is referenced, all associated components are
automatically exported.

It is possible to configure “hidden” message points by configuring a message point
in a nested block without referencing it in the interface editor. If a display is
assigned to this point, a plausibility error will result.

10.2.6 User function block faceplate

General of faceplate editor

When a faceplate for user function block is selected in the project tree, the graphic
editor is started in faceplate mode (faceplate editor).

Creation of the faceplate graphic is the same as the creation of a graphic display. See
Engineering Manual Operator Station Configuration, Graphic display.

> Project tree > double-click on user function block faceplate

or

> Project tree > select user function block faceplate > Edit > Program
376 Engineering - IEC 61131-3 Programming

10 User Function Blocks User function block faceplate

Default static images are available for the overview faceplate. These images cannot
be edited.

th013us.png

In principle, there is no difference between the graphic creation of a faceplate and
that of a graphic display. The complete interface menus, dialog dialogs, hint texts,
error messages is virtually the same as that of the graphic editor. (See Extensions in
the faceplate editor on page 378).

The message points for the user function block are specified in the interface editor.
In the faceplate editor, only message points of the user function block itself can be
used; message points local to nested function blocks cannot be used.

Macros are handled in basically the same way in the faceplate editor as in the
graphic editor.

It is not possible to define a new variable in the faceplate editor.
 Engineering - IEC 61131-3 Programming 377

User function block faceplate 10 User Function Blocks

Extensions in the faceplate editor

Faceplate size

A faceplate may have any rectangular size fitting within the 30 x 4 display format
(X-Size up to30 fields wide, by Y-Size up to 4 fields high). The desired faceplate
size can be specified when the faceplate editor is called up for the first time for the
creation of the faceplate, or with the Specify size menu item. A frame of the
specified size will appear in the graphic display. The full graphic area will continue
to be available for drawing.

th014us.png

The prescribed faceplate size can be changed at any time with the Specify size menu
item. The Optimize size menu item causes the system to set the faceplate size to the
smallest possible value.

Display texts

With the graphic element text strings from the text list and the content of text
variables for Freelance Operations (storage type: PARA_VIS; data type: TEXT) can
be displayed. New static texts will be added automatically to the text list.

If one or more graphic items is positioned wholly or partly outside of the
prescribed frame, the frame will be displayed in a different color.

> Faceplate > specify size

> Faceplate > optimize size

> Draw > Text > F2 key
378 Engineering - IEC 61131-3 Programming

10 User Function Blocks Check user function block classes

th043us.png

Text list A text from the text list can be selected.

Text parameter
A variable can be selected. The name of the variable will be shown
in the faceplate editor.
The configured text for this variable will be shown in the faceplate
on the Freelance operator station.

10.2.7 Check user function block classes

The plausibility check of a user function block class includes checks of the
correctness of the interface declaration, the program, the dialogs and the faceplates.
Only when no errors are present, is the user function block class declared plausible.
The details of the testing are as follows:

• Invoking the plausibility check for the nested function blocks, using the
parameter values specified.

• Checking the interface declaration (Do the referenced parameters and message
points actually exist? Are the default value and value range consistent with the
data type? Are the input control setting and the initial value consistent with the
value range? Is there a name collision? ...)

• Faceplate plausibility checking

The content of a text parameter in the faceplate can only be changed by a load
operation in commissioning mode in Freelance Engineering.

Because the error text of a nested standardized function block contains more
information, that text is the one displayed in the error list in case of an error.
 Engineering - IEC 61131-3 Programming 379

Lock user function block class 10 User Function Blocks

If a variable has been assigned min. and max. values, the maintenance of the
variable within the range so defined will be checked as part of user function block
instance plausibility checking.

10.2.8 Lock user function block class

It is possible to lock the implementation of a user function block class with a
password.

Such locking makes it possible to hide the internal structure of the user function
block (program, data structure) from the user, i.e. to make the user function block
instances appear in their external representation only, like standardized function
blocks. Similar to standardized function blocks, only the parameters are then
configurable and can be commissioned.

A locked user function block cannot be modified.

th015us.png

For the locking operation, the password must entered twice. To unlock the user
function block, a single entry of the password is sufficient.

When a user function block class is locked, the following actions on the class are no
longer possible:

• Calling up the corresponding program editor

These limit values should be described for the user in the user FB help text. See
Help for user function blocks on page 381.

> Select user function block class in project tree

> Options > Lock/Unlock UFB Class
380 Engineering - IEC 61131-3 Programming

10 User Function Blocks Help for user function blocks

• Calling up the faceplate editor

• Calling up the interface editor

For instances of a locked user function block class, only the parameter dialog
remains accessible, i.e. it is no longer possible to zoom in on the instance.

Messages from locked user function block instances are parameterized in the
parameter dialog and reported under the tag name of the instance.

10.2.9 Help for user function blocks

The comment associated with the project tree junction of the user function block
class is displayed as help text for the user function block instances. Any desired text
can be entered or imported from an existing text for use as a comment.

The help text is called up via the HELP button in the instance parameter dialog of the
user function block.

Locked user function block classes remain encrypted upon export.

If a function block nested in a locked user function block has a tag name,
messages from the nested block will also be displayed under the name of the
nested block.

> Select user function block class in the project tree.

> Project > Comment
 Engineering - IEC 61131-3 Programming 381

Export and import 10 User Function Blocks
 th012us.png

10.2.10 Export and import

A complete user function block class, or certain elements of it, can be exported or
imported.

> Select node(s) in project tree > Edit > Block export...

or

> Edit > Block import... > select file
382 Engineering - IEC 61131-3 Programming

10 User Function Blocks Commissioning

10.3 Commissioning

10.3.1Load objects

All changes made to user function blocks proper are free of side effects. This means
that when loading such changes, it is not necessary to halt either the resource or the
task.

In the object list (Show selected objects), user function blocks with nested function
blocks are thus displayed with more than one object under the same name. Load >
Changed objects loads only those objects of a user function block which were
changed.

10.3.2 Read, write and correct

When reading, writing and correcting exported parameters (PARA_EXP), the
action on the referenced parameters will be displayed for the nested function block.
This display can under certain circumstances encompass many layers of nesting.

With an unlocked user function block instance, it is possible to zoom in on
parameters of nested function blocks and write directly to them and to display their
current values from the nested function block.

Parameters of nested function blocks (PARA_EXP) can be corrected. Correction
will only be carried out when the plausibility check of the nested function block
does not report any errors.

Correction operations on values in user function block instances work like those on
standardized function block instances.

Variables with storage type PARA_VIS are not writable or correctable.

User function block instances are loaded object by object to the process station.
This is because, in contrast to standardized function blocks, they are made up of
individual objects.

A user function block class is loaded to Freelance operator stations together with
the project. This means, the Freelance Operations part of the function block class
(faceplate) should be defined in those language which is used for Freelance
Operations.
 Engineering - IEC 61131-3 Programming 383

Load parameters 10 User Function Blocks
 UserFB Parameter_us.png

10.3.3 Load parameters

All variables having the PARA_DPS and PARA_EXP storage types are available for
parameter upload.

If an exported parameter has a tag name as its source, then the parameter will only
be accepted in the most outside point of use in the upload list. This will cause the
parameter to be missing from all nested function blocks with tag names.

If variables of a user function block instance are being displayed in a value
window or a trend window, these values will not be saved when commissioning
mode is quit. When commissioning mode is reentered, the values previously in
the value or trend window will no longer be available.

Every parameter appears only once in the parameter upload list.
384 Engineering - IEC 61131-3 Programming

10 User Function Blocks Load parameters
 th007us.png
 Engineering - IEC 61131-3 Programming 385

Generate instances of user function blocks 10 User Function Blocks

10.4 Generate instances of user function blocks

10.4.1Create new user function block instance

A function block instance is created by first choosing a class out of a list of user
function block classes. Instances can only be created from classes which have
passed the plausibility check.

Instantiate_UserFB_us.png

All defined function blocks which have passed the plausibility check appear in the
Select user function block window. Select and position the desired function block.
Alternatively, the user-defined function block class can be selected from the Library
pane or via context menu Blocks of the graphic area.

> Elements > Blocks > User function blocks
386 Engineering - IEC 61131-3 Programming

10 User Function Blocks Using user function blocks

di0290us.png

After the user function block has been selected from the list, it is positioned in the
program and the variables can be connected.

Changes to the user-defined function block structure (connecting lines, addition of
blocks or changes to blocks) can only be made in the user function block class. See
Modification of user function blocks on page 393.

10.4.2 Using user function blocks

Pin layout

FBD/LD program

The size of a user function block depends on the number inputs and outputs. The
class name of the user function block appears in the middle of the symbol. The tag
name allocated in the application appears in the upper portion of the symbol. This
name also appears in the list of allocated tags, with the notation of the associated
user function block. The inputs and outputs are labeled with their pin designations.
 Engineering - IEC 61131-3 Programming 387

Using user function blocks 10 User Function Blocks

di0288uk.bmp

IL Program

The length of the user function block in the IL program depends on the number of
inputs and outputs. The class name is entered behind the CAL call in the Operand
column. The tag name given in this application is in the line directly below. This
name also appears in the list of allocated tags with the notation of the user function
block name.

The first three letters of the user-defined function block input and output
designations appear on the inputs and outputs.

di0277uk.bmp

ST-Program

In ST programs a UFB must be declared as a standard function block. Calling of the
UFB takes place in an instruction. Inputs and outputs can also receive and transfer
values independently of the UFB. The first three characters of the UFB inputs and
outputs are available for the inputs and outputs.
388 Engineering - IEC 61131-3 Programming

10 User Function Blocks Using user function blocks

VAR
 TI201_LIN: LIN2;
END_VAR

TI201_LIN.X := in1;
TI201_LIN.Y := in2;
out1 := TI201_LIN.Z;

Modify parameter data

The parameter dialog is opened with a double click on the block. There, the
allocated tag name of the function must be entered.

If an individualized parameter dialog was created for the user function block, the
individual parameter values for the instance can be entered here.

Any additional pages of the parameter dialog can be brought up using the tab
control.

Parameters and messages of a user function block instance are filled in with the
default values from the class declaration the first time the parameter dialog of the
instance is called up. They can be adjust as required for each instance.
 Engineering - IEC 61131-3 Programming 389

Using user function blocks 10 User Function Blocks

ConfDialog_UFB_us.png

General data
Name The name may be up to 12 characters in length and must be unique

within the project. Entry here is required.

Short text Up to 12 characters, all characters are allowed.

Long text Up to 30 characters, all characters are allowed.

OK The parameter dialog is closed and the parameter values are saved.

Cancel The parameter dialog is closed without saving the parameter
values. A warning appears if parameter value changes are lost.

Save The current parameter values are saved but the window remains
open.
390 Engineering - IEC 61131-3 Programming

10 User Function Blocks Using user function blocks

Reset The values in the parameter window are reset completely to the
preset default values. Any values previously saved and differing
from the default settings can be retrieved by canceling and
reopening the parameter window.

Check The user function block instance is checked for plausibility with the
current parameters, even if they have not been saved. All nested
function blocks are also subjected to plausibility checking.

Help Help is provided for the user function block. The comment text
associated with the user function block class is displayed as help
text.

th012us.png

Check of instances

When parameters are entered for a user function block instance, they are checked
against any value ranges previously entered in the interface editor. If any ranges are
exceeded, the user function block instance is marked as implausible.
 Engineering - IEC 61131-3 Programming 391

Using user function blocks 10 User Function Blocks

th016us.png

Zoom to user function block

Entries in the parameter dialogs of the nested function blocks can be made from
their respective programs. Such entries are only possible with user function block
instances which are not locked.

Zoom_UFB_us.png
392 Engineering - IEC 61131-3 Programming

10 User Function Blocks Use faceplates of user function blocks

In the case of unlocked user function block instances, instance-specific values for
variables with PARA_EXP storage type can be changed either in the user function
block instance dialog or in the dialog of the nested block. In contrast to the situation
in earlier versions, the nested blocks do not require allocated tag names.

10.4.3 Use faceplates of user function blocks

The group display editor can handle any rectangles within a 120-square (30 or 36
fields width, 4 fields height). Faceplates in a group display may not cover one
another, even partially.

Default static images are available for the overview faceplate. These images cannot
be edited.

10.5 Modification of user function blocks
Changes to UFBs may only be made in the User function block pool, that is for the
user function block class.

If inputs or outputs are added, the user function block must be reinstalled in
programs where it is used. In such a case, all instances of the changed user function
block class are marked in red in the programs.

In general, user function block instances become implausible when their class
becomes implausible. In addition, all user function blocks which refer to a user
function block when the class referred to becomes implausible. Changing of
comments has no effect on plausibility. Instances with no corresponding classes

> Select user-defined function block symbol with single cursor click

> Edit > Zoom to user FB

The user function block program is displayed

> Double- click the desired block

> Make required changes in the parameter dialog that appears

Only user function block classes which are not locked can be changed.
 Engineering - IEC 61131-3 Programming 393

Modification of user function blocks 10 User Function Blocks

which occur for example, when the class is deleted or moved to the pool are
displayed as incompatible (in red).

Add or delete inputs in the user function block

When adding or deleting inputs or outputs, this UFB must be replaced in all the
programs used. The parameterized data are lost in the process. The altered UFB, i.e.
in this case the instances in the programs are marked in red.

Changes to the user function block interface

After changes to the interface of a user function block, a plausibility check of the
associated program and the faceplate is required. If the change had an effect on the
faceplate, then the faceplate must be loaded to the Freelance operator stations.

Changes to the UFB text list

After a change to the text list of a user function block, a plausibility check of the
associated program and the faceplate is required. If the change had an effect on the
faceplate, then the faceplate must be loaded to the Freelance operator stations.

Changes made in commissioning

During commissioning, only process station components can be manipulated. It is
thereby assured, that the faceplate is not affected by commissioning, and
commissioning will never require loading to Freelance operator stations.

Changes to the faceplate

When the faceplate is created, only previously defined components of the user
function block can be accessed. Changes to the graphic cannot have any effect on
the program portion of the function block.

Overview of changes and effects

The following table gives an overview of changes done in the class definition and
the effects to the class itself and the associated instances:
394 Engineering - IEC 61131-3 Programming

10 User Function Blocks Modification of user function blocks

Effects of changes of a user function block class

Change Effect Comment

Rename a class 1. d. A warning is issued before the class is
renamed.

Delete a class d. No 1 or 2, because the class no longer
exists.

Move class to project pool d. Same as deleting a class.

Move class to project pool and
then back

1. b.

1. d.

If no substantial change was made.

If a substantial change was made.

Delete class and then create or
import it again

1. b.

1. d.

If no substantial change was made.

If a substantial change was made.

Change sequence of classes in
UFB pool

1. b. The configured values of the included
blocks are preserved; the dependence
of the included classes must be con-
sidered

Add variables with storage type
VAR_IN or VAR_OUT

1. d.

Delete variables with storage
type VAR_IN or VAR_OUT

1. d.

Add variables with storage type
PARA_DPS or PARA_VIS

1. b.

Delete variables with storage
type PARA_DPS or PARA_VIS

1. c. The configured values of the instances
are lost.

Add variables with storage type
PARA_EXP or MP_EXP

1. b.

Delete variables with storage
type PARA_EXP or MP_EXP

1. b.

Add variables with storage type
VAR_DPS or VAR_VIS

1. b.
 Engineering - IEC 61131-3 Programming 395

Modification of user function blocks 10 User Function Blocks

Delete variables with storage
type VAR_DPS or VAR_VIS

1. b.

Change the program structure 1. b.

Add function block call in the
program

1. b.

Delete function block call in the
program

1. c. The data configured for the deleted
program part are lost.

Rename program node in proj-
ect tree

2. a.

Delete program node in project
tree

1. d.

Change or delete tag name of a
nested function block

1. b.

Faceplate changes 1. b.

Text list changes 1. b.

Parameter dialog changes 1. b.

Change Effect Comment
396 Engineering - IEC 61131-3 Programming

10 User Function Blocks Modification of user function blocks

Effects of changes in the user function block interface

If a class A function block is used by a class B function block, then, in general, the
change status of A is passed up to B.

Legend:

Possible effects on a user function block class:

Effect

Change of
Data
type

Initial val-
ue

Value range
Refer-
ence pa-
rameter

Comment

VAR_IN
VAR_OUT

1. d. 1. b. 2. a.

PARA_DPS 1. b. 1. b. 1. b. or 1. e.(1)

(1) The effect of the change depends on the validity of the initial value and the configured values in
the new value range.

2. a.

PARA_VIS 1. b. 1. b. 1. b. or 1. e. 2. a.

PARA_EXP
MP_EXP

1. b. 2. a.

VAR_DPS 1. b. 1. b. 2. a.

VAR_VIS 1. b. 1. b. 2. a.

Abbreviation Effect

1. Class is made implausible

2. Class remains plausible
 Engineering - IEC 61131-3 Programming 397

Modification of user function blocks 10 User Function Blocks

Possible effects on a user function block instance

Abbr. Instance-specific
parameterization
remains intact

Instance remains
plausible

Instance be-
comes implausi-
ble (red)

Change required
at the instance
level

a. yes yes no no

b. yes no no no

c. partially no no no

d. no no yes Instance must be
deleted and new-
ly inserted (de-
fault values are

used)

e. yes no no yes; values must
be possibly

adapted
398 Engineering - IEC 61131-3 Programming

11 Debugger

11.1 General description – Debugger
The debugger is a source text debugger for programming languages to IEC 61131-3.
At present only the debugging of structured text programs is supported. The
debugger supports all available types of process station.

The most important element of working in the debugger is the breakpoint list. In
addition, expressions from the program can be observed in the watch window.

The debugger can only be started in commissioning mode.

11.1.1 Fault tracing with the debugger

Debugging is the discovery and correction of errors ("bugs") in programs. The
process can be very time-consuming.

Debugging is not an exact science. The task can be made easier by having a
systematic method of work.

The process of fault tracing can be broken down into four main steps.

1. Detecting an error

2. Locating the error

3. Finding its cause.

4. Correcting the error

The debugger is used for tracing faults in programs and should not be used while
plant is running.
 Engineering - IEC 61131-3 Programming 399

Breakpoints 11 Debugger

Is there really an error?

This point may be very obvious. The user task state changes to not executable. An
output does not assume the expected value. The plausibility check reports an error.
Often, however, problems are not so easy to detect. The program may work without
errors until a variable takes on a certain value, e.g. zero or a negative number.

Where is the error?

This is often the most difficult step. Looking through a complex program is not easy.
For this reason, instead of writing one large program, a number of small programs
should be written.

What kind of error is it?

Once the error has been pinpointed it is usually easier to discover why the program
is throwing up problems.

How can the error be eliminated?

The final step is to correct the error.

This four-stage process is run through many times when creating a program. For
example, the plausibility check reports a lot of syntax errors. The machine code for
the program cannot be generated until these have been corrected. The debugger can
only be used after the program has been loaded onto the process station.

11.1.2 Breakpoints

A breakpoint is the point at which user task processing is suspended.

Breakpoints have the following states:

A breakpoint must not be confused with the stopping of the user task. When it is
stopped, the user task comes to an end before its status changes to stop. At a
breakpoint the user task remains suspended without proceeding further and
process image variables are not output.

Not present The breakpoint is not set.
Active The breakpoint is set and enabled.
400 Engineering - IEC 61131-3 Programming

11 Debugger Breakpoints

The following transitional states exist between the individual states:

Disabled The breakpoint is set and disabled. The user task is not
suspended at the breakpoint.

Suspended The user task has been suspended at an active break-
point.This state can only be achieved in commissioning
mode.

Set The user sets a breakpoint in the ST program editor. See
Set/delete breakpoints on page 409.

Activate The user enables a breakpoint in the ST program or in the
breakpoint list. See Enable/disable breakpoint on page 409.

Disable The user disables a breakpoint in the ST program or in the
breakpoint list. See Enable/disable breakpoint on page 409.

Suspend The user task runs through an active breakpoint and is sus-
pended. See Task state on page 409.

Not

present
Active Suspended

Disabled

 Delete

Delete Single step,

Go

Set Suspend

DisableEnable

DisableDelete
 Engineering - IEC 61131-3 Programming 401

Debugger interface 11 Debugger

Breakpoints can be used simultaneously on a number of process stations in the same
project. A maximum of 32 breakpoints can be set in a project.

11.2 Debugger interface

11.2.1Breakpoint list

The list of breakpoints can be called up from the project tree, all program editors,
the hardware structure, the variable list and the tag list as well as from the editor for
structured data types.

After calling up the breakpoint list the breakpoint management list is displayed.

Single step,
Go

The user continues program processing in single steps (see
Single step on page 411) or continuously (see Go on page
412).

Delete The user deletes a breakpoint in the ST program or in the
breakpoint list. See Set/delete breakpoints on page 409.

> System > Breakpoint list
402 Engineering - IEC 61131-3 Programming

11 Debugger Debugger interface
 tf001us.png

Breakpoint list
The breakpoint list shows all the breakpoints (enabled and disabled)
that have been set in the project.

Program Name of the program in which the breakpoint is set.

Location Number of the line at which the breakpoint is set. The first
characters of program code are also shown.

Task Name of the task in which the breakpoint is set.

Resource Name of the resource in which the breakpoint is set.

Time Time at which the program jumped to the breakpoint. The field is
empty if the breakpoint has not yet been reached.

Path Displays the assignment of the program to the project, the resource,
the task and the program list. This can be displayed as long text or
short text. The setting for this is in the project tree, under Options.

Task list The task list shows all the user tasks that have the status braked. It
is only active if the debugger has been started. The columns are
explained in Breakpoint list on page 402.
 Engineering - IEC 61131-3 Programming 403

Watch window 11 Debugger

Erase all Deletes all the breakpoints that have been set.

Enable all Enables all the breakpoints that have been set.

Disable all Disables all the breakpoints that have been set.

Close Closes the breakpoint management list. This does not stop the
debugger.

Start/Stop Debugger
Starts and Stops the debugger.

Help Calls up the debugger’s online help.

The user can jump directly from the breakpoint list to the breakpoint definition
point.

11.2.2 Watch window

The watch window can be used to display the current values of local variables and
expressions. The watch window can be called from ST programs.

For variables with a array data type, the individual elements can be displayed.
Global variables can only be displayed in the watch window if they are read or
written via the process image. The values in the watch window are not updated on
each cycle. They are updated
• after opening the watch window and
• after every single step.

> Select program > context menu > Jump to source location

or

> Double-click program in the list

> Window > Show watch window
404 Engineering - IEC 61131-3 Programming

11 Debugger Watch window
 tf002us.png

Name Name of the variable or expression to be evaluated.

Value Value of the variable or expression.

A valid value is only displayed if the state of the associated user
task is braked. Otherwise the fact that the value is not valid is
shown by not current value.

If a value changes after a single step, this value is shown in red.

Close Closes the watch window. All the variables and expressions entered
are saved in the project and are displayed again the next time they
are called.

Delete all Deletes all the entries in the watch window.

Display all Appends all the local variables to the entries that are present in the
watch window.
 Engineering - IEC 61131-3 Programming 405

Watch window 11 Debugger

Add watch entry

The name of a variable or an expression can be entered.

An expression can contain any number of variables, numeric constants and
operators. Functions cannot be used. The data types of variables and constants used
in an expression must be compatible with each other.

Individual elements of structured variables and array variables can also be added,
e.g.

 Variable_name.component_name
 Variable_name[3, 1, 1, 7]
 Variable_name[3, 1].component_name
 Variable_name[2 * index + 1]

In the expression for calculating the index a maximum of one variable can be used
and only the operators +, -, * and /.

Global variables can only be displayed if they are read or written via the process
image. The @ must also be quoted, e.g.

tf009us.png

Write value

Values can only be written for variables. The value entered must be of the same data
type as the variable. The variable contains the written value until the program or the
user assigns a new value to it.

> Context menu > Insert

or

> INS

> Mark entry > context menu > Write
406 Engineering - IEC 61131-3 Programming

11 Debugger Working with the debugger

A value can only be written if the state of the associated user task is braked.

The value of an expression can only be altered by changing the value of the
individual variables.

Change a watch entry

The selected name of the variables or expression can be altered.

Delete a watch entry

The marked block in the watch window is deleted.

11.3 Working with the debugger

11.3.1Starting the debugger

When the debugger is started, the breakpoints that are already set are loaded onto
the process station. The debugger can only be started in commissioning mode.

The state (Debugger active) is displayed in the title line. If a breakpoint is set once
the debugger has started, the task is set to suspend when it passes through the
breakpoint without requiring confirmation.

> Mark entry > context menu > Edit

or

> Double-click an entry

> Mark entry > context menu > Delete

or

> DEL

> System > Breakpoint list > Start debugger
 Engineering - IEC 61131-3 Programming 407

Edit breakpoint 11 Debugger

11.3.2 Edit breakpoint

In ST programs, breakpoints can only be set in program lines with executable
statements. A maximum of 32 breakpoints can be set in the whole project.

tf003us.bmp

Breakpoints can also be set in programs that are computed in the system tasks. As
system tasks are not computed cyclically, suspension at the breakpoint is associated
with the event concerned.

Cold start task With a cold start, the connection between Freelance Engi-
neering and the process station is broken. This disables all
active breakpoints on the process station. They can only be
enabled once the cold start has been completed.

Warm start task With a warm start, the connection between Freelance Engi-
neering and the process station is broken. This disables all
active breakpoints on the process station. They can only be
enabled once the warm start has been completed.

Run task Run task is processed when the resource starts. The pro-
gram is suspended at active breakpoints in the flow.

Stop task Stop task is processed when the resource stops. The pro-
gram is suspended at active breakpoints in the flow.

Error task The error task is processed when an error occurs in a user
task. The program is suspended at active breakpoints in the
flow.

Lateral tasks No programs can be configured under lateral tasks.
408 Engineering - IEC 61131-3 Programming

11 Debugger Task state

Set/delete breakpoints

In ST programs, breakpoints can be switched on and off. If there is no breakpoint in
the line the switch sets it, if there is one it deletes it.

In the breakpoint management list it is only possible to delete breakpoints.

Enable/disable breakpoint

Breakpoints that have been set can be disabled and enabled. Disabled breakpoints
are displayed in grey. Breakpoints can be enabled and disabled in both the ST
program and in the breakpoint management list.

11.3.3 Task state

If an active breakpoint is passed once the debugger has started, the user task is
suspended in front of the statement at which the breakpoint is located and its status
is set to braked. The breakpoint processing dialog opens. The state braked is
displayed in the project tree and in the user task dialog.

Position the cursor on the desired line
In configuration mode: > Edit > Toggle breakpoint
In commissioning mode: > Debug > Toggle breakpoint.
or
F9

Mark block in the breakpoint list

> Context menu > Delete

or

> DEL

Position the cursor on the desired line
In configuration mode: > Context menu > Disable / Enable breakpoint
In commissioning mode: > Debug > Disable / Enable breakpoint

Mark block in the breakpoint list > Context menu > Enable / Disable
 Engineering - IEC 61131-3 Programming 409

Task state 11 Debugger
 tf004us.png

In the breakpoint management list the suspended programs (breakpoint list) and
user tasks (task list) are identified by a yellow arrow (Program cursor) in the
breakpoint symbol. The program cursor is displayed all the time that the state of the
user task is braked.

The user can navigate directly from breakpoint management to the suspended
programs.

While the state of a user task is braked, no variables can be updated via the process
image. All user tasks that do not have braked as their state are processed normally.

Select program or user task > Context menu > Jump to Source Location

or

> Double-click program or task

If the resource is stopped while a user task is braked the task state changes to
not executable with the error Invalid command in break. The error task is
therefore not started.
410 Engineering - IEC 61131-3 Programming

11 Debugger Single step

If, while the debugger is running, the connection between Freelance Engineering
and a process station is broken, the breakpoints of this process station are set to
disabled in the breakpoint list. The broken connection is indicated by a flash symbol
in the breakpoint list. The breakpoints loaded on the process station are deleted.

After the connection has been re-established the breakpoints must be enabled once
more. This is done by reloading them onto the process station.

11.3.4 Single step

Single steps are only possible in programs in which a breakpoint has been reached.

The single step enables the program to run one step at a time. Every single step
processes the statement which is marked by the program cursor (yellow arrow, see
also the picture below). The program cursor then moves to the next statement to be
carried out.

For keyboard operation (F10), the focus must be on the ST program.

While the program is running in single steps the state of the user task remains
braked.

If the ending condition is not satisfied at the end of a loop the program cursor is
placed at the beginning of the loop. In conditional loops the program cursor only
runs through the condition that is satisfied.

tf005.bmp

If the resource is stopped while a program in a user task is in an endless loop the
task state changes to not executable with the error Execution aboard. The error
task is therefore not started.

> Debug > Single step

or

> F10 key
 Engineering - IEC 61131-3 Programming 411

Watch values 11 Debugger

Statements that do not occupy exactly one program line are special cases.

• More than one statement on a line
The execution stops before the first statement. After a single step all the
statements in the program code line are carried out. The program cursor goes to
the next statement in a new line.

• One statement on more than one line
The program cursor is positioned in the last line of the statement. The
statement is carried out with a single step and the program cursor goes to the
next statement in a new line.

After the last statement in a program, it is not possible to change to the next program
with a single step. In this case program processing is continued.

11.3.5 Watch values

The values are updated in the watch window at every single step. Changes to the
displayed value are shown in red.

On going through the text of the ST program the current values of the variables are
displayed.

11.3.6 Go

After a breakpoint or single steps in the program have been enabled, program
processing can Go. The user task then leaves the braked state.

11.3.7 Stop debugger

The debugger is terminated. The breakpoints loaded onto the process station are
deleted and cyclic program processing of the user task continues.

> Debug > Go

or

> F12 key

System > Breakpoint list > Stop debugger
412 Engineering - IEC 61131-3 Programming

11 Debugger Typical examples of errors

The debugger is terminated automatically on changing to configuration mode. The
breakpoints retain their state in the breakpoint list but are deleted on the process
stations.

11.3.8 Typical examples of errors

Examples of typical errors found during fault tracing using the debugger are
explained below.

Endless loop

Endless loops are normally difficult to find. The following program should initialize
the elements of a array.

PROGRAM init
VAR
 i: DINT := 1;
 myArray: ARRAY [1 .. 10] OF REAL;
END_VAR

FOR i:=1 TO 10 DO
 myArray[i] := 1.0;
 i := i - 1;
END_FOR;

END_PROGRAM

1. Detecting the error
Since the user task is in an endless loop it does not calculate or output any new
values
When a user task is in an endless loop the following behavior occurs:

– The CPU load is 100% even without a default task.

– It is not possible to load changes. The event log reports the error:
E_DMS_INSTALL_TIMEOUT. See Event log on page 420.

– Breakpoints that have been set outside the endless loop are not enabled.
This also applies to other user tasks with the same priority.

– When the task is stopped, an error message is issued after a delay: Timeout
occurred, service did not respond.
 Engineering - IEC 61131-3 Programming 413

Typical examples of errors 11 Debugger

– When the resource stops there is a waiting time, then the state of the user
task concerned changes to not executable with the error Execution abort.

2. Locating the error

If all the indicators point to an endless loop this does not make it easier to
locate. The endless loop is probably in an ST program. However, they can also
be found in IL and LD programs.

Location can be helped by retracing the last changes. If the changes were
extensive, it is a good idea to proceed step by step. The error can be given
limits by stopping all project tree objects and starting individually. After the
affected user task has been found, continue with the individual program lists.
The breakpoints can now be used to analyze each ST program individually.

3. Finding the cause

The causes of endless loops are many and varied. In every case, the ending
condition of the loop is not reached. The end condition should therefore be
analyzed using the debugger and the watch window.

In the present example the controlled variable within the loop is repeatedly
decremented. This causes the loop index to remain constant and therefore the
ending condition is not reached.

4. Correcting the error
To satisfy the ending condition of the loop, the unwanted decrementation of the
controlled variable is deleted:
FOR i := 1 TO 10 DO
 myArray[i] := 1.0;
END_FOR;

Overflow

In the following sample program, initialization has been changed from a FOR loop to
a REPEAT loop.

PROGRAM init
VAR
 i: DINT;
 myArray: ARRAY [1 .. 10] OF REAL;
END_VAR
414 Engineering - IEC 61131-3 Programming

11 Debugger Typical examples of errors

i := 1;
REPEAT
 i := i + 1;
 myArray[i] := 1.0;
UNTIL i>10 END_REPEAT;

END_PROGRAM

1. Detecting the error
In this case the error is easy to detect. After loading the program the user task
state changes to not executable. In the user task dialog the error displayed is
Illegal array index.

2. Locating the error
Location as far as the ST program affected is simple. The user task dialog
displays the error object. Use Info to find the path to the ST program that is
causing the error.
If necessary the breakpoints should be used to narrow down the site of the error
in the ST program.

3. Finding the cause
Access to array elements outside the defined array area is not allowed because
this also accesses storage areas that do not belong to the array.
In the present example the ending condition tests for i > 10. i = 10 does not
satisfy the condition yet and the loop recommences. The index increases to
i := 11. However, the array is only defined in the range [1 .. 10] and the
current index references an element that is outside the array.

4. Correcting the error
The index must be limited to the value 10, e.g.
UNTIL i>=10 END_REPEAT;

Loop counters

The above program has been corrected. After initialization the sum is determined by
the array objects.

PROGRAM init
VAR
 i: DINT;
 Engineering - IEC 61131-3 Programming 415

Typical examples of errors 11 Debugger

 myArray: ARRAY [1 .. 10] OF REAL;
 sum: REAL;
END_VAR

i := 1;
REPEAT
 i := i + 1;
 myArray[i] := 1.0;
UNTIL i>=10 END_REPEAT;

sum := 0.0;
FOR i := 1 TO 10 DO
 sum := sum + myArray[i];
END_FOR;

END_PROGRAM

1. Detecting the error
The error in the program is difficult to find because the user task runs error-
free.
Checking the value of the variable sum gives the result 9. The sum of a array
with 10 objects, all initialized at 1, should be 10.

2. Locating the error
An error of this kind is normally only found later in the signal path when an
output takes on an unexpected value. Tracing the signal path back by means of
cross references enables the faulty program to be arrived at.

3. Finding the cause
Checking the array elements in the watch window shows that the first array
element was not initialized.

4. Correcting the error
The index is initialized at 1 and already incremented before the first array
access. Thus the first initialization is with the array element 2. Array element 1
is bypassed. In the loop only 9 array elements are initialized.
If the index is initialized at 0, all 10 array elements are initialized.
416 Engineering - IEC 61131-3 Programming

11 Debugger Typical examples of errors

Other kinds of error

Initialization

If, for example, the sum is to be recalculated by a array in every task cycle,
initialization at the variable declaration will prove unsuccessful.

VAR
 sum: REAL := 0.0;
END_VAR

FOR i := 1 TO 10 DO
 sum := sum + myArray[i];
END_FOR;

Since the local variable sum is only initialized on loading the program and not every
time it runs, it is the task cycles that calculate the sum. The variable sum must be
initialized every time before the sum is calculated:
sum := 0.0;
FOR i := 1 TO 10 DO
 sum := sum + myArray[i];
END_FOR;

Process image

Access to global variables via the process image is normally recommended.
However, within loops this can lead to problems as the process image is only
updated at the beginning and end of calculation of a user task. The following
example leads to an endless loop:

VAR
 StartTime: DT;
 TimeDiff: TIME;
END_VAR

StartTime := @ps12.DateTime;
REPEAT
 TimeDiff := SUB(@ps12.DateTime, StartTime);
UNTIL TimeDiff > t#2ms END_REPEAT;
 Engineering - IEC 61131-3 Programming 417

Breakpoint functions 11 Debugger

Since the process image is not updated during the running time of the task the time
difference TimeDiff remains at 0 and the loop does not end. In this case the system
variable must be accessed directly (without the process image).

Decrementation in loops

When data types with no sign are decremented there should be no test for 0.

VAR
 w: UINT;
END_VAR

w := 5;
WHILE w >= 0 DO
 w := w - 1;
END_WHILE;

After the fifth iteration w equals 0. The next time it is 65535 (value range of the
UINT data type), which is still greater than 0. This loop therefore never ends.

11.4 Breakpoint functions

11.4.1Mark breakpoints

Mark an individual breakpoint

The whole line of the breakpoint is the selection area.

Mark a number of breakpoints

Inside a line, characters are marked. Otherwise complete lines are marked. After
marking, the desired operation can now be carried out. Example: > Disable.

> Place cursor on desired breakpoint > click left mouse button

> Hold down SHIFT key > click left mouse button to mark breakpoints
418 Engineering - IEC 61131-3 Programming

11 Debugger Breakpoint functions

Mark additional breakpoints

tf006us.png

The additional characters or lines are included in the marked area.

Jump to a breakpoints

The program in which the breakpoint is defined opens with the cursor positioned in
the line with the breakpoint.

> Hold down CTRL key > click left mouse button to mark additional breakpoints

> Context menu > Jump to Source Location

or

> Double-click the breakpoint
 Engineering - IEC 61131-3 Programming 419

Event log 11 Debugger

Deselect breakpoints

A selection is automatically canceled by closing breakpoint management.

Save breakpoints

Breakpoints are saved with their state in the project. They are not exported with it.

Save the watch window

The settings of the watch window with all the variables and expressions are stored
for each program in the project. They are not exported with it.

11.4.2 Event log

All loading operations while Freelance Engineering is running are logged in the
Windows event log. The relevant entries are contained in the application log.To
display the event log, the event display must be started.

The event log has three categories which can be filtered.
• Information
• Warnings
• Errors

A detail view can be called up for every entry in the event log. Loading errors during
commissioning are shown by the message box

At least one loading process has failed

and are recorded in the event log as errors. The individual entries have the following
structure:

LOAD E_OBJ S_NO_MEM 819 PRG Program
fwk2/conf/ps_1/ps_1.USRTask/Task21/RecWrType_s
NOLOCK

The first line gives information on the actions carried out, the error that occurred
and the object that is affected by the error.

> Click an unmarked breakpoint
420 Engineering - IEC 61131-3 Programming

11 Debugger Event log

dg004.bmp

1. Action
Action that has caused the error.

2. Error
Displays the error that has occurred.

3. Object number
Number, in the object directory, of the object which has caused the error.

4. Classification of the object
Type of the object that has caused the error.

5. Object name
Name of the object that has caused the error (e.g. tag name for function
blocks).

A second line shows the path of the object in the project tree.

The last line always contains the user reported in SecurityLock or NOLOCK if
SecurityLock is not installed.

Examples of errors that have been recorded in the event log:

PARA-WRITE Error due to a Freelance Engineering write access
PARA-CORRECT An error occurred during correction
LOAD Error while loading the project

FB Function block
TSK Task
PRG Program
CLS Function block class
RED Redundancy object
PI Process image
 Engineering - IEC 61131-3 Programming 421

Event log 11 Debugger

Load errors

LOAD E_DMS_NO_MEM 554 CLS C_CU
fwk2/conf/ps_1
NOLOCK

The function block class C_CU (Universal controller, continuous) could not be
loaded onto resource ps_1. Insufficient memory is available on resource ps_1.

To remedy the error, the free storage space on the resource can be analyzed (system
variables of resource) and subsequently the PRAM store (boot parameters of the
resource) can be increased.

Write errors

PARA-WRITE FAIL binab1 M_BOUT Parameter:Phz BOOL
doku_vis_v42/conf/D_PS/D_PS.USRTask/Main/Bst/ANAUE
NOLOCK

An error occurred while parameter Phz was being written in function block binab1
(Function block class M_BOUT - binary output assignment).

The block showed the value because in the current operating mode it was not
possible to write the parameter Phz. After changing the operating mode the
parameter Phz can be successfully written.

List of selected errors

E_DMS_INSTALL_TIMEOUT Timeout during loading.

Cause: an endless loop is configured in a user
task.

Remedy: Correct the program.
E_OBJS_NO_MEM Cause: there was not enough free space to load

the object in one of the storage areas.

Remedy: Optimize storage allocation.
422 Engineering - IEC 61131-3 Programming

11 Debugger Event log

E_DMS_STATION_ABORT Cause: the connection between the system bus
and the station was interrupted during the loading
process.

Remedy: Repeat the loading process.
E_OBJS_VERSION_ERR Cause: the version number of the instance to be

loaded does not agree with the loaded class.

Remedy: Load the current class (Project - plausi-
bility check all, load whole station).
 Engineering - IEC 61131-3 Programming 423

Event log 11 Debugger

424 Engineering - IEC 61131-3 Programming

Index
A
Accumulator (IL program) 169
ARRAY ... 240
Array ... 240
Array index ... 241
Assign tag ... 324, 327
Assignment ... 247
Auto Router .. 121, 193

B
Bookmark .. 279
Break point .. 280
Breakpoint .. 400, 408

Enable/disable .. 409
Set/delete .. 409

Breakpoint list ... 402

C
Call IL operators ... 168
CASE statement .. 252
Class ... 94, 353
Coils (LD) ... 199
Comment .. 24, 238
Commissioning

Instruction list .. 185
Ladder diagram 224
Sequential function chart (SFC) 340
Structured text (ST) 291

Conditional statement 250
Connections (LD) .. 196
CONST ... 236
Contact plan

Elements .. 199

Cross reference ... 287
Cross references

Tag list ... 75
CSV (comma separated values). 59

D
Data Types (Variable list) 22
Debugger .. 399

Exit .. 412
Single step ... 411
Start ... 407
Task state ... 409

Delete ... 36
Display of steps 347, 349

E
Edit field ... 34
Edit list entries .. 31
Event log .. 420
Example (SFC) ... 296
Example of a transition program (SFC) 321
EXIT statement .. 256
Export

Tag list ... 72
Export and import blocks (SFC) 337
Export block ... 337
Export flag .. 24

F
Faceplate ... 393
FOR statement .. 253
Function

Data type ... 271
 Engineering - IEC 61131-3 Programming 425

Index
Input number ... 272
Use ... 270

Function block 244, 249, 272
Check ... 276
Insert .. 266
Parameterize .. 275
Pin .. 273

Function block type
Tag list ... 61

G
Global variable ... 241
Global variables .. 46

H
Horizontal connection (LD) 197
Horizontal sequence selection line SFC 304
Horizontal simultaneous sequence line (SFC) 306

I
Identifier ... 236
IF statement .. 250
IL operators ... 165
IL program

Create ... 158
Import block ... 337
Initial step SFC ... 302
Initial value .. 25, 55
Instance .. 94, 353
Instantiate .. 267

J
Jump (LD) ... 204
Jump SFC ... 303

L
Label (LD) .. 206
Ladder Diagram .. 187
LD program

Contact ... 198
Create ... 189
Elements .. 196
Function blocks 203

Library type
Tag list ... 61

Local variable .. 242
Long text

Tag list ... 61
Loop operators (IL) 172
Loops ... 253

M
MO message .. 330
Monitoring time .. 317

N
Normal view_Tag list 65

O
OPC address .. 25
Operand ... 245
Operator .. 227
Operators IL program 168, 176

P
Plausibility state

Tag list ... 62
Pool .. 94, 354
PowerFail .. 51
Process image 25, 33, 45, 266
PROGRAM .. 238, 277
Program ... 374
Project

Version number .. 47

R
Relational operators (IL) 172
Release tag ... 324, 328
426 Engineering - IEC 61131-3 Programming

Index
REPEAT statement 255
Replace .. 281
Resource assignment 43
Return (LD) ... 204
RETURN statement 257

S
Sequence selection

convergence add SFC 306
convergence end SFC 306
divergence add SFC 305
divergence start SFC 305

Sequential function chart 293
SFC operating mode 331
SFC operating time 331
SFC program

Calling up ... 295
Create ... 295
Parameters .. 330
User interface ... 298

Shift operators (IL) 172
Simultaneous sequence

convergence add (SFC) 308
convergence end (SFC) 308
divergence add (SFC) 307
divergence start (SFC) 307

Single step ... 411
ST program

Check 153, 184, 223, 290, 339
Create ... 228

State of processing .. 61
Statement .. 227, 247
Station view

Tag list ... 65
Step / Transitions operation 333
Step and Transition 342
Step parameters ... 315
Step SFC ... 302
Storage type ... 97, 359
String variables ... 23

Structured text .. 227
Call .. 229

Structured variable ... 56
System .. 45
System variable 243, 270
System variables ... 46

T
Tabulator width .. 233
Tag list

Area ... 61
Library type ... 61
Long text ... 61
Name ... 60
Object type .. 61
Plausibility state 62
Processing stae .. 61
Processing state 61
Short text ... 61
Type name ... 61

Tag name
Tag list ... 60

Text area
Copy .. 284
Delete .. 285
Export .. 286
Import .. 286
Mark .. 283
Paste .. 285
Write file ... 285

Transition
state ... 348

Type .. 24, 83, 239

U
User Function Blocks 351

Faceplate ... 393
Modification .. 393
Storage type 97, 359
 Engineering - IEC 61131-3 Programming 427

Index
V
VAR .. 242
VAR_EXTERNAL 242
Variable .. 241

Access .. 269
Insert .. 265
Process image .. 269

Variable (LD) ... 201
Variable list ... 21

Comment ... 24
Edit field .. 34
Export flag ... 24
Initial value .. 25
OPC address .. 25
Structure .. 82
Type .. 24, 83

Variable name .. 24, 83
Variables of SFC program 334
Vertical connection (LD) 197

W
Waiting time ... 317
Watch window .. 404
WHILE statement ... 256

Z
Zoom ... 392
428 Engineering - IEC 61131-3 Programming

Index
 Engineering - IEC 61131-3 Programming 429

Index
 Engineering - IEC 61131-3 Programming 430

—
We reserve the right to make technical
changes to the products or modify the
contents of this document without prior
notice. With regard to purchase orders, the
agreed particulars shall prevail. ABB does
not assume any responsibility for any
errors or incomplete information in this
document.

We reserve all rights to this document and
the items and images it contains. The
reproduction, disclosure to third parties or
the use of the content of this document -
including parts thereof - are prohibited
without ABB's prior written permission.
All rights to other trademarks reside with
their respective owners.

Copyright © 2019 ABB.
All rights reserved.

—
www.abb.com/freelance
www.abb.com/controlsystems

3B
D

D
01

25
04

-1
11

 A

	Table of contents
	About this book
	1 Variables
	1.1 General Description - Variables
	1.2 Data types
	1.2.1 Overview of simple data types

	1.3 Variable list
	1.3.1 Call the variable list
	1.3.2 Structure of the variable list
	1.3.3 Edit the variable list
	Column headers
	Sort list entries
	Filter list entries
	Save current filter
	Call saved filters
	Toolbar Icons
	Search in the variable list

	1.3.4 Initial values
	1.3.5 Normal view and station view
	1.3.6 Close

	1.4 Edit variable list entries
	1.4.1 Undo
	1.4.2 Create a new variable in the list
	1.4.3 Create a new variable in a program
	1.4.4 Insert an existing variable in a program
	1.4.5 Edit a field in the list
	1.4.6 Delete field
	1.4.7 Delete unused variables
	1.4.8 Delete I/O allocation
	1.4.9 Edit block
	Cut
	Copy
	Paste
	Delete

	1.4.10 Export
	1.4.11 Import
	1.4.12 Cross references
	1.4.13 Station access
	1.4.14 Assign block to resources automatically
	1.4.15 Assign block to resources manually
	1.4.16 Assign block to process image

	1.5 Options
	1.5.1 Print
	1.5.2 Adjust colors
	1.5.3 Save column settings
	1.5.4 Auto accept
	1.5.5 Save filter
	1.5.6 Clear filter
	1.5.7 Show saved filters

	1.6 System variables
	1.6.1 System variables with project information
	1.6.2 System variables with resource information
	1.6.3 System variables with information of a redundant resource
	1.6.4 System variables for power fail on voltage failure
	1.6.5 System variables for error handling task
	1.6.6 System variables for I/O communication
	1.6.7 System variables with information for lateral communication

	1.7 Structured data types
	1.7.1 Call definition of structured data types
	1.7.2 Define a new data type
	1.7.3 Create data type components
	1.7.4 Insert a new variable with structured data type
	1.7.5 Use a structured variable in a program

	2 Tags
	2.1 General description - Tag list
	2.1.1 Call the tag list
	2.1.2 Structure of the tag list
	2.1.3 Edit the tag list
	Column headers
	Sort list entries
	Filter list entries
	Save current filter
	Call the saved filters
	Toolbar Icons
	Search in the tag list

	2.1.4 Normal view and station view
	2.1.5 Close

	2.2 Edit tag list entries
	2.2.1 Undo
	2.2.2 Insert new tag in the list
	2.2.3 Edit a field in the list
	2.2.4 Delete field
	2.2.5 Delete unused tags
	2.2.6 Edit block
	Cut
	Copy
	Paste
	Delete

	2.2.7 Export
	2.2.8 Import
	2.2.9 Cross references
	2.2.10 Station access
	2.2.11 Area
	2.2.12 Change function block type
	2.2.13 Access rights
	2.2.14 User groups

	2.3 Options
	2.3.1 Print
	2.3.2 Adjust colors
	2.3.3 Save column settings
	2.3.4 Auto Accept
	2.3.5 Save filter
	2.3.6 Clear filter
	2.3.7 Show saved filters

	3 OPC items
	3.1 General Description - OPC items
	3.1.1 Call OPC item list and browse for OPC items
	3.1.2 Structure of the OPC item list
	3.1.3 Sort the OPC item list
	3.1.4 Edit the OPC item list
	Modify the data type
	Browse the OPC items from other OPC server
	Export OPC items
	Import OPC items

	3.2 Assign variable
	Patterning Algorithm

	3.3 Standard library of OPC_FB-Classes
	3.3.1 OPC_FB-CLASS and instances
	3.3.2 Create an OPC_FB-CLASS library

	3.4 Definition of OPC_FB-CLASS
	3.4.1 OPC_FB-CLASS interface
	Interface editor
	Storage type
	Predefined variables

	3.4.2 Modify an OPC_FB-Classes
	Add a variable (selector)
	Delete a variable (selector)
	Change the data type of the variable (selector)

	3.4.3 Create an OPC_FB-CLASS
	3.4.4 Faceplate for an OPC_FB-CLASS
	3.4.5 Check OPC_FB-CLASS
	3.4.6 Lock OPC_FB-CLASS
	3.4.7 OPC_FB-CLASS comments
	3.4.8 Export / Import

	3.5 Tag instantiation
	OPC Server /OPC_FB-CLASS/ Tags
	Ambiguous tags
	Cancel
	OK
	3.5.1 Instantiate All

	4 Libraries
	4.1 Library – User interface
	4.1.1 Specify own library list
	4.1.2 Specify favorites list
	4.1.3 All blocks
	Filter all blocks items
	Clear filter list in the all block bar

	4.1.4 User function blocks
	4.1.5 Sort elements in the list
	Sort ascending or descending

	4.1.6 Insert library elements into a program
	FBD, LD and SFC editor
	IL and ST editor

	4.1.7 Hide and show the Library explorer

	5 Function Block Diagram (FBD)
	5.1 General Description - Function Block Diagram
	5.1.1 Create an FBD program
	5.1.2 Copy an FBD program
	5.1.3 Delete an FBD program
	5.1.4 Call the FBD program editor
	5.1.5 Close FBD program

	5.2 Representation of the Function Block Diagram
	5.2.1 User interface of the FBD editor
	5.2.2 Modify default settings
	Auto Router
	Auto Accept
	Switch the raster on and off
	Adjust colors

	5.2.3 Display program information
	Program version and position in the project structure
	Program state

	5.3 Description of FBD program elements
	5.3.1 Connections and Lines
	5.3.2 Variables and Constants
	5.3.3 Blocks
	5.3.4 Comment fields

	5.4 Parameterize FBD program elements
	Configure variables
	5.4.1 Parameter definition of function blocks
	Parameter types
	Call parameter dialogs
	Enter mandatory parameters
	Handling the parameter dialogs

	5.4.2 Parameterize comment fields
	5.4.3 Change the processing sequence of the blocks
	5.4.4 Define favorites list

	5.5 Edit an FBD Program
	5.5.1 Draw signal flow lines
	Explicit draw of signal flow lines
	Draw line
	Deactivate line-draw mode
	Automatic drawing of signal flow lines
	Move element with/without signal connection
	Display signal flow lines

	5.5.2 Insert FBD elements
	Insert variables
	Select and position blocks in the program

	5.5.3 Change number of inputs
	5.5.4 Display and change data types
	5.5.5 Invert a block terminal
	5.5.6 Change variables
	5.5.7 Cross references
	5.5.8 Insert or delete columns and rows
	Insert or delete columns
	Insert or delete rows

	5.5.9 Block operations
	Select program elements
	Deselect program elements
	Copy
	Cut / Delete
	Paste
	Move block
	Move block with existing links
	Import block
	Export block

	5.5.10 Undo an action
	5.5.11 Program administration functions
	Save the program
	Document the program
	Program header
	Edit program comment
	Print
	Plausibility check
	Error list

	5.6 Commissioning the Function block diagram (FBD)

	6 Instruction List (IL)
	6.1 General Description – Instruction List
	6.1.1 Create an IL program
	6.1.2 Copy an IL program
	6.1.3 Delete an IL program
	6.1.4 Call the IL program editor
	6.1.5 Close IL program

	6.2 Representation of the Instruction List
	6.2.1 User interface of IL editor
	6.2.2 Modify default settings
	Auto Accept
	Adjust colors

	6.2.3 Display program information
	Program version and position in the project structure
	Program state

	6.2.4 Define favorites list

	6.3 Edit an IL Program
	6.3.1 Acceptable data types for IL operators and functions
	Enter constants

	6.3.2 Call IL operators
	Operators to load and save data
	Logic operations
	Logical operators with parentheses
	Relational operators
	Numerical operations
	Shift operators
	Loop operators
	Jumps and program calls
	Overview of IL operators

	6.3.3 Insert function blocks into an IL program
	Specify parameters for function blocks
	Change the number of inputs to function blocks
	Change the data type of inputs and outputs

	6.3.4 Cross references
	6.3.5 Program administration functions
	Save the program
	Document the program
	Program header
	Edit program comment
	Print
	Plausibility check
	Error list

	6.4 Commissioning the Instruction list (IL)

	7 Ladder Diagram (LD)
	7.1 General Description – Ladder Diagram
	7.1.1 Rules for processing a Ladder Diagram program
	7.1.2 Create an LD program
	7.1.3 Copy an LD program
	7.1.4 Delete an LD program
	7.1.5 Call the LD program editor
	7.1.6 Close LD program

	7.2 Representation of the Ladder Diagram
	7.2.1 User interface of the LD editor
	7.2.2 Modify default settings
	Auto Router
	Auto Accept
	Switch the raster on and off
	Adjust colors

	7.2.3 Display program information
	Program version and position in the project structure
	Program state

	7.2.4 Define favorites list

	7.3 Description of the Ladder Diagram elements
	7.3.1 Connections and lines
	7.3.2 Contacts
	7.3.3 Coils
	7.3.4 Variables and constants
	7.3.5 Function blocks
	7.3.6 Jumps and returns
	7.3.7 Labels

	7.4 Parameterize Ladder Diagram elements
	7.4.1 Parameterize a contact
	7.4.2 Parameterize a coil
	7.4.3 Parameterize a variable
	7.4.4 Parameterize a jump
	7.4.5 Parameterize a label
	7.4.6 Parameterize function blocks

	7.5 Edit an LD program
	7.5.1 Representation of the signal flow lines
	7.5.2 Draw lines
	Explicit drawing of signal flow lines
	Dragging a line
	Deactivate draw mode
	Automatic drawing of signal flow lines

	7.5.3 Insert LD elements and function blocks
	7.5.4 Insert or delete columns and rows
	Insert or delete columns
	Insert or delete rows

	7.5.5 Cross references
	7.5.6 Block operations
	Block selection, selection of several program elements
	Copy
	Cut / Delete
	Paste
	Move block
	Move block with existing links
	Import block
	Export block
	Undoing an action

	7.5.7 Program administration functions
	Save the program
	Document the program
	Program header
	Edit program comment
	Print
	Plausibility check
	Error list

	7.6 Commissioning the Ladder diagram (LD)

	8 Structured Text (ST)
	8.1 General Description – Structured Text
	8.1.1 Create an ST program
	8.1.2 Copy an ST program
	8.1.3 Delete an ST program
	8.1.4 Call the ST program editor
	8.1.5 Close ST program

	8.2 Representation of the Structured Text
	8.2.1 User interface of the ST editor
	8.2.2 Syntax coloring
	8.2.3 Modify default settings
	Auto Accept
	Adjust colors
	Tabulator width

	8.2.4 Display program information
	Program version and position in the project structure
	Program state

	8.2.5 Define favorites list

	8.3 Description of the ST program elements
	8.3.1 Language elements
	Special symbols and reserved words
	Identifier
	Constant
	Program
	User-defined function block
	Comment
	Program line

	8.3.2 Types
	Simple types
	Integer types
	Structured types
	Arrays

	8.3.3 Variables and function blocks
	Declaration of variables
	Global variables
	Local variables
	System variables
	Inputs and outputs
	Function blocks

	8.3.4 Expressions
	Syntax of expressions
	Operators
	Function calls

	8.3.5 Statements
	Simple statements
	Function block calls
	Conditional statements
	IF statement
	CASE statement
	Loops
	FOR statement
	REPEAT statement
	WHILE statement
	Control statements

	8.3.6 Limits of the system
	Local elements
	Programming of loops
	Memory occupancy
	User-defined function blocks

	8.3.7 Examples
	Simple control loop
	Linearization
	MIN_MAX - user-defined function block

	8.4 Edit an ST program
	8.4.1 Insert ST elements
	8.4.2 Insert variables and function blocks
	Insert variable
	Insert function blocks
	Instantiate

	8.4.3 Working with variables
	Access to variables
	Process image
	Using system variables

	8.4.4 Working with functions
	Using functions
	Data type of functions
	Number of function inputs

	8.4.5 Working with function blocks
	Position function blocks in the program
	Use function blocks in loops
	Supply function block pins
	Function block pin and parameters
	Negate function block pins
	Parameterize function blocks
	Check function blocks

	8.4.6 Program user-defined function blocks
	Interface definition
	Blocks in the UFB

	8.5 General processing functions
	8.5.1 Bookmarks
	8.5.2 Breakpoints
	8.5.3 Find and replace
	8.5.4 Goto line
	8.5.5 Block operations
	Select program elements
	Deselect program elements
	Copy
	Cut and delete
	Paste
	Write file
	Read file
	Export block
	Import block
	Undo an action

	8.5.6 Cross references
	8.5.7 Program administration functions
	Save the program
	Document the program
	Program header
	Edit program comment
	Print
	Plausibility check
	Error list

	8.6 Commissioning structured text
	8.6.1 User interface for commissioning
	8.6.2 Display of online data
	Online data in the ST program
	Window for online data

	8.6.3 Error tracing

	9 Sequential Function Chart (SFC)
	9.1 General Description – Sequential Function Chart
	9.1.1 Create an SFC program
	9.1.2 Call SFC program editor
	9.1.3 Close SFC program
	9.1.4 Basic rules
	9.1.5 Example of how to edit

	9.2 Structure of the Sequential Function Chart
	9.2.1 SFC program user interface
	9.2.2 Display program information
	Program version and position in the project structure
	Program state

	9.2.3 Drawing help
	Grid
	Row and column numbers

	9.3 Edit SFC Elements
	9.3.1 Initial step
	9.3.2 Step
	9.3.3 Jump
	9.3.4 Transition
	9.3.5 Vertical line
	9.3.6 Horizontal sequence selection line
	9.3.7 Sequence selection divergence start
	9.3.8 Sequence selection divergence add
	9.3.9 Sequence selection convergence add
	9.3.10 Sequence selection convergence end
	9.3.11 Horizontal simultaneous sequence line
	9.3.12 Simultaneous sequence divergence start
	9.3.13 Simultaneous sequence divergence add
	9.3.14 Simultaneous sequence convergence end
	9.3.15 Simultaneous sequence convergence add

	9.4 Edit SFC structure
	9.4.1 Shift blocks
	9.4.2 Undo
	9.4.3 Edit columns / lines
	Column insert
	Column delete
	Insert row
	Delete row
	Delete element

	9.4.4 Parameterize SFC program elements
	Parameterize steps
	Step program
	Parametrize transitions
	Transition program

	9.4.5 Edit program
	9.4.6 Define criteria window
	Define step criteria window
	Define transition criteria window

	9.4.7 Define display access
	9.4.8 Parameterize SFC program
	9.4.9 Edit elements
	9.4.10 Export and import blocks
	Export block
	Import block

	9.4.11 Program administration functions
	Save the program
	Document the program
	Program header
	Edit program comment
	Print
	Plausibility check
	Error list

	9.5 Commissioning the SFC program
	9.5.1 Operation dialog SFC program
	9.5.2 Step operating dialog
	9.5.3 Transition operation dialog
	9.5.4 Step states
	9.5.5 Step action execution
	9.5.6 Display of steps in the SFC program
	9.5.7 Transition states
	9.5.8 Display of transitions in the SFC program

	10 User Function Blocks
	10.1 General Description – User Function Blocks
	10.1.1 User function block - classes and instances
	10.1.2 Create user function block pool
	10.1.3 Create a user function block class
	10.1.4 Create a user function block program
	10.1.5 Create a user function block faceplate

	10.2 Definition of User Function Block Classes
	10.2.1 Interface of a user function block
	Interface editor
	Names of the user FB variables
	Data type
	Storage type
	Initial value
	Min. value / Max. value
	Ref-parameter
	Comment
	Predefined variables

	10.2.2 Edit interface of a user-defined function block
	Undo
	Copy/insert variable
	Edit field
	Delete field
	Cut
	Copy
	Paste
	Delete
	Check
	Close
	Print
	Color setting
	Save column settings

	10.2.3 Parameter dialog of a user function block
	Dialog editor
	Procedure to create a parameter dialog:
	Edit control
	Check box
	<n> radio buttons
	Message point
	Test

	10.2.4 Text list
	Export text list
	Import text list
	Show text list

	10.2.5 User function block program
	User function block program
	Variable selection
	Messages

	10.2.6 User function block faceplate
	General of faceplate editor
	Extensions in the faceplate editor

	10.2.7 Check user function block classes
	10.2.8 Lock user function block class
	10.2.9 Help for user function blocks
	10.2.10 Export and import

	10.3 Commissioning
	10.3.1 Load objects
	10.3.2 Read, write and correct
	10.3.3 Load parameters

	10.4 Generate instances of user function blocks
	10.4.1 Create new user function block instance
	10.4.2 Using user function blocks
	Pin layout
	Modify parameter data
	Check of instances
	Zoom to user function block

	10.4.3 Use faceplates of user function blocks

	10.5 Modification of user function blocks
	Add or delete inputs in the user function block
	Changes to the user function block interface
	Changes to the UFB text list
	Changes made in commissioning
	Changes to the faceplate
	Overview of changes and effects

	11 Debugger
	11.1 General description – Debugger
	11.1.1 Fault tracing with the debugger
	11.1.2 Breakpoints

	11.2 Debugger interface
	11.2.1 Breakpoint list
	11.2.2 Watch window
	Add watch entry
	Write value
	Change a watch entry
	Delete a watch entry

	11.3 Working with the debugger
	11.3.1 Starting the debugger
	11.3.2 Edit breakpoint
	Set/delete breakpoints
	Enable/disable breakpoint

	11.3.3 Task state
	11.3.4 Single step
	11.3.5 Watch values
	11.3.6 Go
	11.3.7 Stop debugger
	11.3.8 Typical examples of errors
	Endless loop
	Overflow
	Loop counters
	Other kinds of error

	11.4 Breakpoint functions
	11.4.1 Mark breakpoints
	Mark an individual breakpoint
	Mark a number of breakpoints
	Mark additional breakpoints
	Jump to a breakpoints
	Deselect breakpoints
	Save breakpoints
	Save the watch window

	11.4.2 Event log
	Load errors
	Write errors
	List of selected errors

	Index

