PROCESS AUTOMATION

Freelance 2019

Referenz-Handbuch
DMS / API

gﬂEéiﬂ'E%%ﬁﬂEé&%ﬁzf q

PROCESS AUTOMATION

Freelance 2019

Referenz-Handbuch
DMS / API

Dokumentennummer: 3BDD012508-111

Revision: A
Veroéffentlichung: Februar 2019

Hinweis

Dieses Dokument enthalt Informationen Giber ABB Produkte und kann auBerdem Beschreibungen von Normen bzw.
Verweise auf Normen enthalten, die allgemein fiir ABB Produkte relevant sind. Das Vorliegen solcher Beschreibungen
von Normen bzw. von Verweisen auf Normen bedeutet nicht, dass alle in diesem Dokument genannten ABB Produkte
samtliche Merkmale der jeweils beschriebenen oder genannten Norm unterstitzen. Informationen zu den einzelnen
Merkmalen, die ein bestimmtes ABB Produkt unterstitzt, finden Sie in der jeweiligen Produktspezifikation des be-
treffenden ABB Produkts.

ABB verfligt u. U. Uber Patente oder anhangige Patentanmeldungen zum Schutz der Rechte des geistigen Eigentums
an den in diesem Dokument genannten ABB Produkten.

Die in diesem Dokument enthaltenen Informationen kénnen ohne Vorankiindigung gedndert werden und sollten
nicht als eine Verpflichtung von ABB gesehen werden. ABB Gibernimmt keine Verantwortung fiir irgendwelche Fehler,
die in diesem Dokument auftreten kénnen.

Die in diesem Dokument beschriebenen oder genannten Produkte sind so realisiert, dass sie zuschaltbar sind und In-
formationen und Daten Uiber ein sicheres Netzwerk Gbermitteln. Es liegt in der alleinigen Verantwortung des System-
/Produkteigentliimers, eine sichere Verbindung zwischen dem Produkt und dem Systemnetzwerk und/oder anderen
ggf. angebundenen Netzwerken bereitzustellen und dauerhaft aufrechtzuerhalten.

Die System-/Produkteigentiimer sind verpflichtet, angemessene Vorkehrungen (u. a. Installation von Firewalls, An-
wendung von MaBnahmen zur Authentifizierung, Verschliisselung von Daten, Installation von Virenschutzprogram-
men) zu treffen, um das System sowie die zugehdrigen Produkte und Netzwerke vor Sicherheitsliicken,
unberechtigtem Zugriff, Stérungen, Eingriffen, Verlusten und/oder Diebstahl von Daten oder Informationen zu
schitzen.

ABB Uberprift das ordnungsgemaBe Funktionieren der freigegebenen Produkte und Aktualisierungen. Dennoch sind
letztendlich die System-/Produkteigentiimer dafiir verantwortlich, dass Systemaktualisierungen (u. a. Code-Ande-
rungen, Anderungen an Konfigurationsdateien, Updates oder Patches der Software von Drittanbietern, Austausch
von Hardware) mit den eingefiihrten SicherheitsmaBnahmen kompatibel sind. Die System-/Produkteigentiimer
miussen verifizieren, dass das System und die zugehdérigen Produkte in der Umgebung, in der sie implementiert sind,
erwartungsgemaB funktionieren.

ABB haftet nicht fir unmittelbare, mittelbare, konkrete, beildufig entstandene oder Folgeschaden irgendeiner Art,
die durch die Verwendung dieses Dokuments entstanden sind. Ebenso wenig haftet ABB fir beildaufig entstandene
oder Folgeschaden, die durch die Verwendung von in diesem Dokument beschriebener Software oder Hardware ent-
standen sind.

Weder dieses Dokument noch Teile davon diirfen ohne schriftliche Zustimmung von ABB reproduziert oder kopiert
werden, der Inhalt darf nicht an eine dritte Partei weitergegeben werden, ebenfalls darf er nicht fir unzulassige
Zwecke genutzt werden.

Die in diesem Dokument beschriebene Software und Hardware unterliegt einer Lizenz und darf nur in Ubereinstim-
mung mit den Lizenzbestimmungen genutzt, vervielfiltigt oder weitergegeben werden. Dieses Produkt entspricht
den Anforderungen der EMV-Richtlinie 2014/30/EU und der Niederspannungsrichtlinie 2014/35/EU.

Marken

Alle Urheberrechte sowie Rechte an eingetragenen Marken und Warenzeichen liegen bei ihren jeweiligen
Eigentlimern.

Copyright © 2019 by ABB.
Alle Rechte vorbehalten.

Inhaltsverzeichnis

Hinweise zu diesem Handbuch

Vorsicht-, Achtung-, Information- und Tipp-Symboleccccoeeeciiiiiinininininencneneene 9
TEIMNINOLOZIC .euveeivieniieeiie ettt ettt ettt ettt st e ste e st e e bt e sabe e beessbeenbeesbseenbeenseesaseensaeseenn 10
Typographische KONVENtionencocceeiiiiiiiiiiiiiiieiiieeceeceeee e 10

1 Applikationsschnittstelle Freelance fir Windows

1.1 Allgemeine Beschreibung - Applikationsschnittstellec.ccocvveniiniininiininnenenne. 13
1.2 MMS (Manufacturing Message Specification ISO 9506)cc.cccecvvvievinieniniencnnn. 15
1.3 DMS (Digimatik Message SpecifiCation)ccccceeeuereerieneeiienenienienienieeeesee e 16
1.4 DMS / MMS -FunktionsbereiCheccccoceciieiiiiinieniniiiiciiciecceeneerceeeee e 16
1.5 Adressierbare Freelance ODbJektecocevirieiiiiininienciieneeeceeee e 18
1.5.1 Variablenc.ccoiiiiiiiiiiiiieteieeeeeceeeee e 18
LS 2 MSR-SEIIEN oottt 18
1.5.3 SyStEMODJEKLEcovvivieiiiiieiiiieieni ettt 19
1.6 Freelance -Kommunikationschichtenmodellccoocovininiiiiiiinininininicicreeenns 19
1.7 Installation von DMS / APLcocoooiiiiiiiiiieeeee et 20
1.8 Konfiguration des DMS / API-Gateway im Freelance Engineeringc.ccccceveeueenee. 21
1.9 Laden des DMS/API-GAtEWAYSoovveerieriieeriiieieeniieeieenite st esiee sttt seeesbeessesbee e 24
1.9.1 ErstKONfIGUIAtionccccooierierieniinienieeeniteie sttt st 24
1.9.2 UmKONFIGUIALION ..cuviiiiiiiiiiiieeieeiieeieeiie ettt st 24
1.10 DMS / API-FunktionsStbersiChtc.ccoevieviiirinininiiinieiciciceceeeene e 26

2 Basic Transport Application Interface (BTR)
2.1 FunktionSweise flir (TCPIP)cooouviiiiiiieeie e e 32

3 DMS ClientManagement

3.1 Environment and General Management SEIVICESceocvevveerieereeniieeneeniesieeneesnennne 34
3.1.1 Initialisierung und Beendigung einer DMS-Sitzungcccceceevieienencennnen. 34

Referenz-Handbuch — DMS / API 5

Inhaltsverzeichnis

3.1.2 Verbindungsmanagementcc.eceeeeruieeenierieenieneenreneereneereeeeesreseeenesanes 38
3.2 Variable ACCESS SEIVICES ..c..eeuverueruieiiriieniieitenieeitenieste st sites e et e st ebee it sbeentesbtenbesbeenaesbeens 57
B3 ACKHIUNG 1] ettt et e st et e b e sttt e sateebe et 58
3.3.1 DMSAPIL _VLCIEALE ..ottt ettt e e ee e e e e e s e e e e seseeaas 61
3.3.2 DMSAPIL_VLDEIVALcccutiiiiiiiiiieiieeiteseeteee ettt 72
3.3.3 DMSAPI_VLCICAL ...oouiiiiiieieeie ettt ettt ettt st 73
3.3 4 DMSAPI_VLREAAcovviriiiiiiieiiniieieecett ettt ettt 74
3.3.5 DMSAPI_VLREAACYCIEoovieuiiriiiieiieeiecieeiieie ettt 76
3.3.6 DMSAPI_SEOPCYCIE ...eeieieiiieiieeieeite ettt sttt ettt 78
3.3.7 DMSAPI_VLWIIE ...oeiiieuiiiiiieie ettt ettt ettt aeas 80
3. 3.8 DMSAPI_VLDEILLEoouerieriiiiiniieiiniietieiteie sttt ettt 82
3.4 Alarmmanagementceceerrieerieriirieenteete et e et enb et e e st et e bttt e bt st beesaee e b 83
3.4.1 DMSAPI_GetAlarmMSUMIMATYccccveevieniieriieeniienieenieeneeeieesteeseesesessseessnens 84
3.4.2 DMSAPI_Create ACKALATIMLISEoveeeeeeeeeeeieeee e e e e 87
3.4.3 DMSAPI_AddACkAIarmBYAdArcoccoviiriiniiiiiiiicieneceecceceec e 88
3.4.4 DMSAPI_ClearACKAIArMLISEcooveuvviiiiiiieiieeieceeeee et 89
RIZSST DY NVAN & (AN FAN B2 1 1 15 1) AU 89
3.4.6 DMSAPI_Delete ACKAIAIMLISEcovvvvviiiiieiieieeeeeeeee et 91
3.4.7 DMSAPI_ACKAIAMBYLISE ..ccouviiiieiiiiiieiieiie ettt 92
3.5 DOMAINMANAZEINENEovetereureiieiieieriieienertestestestetetet et eneese st bt sresresaeseesenseneeneeseeneene 95
3.6 ProgramInvokation Managementcccceeeveerueerieeriieenieeneeeieeneesteesseessesseessesseenes 95
3.7 Empfangen/Dekodieren von Datenc..coceeiverienieieiiniininincnenceeeeeeeeie e 98
3.7.1 StrukturdefinitioNeNcocereeiiniiriinieieene ettt 98
3.7.2 Synchrone DIBNSLEceecueriiiieiiieieitieieeieee ettt 106
3.7.3 DMSAPI_RegiSterCItCBccociiiiiirieiiieiieeieeieerie ettt 107
3.7.4 Callback function (&RECSIIUCE) ...cceeevviriiiiiiieiieiie et 109

4 Namensverwaltung

4.1 DAtCIVEIZEICHNIS ..eouvitieiieiiiiieiieiteie ettt sttt ettt e et sb et sbeeseesbeeanens 112
4.1.1 DMSAPI_SetProjectDircocveeruieriiiiiiieeniieeieete ettt 113
4.1.2 DMSAPI_ChangeProjectccccecuererieniirienieienienieniestenieeieenieeieenee e 114
4.2 ProjeKtinfOrmationc.ccoceeieiiinieniioietineeie ettt st s 115
4.2.1 DMSAPI_GetProjectInfoccccoeriiriiiiniiiienecieteeseeeee e e 115

6 Referenz-Handbuch — DMS / API

Inhaltsverzeichnis

4.3 Sperren des "Namemanagement”ccccceceerieriieenieniieeneenieeieeseesteeseeesieessreeseesane 117
4.3.1 DMSAPI_LOCKOVoiiiiiiiieiecite ettt ettt sve st e ve e sebaenaeesnse s 117
4.3.2 DMSAPI_UNIOCKOV ..ottt 117
4.4 StatioNSINTOIMALION ...eccveeiuieiiierieeiieeieeseesieesteesteeteeseaeebeesressreesseesssesssesssessesseessns 118
4.4.1 DMSAPI_GetFirstResourcelnfocccceeeiiiiciiiiniiiieie e 119
4.4.2 DMSAPI_GetNextResoUrceIntocooovveeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 121
4.5 Variableninformationc..cceeceerieiiieenienienie ettt st et ste st e saeesee e 123
4.5.1 DMSAPI_GEtFIrstVarInfoooooooeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 124
4.5.2 DMSAPI_GEetNexXtVarInfocccoovviiiiiiiiiiiieceeeeeeeeeeeeeeeeeeeeeeeeee e 125
4.6 MSR-StelleninfOrmationcccceeieieeieenieiieeseeseeeieeseeeveeseeeseseesseesssesseessesseesens 127
4.7 Objektklassen-Stelleninformationcceecueeveenieeiieeniesieeneenie et eiee e 132
4.7.1 DMSAPI_GetFirstCmpOfODJCIaSSccceevuerueeieriieieiieeieeieeieeee e eeeenes 134
4.7.2 DMSAPI_GetNextCmpOTfODbJCIaSSccvvvrrreerieiiienienieenteeieeniee e esiee e 136
4.8 Adressen-KONVEItiertUNGccceeoieriiriieiiieieiteeieete ettt ettt e e e see e 137
4.8.1 DMSAPI_GetVarNameByOPathcccccooviiiiiiniiiiniiniieiecieeeeie e, 138
4.8.2 DMSAPI_GetVarInfoByNameccoceoieiiniininieiieeeeee e 139

5 Server Management

6 DMS utilities

6.1 DMSAPI_GetStringByValuec.cooiiiiiiiiiiee e 143
6.2 DMSAPI_GetValueByStIINg ...coccveeiiiriienieiiierie ettt ste et et sveesieesaseesaeesaee s 144
6.3 DMSAPI_GEVAILENooviiiiiiieieieieiietee ettt ettt ae e ese s 145
6.4 DMSAPI_DUMPRECDALAeevvvieeiiiiiieiieeieeiteeeeste ettt st 145

Anhang A Variablen Typen und Fehler Codes
A.1 DMS-VariabIENtyPEN ...cccueeriiriiiiriieiiieniierieeiteste et estteste et e stesbeesieesbeesaeesebeenseenanes 147
A2 DMS-FERIEICOAEScueeeeuiiiiiiiieeieeeiteeeete ettt ettt et s 150

Anhang B Applikationsschnittstelle Freelance Beispiele

B.1 DMSAPI-BEISPILLE ...c.eeeuiiriiiiiiiiiiieieieetecee sttt sttt 153
B.2 VariableNdIENSteccceeeiiuriiieieiiiiieee et e eeciee e eeetre e e e eerae e e e e eetrreeeeeenaaeeeeeenannees 153
B.2.1 Einfaches Lesen "Tead.C"cooouvviiiiioiiiiie et 153

Referenz-Handbuch — DMS / API 7

Inhaltsverzeichnis

B.2.2 Zyklisches Lesen "acycCle.C"cooiiiiiiiiiniiiieiieneeeete et 163
B.2.3 Einfaches Schreiben "awrite.C"ccccoooeviiiineniiiinieieneeeeeee et 172
B.3 Alarmdienste "aalarm.C"ccoccocieiiiiiiniiii e 187
B.4 Namensverwaltung "Name.C"cccccoervieriirieniieienieetenie ettt ettt s enee e 194
B.5 Setzen der Zeit "SELHIME.C"coceoriiiiiiiiieierieeeeete ettt 203
B.6 Redundanzwechsel Primary - Secondary "toggle.C"ccccovieiirieiieninieneeieeeens 205

Anhang C DMS-API-Dateien

Col dmMSEYPR ottt sttt s 211
C.2.dMSAPIN .o 234
C.3 AMSEIT.N ittt sttt et st sb et st 250

Stichwortverzeichnis

8 Referenz-Handbuch — DMS / API

Hinweise zu diesem Handbuch

Vorsicht-, Achtung-, Information- und Tipp-Symbole

In diesem Dokument werden die folgenden Hinweise verwendet, um fiir die Sicher-
heit relevante und andere wichtige Informationen hervorzuheben: Vorsicht, Ach-
tung und Information. Daneben existieren Tipps, um auf dem Leser niitzliche
Hinweise zu geben. Die zugehorigen Symbole haben folgende Bedeutung:

2 Stromschlag-Symbol: Weist auf Gefahren durch Stromschlag hin.

Vorsicht-Symbol: Weist auf Gefahren hin, die zu Personenschdden fiihren
konnen.

Zusammenhang mit dem im Text erlduterten Thema hin. Kann auf Gefahren
hinweisen, die zu Software-Datenverfilschungen oder Sachschdden fiihren
konnen.

Informations-Symbol: Weist den Leser auf wichtige Fakten und Voraussetzungen
hin.

@ Achtung-Symbol: Weist auf wichtige Informationen oder Warnungen in

Tipp-Symbol: Weist auf Ratschlédge hin, z.B. zum Projektentwurf oder zur
Q Nutzung einer bestimmten Funktion.

Obwohl die mit Vorsicht bezeichneten Gefahren auf mogliche Personenschiden
hinweisen und die mit Achtung bezeichneten Gefahren auf mogliche Sachschidden
hinweisen, beachten Sie, dass die Benutzung beschidigter Ausriistung zu Personen-
schiden, d.h. zu Verletzungen und auch zum Tode fiihren kann. Beachten Sie daher
unbedingt die mit Vorsicht und Achtung gekennzeichneten Hinweise.

Referenz-Handbuch — DMS / API 9

Hinweise zu diesem Handbuch

Terminologie

Das Glossar enthilt Bezeichnungen und Abkiirzungen, die ABB-spezifisch sind
oder deren Gebrauch bzw. Definition von den in der Industrie iiblichen Gepflogen-
heiten abweicht. Bitte machen Sie sich damit vertraut. Das Glossar finden Sie am
Ende des Engineering-Handbuchs Systemkonfiguration.

Typographische Konventionen

Zur Unterscheidung der verschiedenen Textelemente dienen in diesem Dokument
die folgenden Konventionen:

» Fiir die Bezeichnung von Tasten werden GroB3buchstaben verwendet, wenn
diese auf der Tastatur benannt sind. Beispiel: Driicken Sie die ENTER-Taste.

* Driicken Sie STRG+C bedeutet, dass Sie die STRG-Taste gedriickt halten
miissen, wihrend Sie die Taste C driicken (in diesem Fall heif3t das z.B., dass
ein angewihltes Objekt kopiert wird).

* Driicken Sie ESC, E, C bedeutet, dass Sie die angegebenen Tasten
nacheinander in der angegebenen Reihenfolge driicken miissen.

* Die Bezeichnungen von Schaltfldchen bzw. Buttons werden fett
hervorgehoben. Beispiel: Driicken Sie OK.

* Die Bezeichnungen von Meniis und Meniieintrigen werden fett dargestellt.
Beispiel: das Datei-Menii.

— Die folgende Darstellung wird fiir Meniiaktionen verwendet:
MeniiName > MeniiEintrag > UnterMeniiEintrag
Beispiel: Wihlen Sie Datei > Neu > Typ

— Das Start-Menii bezeichnet immer das Start-Menii auf der Windows-
Taskleiste.

10

Referenz-Handbuch — DMS / API

Hinweise zu diesem Handbuch

* Eingabeaufforderungen und Systemmeldungen werden in der Schriftart
Courier dargestellt; Eingabe und Antworten des Anwenders werden in der
Schriftart Courier fett dargestellt.

Wenn Sie z. B. eine Eingabe machen, die aulerhalb des zuldssigen
Wertebereichs liegt, wird die folgende Meldung angezeigt:

Der eingegebene Wert ist unglltig. Der Wert muss
zwischen 0 und 300 liegen.

Oder Sie werden aufgefordert, die Zeichenfolge TIC132 in ein Feld
einzugeben. Die Zeichenfolge wird wie folgt in der Prozedur dargestellt:

TIC132
Variablennamen werden mit Kleinbuchstaben dargestellt.

sequence name

Referenz-Handbuch — DMS / API

Hinweise zu diesem Handbuch

12

Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows

1 Applikationsschnittstelle Freelance fur
Windows

1.1 Allgemeine Beschreibung - Applikationsschnittstelle
DMS / API
steht fiir Digimatik Message Specification und Application programable Interface.

DMS ist ein Subset von MMS - Manufacturing Message Specification nach ISO
9506.

Der Applikationsrechner wird am Freelance -Systembus (Ethernet) betrieben und
nutzt mit DMS / API die Kommunikation in gleicher Weise wie Freelance intern
und damit alle zur Verfiigung stehenden Moglichkeiten von Freelance.

DMS / API

* istdie Applikationsschnittstelle um in Anwendungsprogrammen auf einem
externen Rechner (Host) direkt mit Freelance zu kommunizieren.

* isteine in "C" programmierte Funktionsbibliothek, die unter Windows lduft.

* wird zu einer programmierten Anwendung hinzugebunden und enthélt alle
notigen Hochsprachenkommandos um in einfacher Weise schnellen
Datenaustausch zwischen der Applikation und dem Freelance System zu
fiihren.

* istim Client - Server Konzept realisiert. Der Applikationsrechner wird als
Gateway im Freelance Engineering aufgenommen und versorgt per Download
den Applikationsrechner mit den freigegebenen Messstellen auf welche die
Applikation zugreifen will.

* Das Setup von DMS / API wird auf Datentriger ausgeliefert und mentigefiihrt
installiert in gleicher Weise wie alle Freelance Produkte.

Das DMS kommt in folgenden Freelance Applikationen zum Einsatz:

* Freelance Engineering

Referenz-Handbuch — DMS / API 13

1 Applikationsschnittstelle Freelance fir Windows

:

* Freelance Operations

* Freelance - Prozessstationen
* Freelance - CSO Gateway

* Freelance - OPC Gateway

Die externen API-Anbindungen werden im Freelance Engineering als Gateway kon-
figuriert und geladen. Danach stehen auf allen Gatewaystationen die Freelance
Messstellen-Adressen zur Verfiigung.

Das implementierte DMS-API gliedert sich in folgende Funktionsbereiche:

DMSAPI
Management
N
I . | | I

Server- Verbindungs- Variablen- Alarm- Namens-
anagement Management Mangement Management Mangement

Flow chart._gr.obmp

14

Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows MMS (Manufacturing Message Specification ISO

1.2 MMS (Manufacturing Message Specification ISO 9506)

MMS ist eine Norm um "Verstdndigungsschwierigkeiten" bei der Kommunikation
zwischen Rechnern in der industriellen Automatisierung zu vermeiden. Diese Norm
wurde 1988 als Internationaler Standard verabschiedet. Sie ging aus einer Initiative,
die General Motors zu Beginn der 80er Jahre als MAP (Manufacturing Automation
Protocol) startete, hervor.

Sie ist im OSI 7-Schichten Modell in der obersten Schicht, der Anwendungsschicht
(ApplicationLayer) angesiedelt.

Anwendungsschicht (MMS)

Darstellungsschicht

Sitzungsschicht

Transportschicht

Netzwerkschicht

Sicherungsschicht

Physikalische Schicht

Anwendungen sind:
- Prozessleittechnik
- Speicherprogrammierbare Steuerungen
- numerische Steuerungen
- Roboter

MMS versucht Nachrichten und Anweisungen, die zwischen den einzelnen System-
komponenten in einem heterogenen Rechnernetz ausgetauscht werden miissen, in
eine Sprache zu fassen.

Dabei liegt den Diensten des MMS ein Client-Server Modell zugrunde. Ein Client
stellt eine Dienstanforderung an einen Server. (Request). Der Server bearbeitet die-
sen Auftrag und gibt die Antwort (Response) an den Client zuriick.

Referenz-Handbuch — DMS / API 15

DMS (Digimatik Message Specification) 1 Applikationsschnittstelle Freelance fiir Windows

MMS beschreibt alles, was ein Server zu verstehen und auszufiihren hat. Dazu wer-
den Objekte definiert, mit denen etwas geschehen soll und Operationen auf diese
Objekte, die beschreiben, was mit diesen Objekten geschehen soll. Es gibt insge-
samt 16 verschieden Objekte und 79 Operationen fiir MMS.

1.3 DMS (Digimatik Message Specification)

DMS realisiert nur Teile des MMS. Bei der Erstellung des DMS wurde pragmatisch
vorgegangen:

— welche Kommunikations-Anforderungen gibt es
— welche MMS-Dienste gibt es, die diese Anforderungen erfiillen

Freelance ist ein klassisches Client/Server-Modell. Der PC (als Engineeringstation
bzw. Leitstation) regiert als Client und l4sst von den MSR-Baugruppen Dienste
(Messen/Steuern/Regeln) ausfiihren.

Zwischen Client und Server besteht eine logische Verbindung. Beide Seiten erken-
nen, wann eine Verbindung abgebrochen wird bzw. wann nach einem Abbruch neu
aufgebaut wird.

Auf dem Engineering-PC werden Programme geschrieben, die in ausfiihrbare Code
iibersetzt werden und deren Inhalt auf die MSR-Karte geladen werden soll.

Diese hinuntergeladenen Programmen werden von der MSR-Baugruppe ausge-
fiihrt, d.h. sie sind vom PC aus start- und stoppbar.

Die hinuntergeladenen Programme messen /steuern /regeln. Die Werte, die bei die-
sem Prozess entstehen, werden auf dem PC dargestellt bzw. archiviert.

Der Benutzer kann Werte des Prozesses lesen und aktiv verindern.

Grenzwerte, die wihrend des Prozesses iiberschritten werden, werden auf dem PC
sofort als Adresse dargestellt.

1.4 DMS / MMS -Funktionsbereiche

Environment and General Management Services bieten Dienste zur Verwaltung
und Verbindungsbehandlung. Das Verbindungsmangement wurde im Freelance Sys-
tem nach den Bediirfnissen eines Prozessleitsystems optimiert.

16 Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows DMS / MMS -Funktionsbereiche

Domain Management Services sind Dienste zum Laden und Verwalten von Pro-
gramm und Datenbereichen. Im DMS wurden folgende Dienste implementiert:

* Download (InitiateDL, DownloadSegment, TerminateDL)

* Upload (InitiateUL, UpLoadSegment, TerminateUpLoad)

* DeleteDomain

Dienste des Domain Managements sind nicht im DMS / API enthalten.

Program Invocation Management Services bietet Dienste zum kreieren, starten,
stoppen, zuriicksetzen und 16schen von Programmen.

Dabei wurde bei der Implementierung im DMS die Dienste CreatePI und DeletePI
"gespart". Sie werden automatisch durch Download bzw. Loschen der Domain
(TaskDomains) geloscht bzw. kreiert.

. StartPI
* StopPI
. ResetPI

Variable Access Services dienen dem Lesen und Schreiben von Variablen aus dem
laufenden Prozess. DMS hat dazu folgende Dienste implementiert.

. Read
. Write
. Define Named Variable List

* Information Report; der Server sendet "unaufgefordert" diesen Report ohne
dass hierfiir auf der DMS-Schicht eine Quittung verlangt wird. In Freelance
werden die Reports fiir Langzeitarchive von Kurvendaten, Storablaufprotokolle
und zum kurzfristigen Updaten von Wertefenstern/Trendkurven bzw. allen
Grafiken im Freelance Operations verwendet.

Event Management Services bieten ereignisgesteuerte Dienste wie Alarmierung und
Quittierung:

* GetAlarmSummary
e EventNotification

* Acknowledge EventNotification

Referenz-Handbuch — DMS / API 17

Adressierbare Freelance Objekte 1 Applikationsschnittstelle Freelance fiir Windows

Journal Management befasst sich mit dem Abspeichern und Abrufen von Informati-
onen. In Freelance gibt es hierfiir die konfigurierbaren Bausteine:

* Trendbaustein
* Signalfolgeprotokol

Die Information in diesen Bausteinen kann tiber die Dienste des Variable Access
ausgelesen werden.

Freelance Name Management dient zum koordinierten Zugriff auf giiltige Variab-
len- und MSR-Stellennamen in Freelance und Wandlung auf Freelance Adressen.

1.5 Adressierbare Freelance Objekte

1.5.1 Variablen
* vordefinierte Variablen (projektunabhingig)
* benutzerdefinierte Variablen
* benutzerdefinierte strukturierte Variablen
* Kurven und Storablaufprotokolle
* Variablen der MSR-Stellen
Alle Variablen werden iiber folgende Adressierung gelesen:
* Stationsnummer
* ObjektNummer
* KomponentNummer
e Typ der Variablen

Die Umwandlung von VariablenNamen -> Freelance Adressierung geschieht iiber
die Funktionen des Namensmanagement.

1.5.2 MSR-Stellen
. Funktionsbausteine

e Ablaufsteuerung

18 Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows Systemobjekte

* MSR-Tasks

* MSR-Programmlisten

* MSR-IPC-Programme

MSR-Stellen werden folgendermafien adressiert:
— Stationsnummer
— ObjektNummer

— KlassenNummer

1.5.3 Systemobjekte
. MSR-Ressource

1.6 Freelance -Kommunikationschichtenmodell

Anwendungsschicht (DMS)
Schicht 6 (fehlt)

BasisTransport

TCP/UDP

IP-Protocol
CSMA/CD -Verfahren
Physikalische Schicht

Auf Freelance wurde die Kommunikationsschicht aufgeteilt in eine DMS (Freelance
Message Specification)-Schicht und eine BTR (Basis-Transport)-Schicht. Die Kom-
munikation von einer Clientapplikation iiber das Netz zu einer Serverapplikation
lauft nach folgendem Schema:

ClientApplikationen-> DMS-> BTR-> TCP/IP-> Kabel-> TCP/IP-> BTR-> DMS
Server

Wihrend die DMS-Schicht betriebssystemunabhingig in C implementiert wurde,
gibt es die BTR-Schicht betriebssystemabhiingig fiir folgende Plattformen:

Referenz-Handbuch — DMS / API 19

Installation von DMS / API 1 Applikationsschnittstelle Freelance fiir Windows

« PSOS
* WINDOWS

Im betriebsystemabhingigen Kommunikationsteil werden die verschiedenen Kom-
munikations-Tasks verwaltet:

Unter PSOS / NT gibt es z.B. folgende verschiedene Tasks:
* ListenTask (wird nur gebraucht, falls Station serverfihig ist)
* SendeTasks (wartet an MailBox auf Sendeauftrige)
* ReceiveTasks (wartet an Socket auf eintreffende Daten)
* UDP-Tasks :
— Senden / Empfangen von zyklischen Variablen Listen
— Zeitsynchronisation
— Verbindungsaufbau

Die betriebssystemabhingige Kommunikationsschicht kennt weder die Struktur der
Kommunikations Pakete, noch die Stationsnummern der Stationen oder sonstige
Informationen.

Fiir eine Portierung auf ein anderes Betriebssystem miissen nur diese Schicht, sowie
Funktionen zur Speicher- und Semaphoren-Verwaltung neu implementiert werden.

1.7 Installation von DMS / API

Das DMS / API wird als Setup auf Datentrdger ausgeliefert und ist wie alle Free-
lance-Produkte meniigefiihrt auf dem Applikationsrechner zu installieren.

Soll DMS / API auf dem gleichen Rechner wie Freelance Engineering installiert
werden, muss das DMS / API ins Standard Verzeichnis von Freelance geladen wer-
den.

Die DLL von DMS / API miissen im gleichen Verzeichnis wie die von Freelance
sein.

20

Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows Konfiguration des DMS / API-Gateway im

1.8 Konfiguration des DMS / API-Gateway im Freelance
Engineering

Damit Adressinformationen verfiigbar sind, muss im Freelance Engineering jedes
Gateway im Projektbaum angelegt und konfiguriert werden.

Siehe auch Engineering-Handbuch Systemkonfiguration.

Projekt Editor Elemente Bearbeiten Syste
LBV A KD X |
Explorer
vl A 1 |
=] 01 demo_acsoof
L= 01 Conf (KONF)
[01 Software (SW
Oo

[02
[¥ 03
[04
dos
[06
[07

ACS (AC 900F)
PS_1 (EMULATOR)
05_1 (VIS)

OPC (GWY)

UFBs (P-FB)
P-MA (P-MAK)

[02 Hardware (HW)
=] 02 Pool
L@ o1 Macrolib (FGR)

ﬁ-g Projekt i?‘ | Biblioheken

project_tree_gr.png

Soll unter der Konfiguration eine neue API/DMS-Ressource konfiguriert werden,
wird in der Konfiguration der Stationstyp Gateway-Station ausgewéhlt.

Objektauswahl

Globaler Bild-Pool D-POOL

Leitstation D-LS

OPC-Bausteinbibliothek OPC_FBE-LIB
OPC-Server OPC-5

Process Portal B Config Server - PPE-CS
Prozessstation D-PS

Redundante Gateway-Station D-GS/RED
Redundante Prozessstation D-PS/RED
Systern B00xA Aspect Server - B00XA-AS

oK | [abbrechen

object_selection_gr.png

Referenz-Handbuch — DMS / API 21

Konfiguration des DMS / API-Gateway im Freelance Engineering 1 Applikationsschnittstelle

Beim Editieren des Gateway Kopf Dialoges kann der Gateway Typ festgelegt wer-
den:

* DCP-Gateway
* UNI-Gateway (fiir eigene API-Applikationen)
* OPC-Gateway
* TRN-Gateway

Keonfiguration: Gaheway—Staﬁm‘ u

e Abbrechen
Version: 04/07/2015 09:48:12 _———
Typ der Gateway-Station
Zeichnungsfull
Typ:
DCP-Gatewa
Porthv: - T ECEP
_ OPC-Gateway
Ext. Zeit TRN-Gateway

e . == B

gateway_type_gr.png

Das Gateway stellt sich im Hardware-Editor als PC dar, da es aus Sicht der Prozess-
station wie eine Leitstation wirkt.

; UNI OPC

o= | B —

H os1 GEO1 oPC
CONTROL NET w H H

;I I I I
| | |
AC9
HER Al
(W | = i
CIONERC L =B
hw_struc_gr.png

Nach dem Einfiigen des Gateways wird konfiguriert zu welchen Prozessstationen
das Gateway Lese- und Schreibdienste durchfiihren soll.

Zusitzlich muss konfiguriert werden, fiir welche Variablen und MSR-Stellen das
Gateway die Adressinformation bekommen soll. Neben einer Normalansicht gibt es

22 Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows

Konfiguration des DMS / API-Gateway im

in den Variablen und MSR-Stellen eine Stationsansicht in der fiir jede Variable und
jeden MSR-Stelle ein Lese- und/oder Schreibflag gesetzt werden kann.

Keonfiguration: Ga_

Zugriff

ALY

Schreiben thindun%

PS_1

|

@ Alle Stationen

conf_gateway_gr.png

(©) Nur verbundene Stationen

Variablenliste

Variablen® * MSR-Stellen X
E |FEE) é e ¢ -
Name GEO1 OPC
HR [[|
HR7001_A_OUT RW R
HR7001_BEH_OUT R
HR7001_B_OUT RW R
HR7001_CHNR_OUT RW R
HR7001_C_OUT RW R
HR7001_NR_OUT RW R
HR7001_PROD_OU1 RW R
HR7001_PROD_OUZ RW R
HR7001_PROD_OU3Z RW R
HR7001_REAK_OUT RW R
HR7001_START_IN RW R
HR7001_START_MA RW R

var_list_gr.png

MSR-Stellenliste

Abbrechen

Standardzugriff fiir neue
Variablen/MSR-Stellen

Lesen Schreiben

Referenz-Handbuch — DMS / API

23

Laden des DMS/API-Gateways 1 Applikationsschnittstelle Freelance fir Windows

Variablen MSR-Stellen
=% %[G %]
Name GEO1 ©O5_1 OPC
HR [[[|
HR7001_A RW X RW
HR7001_B RW X RW
HR7001_C RW X RW
HR7001_CHNR RW X RW
HR7001_NR RW X RW
HR7001_TEMP RW X RW
HR7002_A RW X RW
HR7002_B RW X RW
HR7002_C RW X RW
HR7002_CHNR RW X RW
HR7002_NR RW X RW
HR7002_TEMP RW X RW

msr_list_gr.png

1.9 Laden des DMS/API-Gateways

1.9.1 Erstkonfiguration

Die Prozessstationen sind immer vor den Gateways zu laden. Nach dem Laden kon-
nen die Gateways auf die Freelance Adressinformation zugreifen.

1.9.2 Umkonfiguration

Bei Umkonfiguration der Prozessstationen miissen auf Prozessstationen und Gate-
ways die gednderten Objekte geladen werden. Die Prozessstation kennt weder Vari-
ablennamen noch MSR-Stellennamen sondern nur die DMS-Adressierung mit
Objektnummer und Komponentennummer.

Durch "ungeschicktes" Umkonfigurieren ist es moglich, dass 2 Objekte die Objekt-
nummer wechseln (Léschen und Neueinfiigen von Objekten). In solchen Fillen
konnen Schreibzugriffe durch das Gateway auf die Prozessstation (nach dem Laden
der Prozessstation und vor dem Laden des Gateways) zu einem ungewollten Verhal-
ten fiihren.

Werden nur Objekte zu einer Prozessstation dazugefiigt bzw. gedndert und keine
Objekte geloscht oder verschoben dndert sich die Adressierung der alten Objekte

24

Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows Umkonfiguration

nicht. In diesem Fall erhélt das Gateway nur Information iiber neue Objekte. Es
kann zu keiner Fehlbedienung durch das Gateway kommen.

Dies sollte bei der Erstellung einer eigenen DMS/API-Applikation beriicksichtigt
werden.

Es gibt z.B. folgende Losungsméglichkeiten:

"vor dem Laden der Prozessstationen durch Benutzereingriff das DMS/API-
Gateway in einen Konfigurationszustand bringen

"wird aus Freelance Engineering heraus auf das DMS/API-Gateway vor dem
Laden der Prozessstation neu initialisiert, kann die zu schreibende Applikation
darauf reagieren.

"die Versionskontrolle aktivieren:
— Lesezugriffe werden immer zugelassen
— Schreibzugriffe werden nur bei Versionsgleichheit zugelassen.

"nach einer Umkonfiguration des Gateways eigene "Datenbank" iiberpriifen
und Lesezugriffe und AlarmSummary evtl. neu aufsetzen.

"Die DMS/API-Applikation wird von jeder Umkonfigurierung des Gateways
durch Freelance Engineering tiber Callbackfunktionen benachrichtigt.

Referenz-Handbuch — DMS / API 25

DMS / API-Funktionslibersicht 1 Applikationsschnittstelle Freelance fiir Windows

1.10 DMS / API-Funktionsubersicht

Clientmanagement, Evironment and General Management Services

DMSAPI_Init Initialisieren einer DMS-Sitzung
DMSAPI_Exit Beenden einer DMS-Sitzung
DMSAPI_ConnectByName Verbindung zu einem DMS-Server aufbauen
DMSAPI_ConnectByAddr Verbindung zu einem DMS-Server aufbauen
DMSAPI_ConnectByNo Verbindung zu einem DMS-Server aufbauen
DMSAPI_Disconnect Verbindung zu einem DMS-Server aufbauen
DMSAPI_GetConnectionData Verbindung zu einem DMS-Server iberpriifen
DMSAPI_SetSystemTime Uhrzeit im Freelance System setzen
DMSAPI_SetSystemTimeBy-DmsType Uhrzeit im Freelance System setzen
DMSAPI+_SetSystemTimeBy-String Uhrzeit im Freelance System setzen
DMSAPI_RestartResource Warm-, Kaltstarten bzw. Toggeln einer Free-
lance Station

Variable Access Services

DMSAPI_VLCreate Erzeugen einer Variablenliste
DMSAPI_VLAddWriteVarByNa- | Hinzufligen einer Variablen zum Schreiben
me

DMSAPI_VLAddReadVarByNa- |Hinzufligen einer Variablen zum Lesen

me

DMSAPI_VLAddWriteVarByAddr | Hinzufligen einer Variablen zum Schreiben
DMSAPI_VLAddReadVarByAddr |Hinzufligen einer Variablen zum Lesen

26 Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows DMS / API-Funktions(iibersicht

Variable Access Services

DMSAPI_VLCreate Erzeugen einer Variablenliste
DMSAPI_VLChangeValue Andern des Wertes innerhalb der Variablenliste
DMSAPI_VLDelVar Léschen einer Variablen aus Variablenliste
DMSAPI_VLClear Loéschen aller Variablen aus einer Variablenliste
DMSAPI_VLRead Einfaches Lesen einer Variablenliste
DMSAPI_VLReadCycle Zyklisches Lesen einer Variablenliste
DMSAPI_VLWrite Einfaches Schreiben einer Variablenliste
DMSAPI_VLStopCycleVar Stoppen einer zyklischen Variablenliste
DMSAPI_VLDelete Léschen einer Variablenliste

Event Management Services

DMSAPI_GetAlarmSum- | Anfordern des AlarmSummary eines DMS-Server. Ab diesem
mary Zeitpunkt sendet der Server automatisch alle anfallenden Alarme

DMSAPI_AckAlarmBy- | Durchfiihrung der Quittierung mit vollstandig ausgefullten Liste
List

Client Receive

DMSAPI_RegisterClientCB Registrieren einer anwenderprogrammierten Call-
backFunktion, die bei Empfangen von DMS-Nachrich-
ten fir den Client aufgerufen werden.

API_CallbackReceive CallbackReceiveFunktion wird beim Empfangen von
DMS-Nachrichten asynchron aufgerufen

Referenz-Handbuch — DMS / API 27

DMS / API-Funktionstibersicht

1 Applikationsschnittstelle Freelance fiir Windows

Freelance Names Management

DMSAPI_SetProjectDir

Setzen eines Projektpfades zum Laden / Speichern von
Konfigurationsinformation

DMSAPI_ChangeProject

Wechsel auf ein anderes Projekt

DMSAPI_LockQV

Sperren des Namensmanagement gegen Umkonfigurati-
on durch Freelance Engineering

DMSAPI_UnlockOV

Aufheben der Sperrung

DMSAPI_GetProjectinfo

Holen der aktuellen Projektversion

DMSAPI_GetFirstResourcelnfo

Anfordern der Konfigurationsinformation fur die erste Sta-
tion

DMSAPI_GetNextResourcelnfo

Anfordern der Konfigurationsinformation fur die alle wei-
teren Stationen

DMSAPI_GetFirstVarlnfo

Anfordern der Konfigurationsinformation fir die erste Va-
riable

DMSAPI_GetNextVarlnfo

Anfordern der Konfigurationsinformation fir die alle wei-
teren Variablen

DMSAPI_GetFirstTaglnfo

Anfordern der Konfigurationsinformation fir die erste
MSR-Stelle

DMSAPI_GetNextTaglnfo

Anfordern der Konfigurationsinformation fur alle weiteren
MSR-Stellen

DMSAPI_GetTagByAddr

Anfordern der Konfigurationsinformation fir eine be-
stimmte MSR-Stelle

DMSAPI_GetFirstCmpOfObjCls

Anfordern der Konfigurationsinformation fir die erste
Komponente einer Objektklasse

DMSAPI_GetNextCmpOfObjCls

Anfordern der Konfigurationsinformation fir alle weiteren
Komponenten einer Objektklasse

28

Referenz-Handbuch — DMS / API

1 Applikationsschnittstelle Freelance fir Windows DMS / API-Funktions(iibersicht

Freelance Names Management

DMSAPI_GetVarnameByOPath |Umwandlung eines Variablennamens in Freelance Ad-
ressinformation

DMSAPI_GetVarlnfoByName Umwandlung einer Freelance Adressinformation in einen
Variablennamen

DMS Utilities

DMSAPI_SetVarCode Setzen der Umwandelformate
DMSAPI_GetValueByString Umwandlung String -> DMS value
DMSAPI_GetStringByValue Umwandlung DMS-Value - > string

DMSAPI_GetVarLen Lénge die eine Variable innerhalb einer Variablenliste be-
notigt
DMSAPI_DumpRecData Gibt die Struktur der Receivedaten auf STDOUT aus

Referenz-Handbuch — DMS / API 29

DMS / API-Funktionstibersicht

1 Applikationsschnittstelle Freelance fir Windows

30

Referenz-Handbuch — DMS / API

2 Basic Transport Application Interface (BTR)

2 Basic Transport Application Interface (BTR)

Die BasisTransport-Schicht ist protokollunabhéngig. Es ist moglich sowohl mit dem
P-Protkoll (das Protokoll fiir AC 870P / Melody) als auch mit dem Freelance Proto-
koll aufzusetzen.

Dieses Kapitel kann iibersprungen werden, falls das DMS-API auf einem Betriebs-
system lauft, auf dem die BTR-Schicht Implementiertung vorhanden ist. Auf ande-
ren Betriebssystemen muss die BTR-Schicht neu implementiert werden.

Die BTR-Schicht muss von den aufrufenden Applikationen initialisiert werden. (In
diesem Fall ist das DMS-API die Applikation und nicht die Appliktation, die das
DMS-API benutzt.)

Die Initialisierungsroutine heif3t:

BTR_Init

Vor dem Beenden sollte die Applikation die Routine
BTR_EXxit aufrufen.

Die BTR-Schicht verbindet eine Clientapplikation mit einer Serverapplikation.
Innerhalb der BTR-Schicht wird jede Verbindung durch einen eindeutigen Connec-
tionHandle identifiziert.

Die Applikationen stellen der BTR-Schicht drei "Callback-Funktionen" zur Verfii-
gung:
AbortProc, wird aufgerufen, wenn eine Verbindung abbricht. Als Ubergabepara-

meter wird der ConnectionHandle und der Grund des Verbindungsabbruchs mitge-
teilt.

KeepAliveProc, wird aufgerufen, wenn innerhalb eines TimeOuts kein Sendeauf-
trag vorliegt. Ubergabeparameter ist neben dem ConnectionHandle ein Buffer, in
den das (protokollspezifische) Paket zur Verbindungsiiberwachung kodiert werden
muss.

Referenz-Handbuch — DMS / API 31

Funktionsweise fiir (TCPIP) 2 Basic Transport Application Interface (BTR)

ReceiveProc, wird aufgerufen, wenn Daten auf einer Verbindung ankommen. Uber-
gabeparameter ist neben dem ConnectionHandle ein Buffer, in dem die Daten ste-
hen.

2.1 Funktionsweise fur (TCPIP)

Die Serverapplikation ruft eine Prozedur "BTR_OpenServer" auf.

Die Serverapplikation iibergibt dabei die drei CallbackFunktionen an die BTR-
Schicht.

Durch Aufruf der OpenServerProzedur wird eine Task (PSOS) / Thread
(WindowsNT) gestartet, die darauf wartet, dass ein Client versucht eine Verbindung
aufzubauen.

Bei jedem Verbindungsaufbau werden automatisch zwei weitere Tasks/Threads
gestartet:

* Send
* Empfang (Receive)

32

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

3 DMS ClientManagement

Alle Dienste, die eine Aktion auf dem Ethernet auslosen, bzw. auf ein Ereignis auf
dem Ethernet warten, besitzen ein SyncFlag und ein TimeOut. Spitestens nach
Ablauf dieses Timeouts kehrt die Prozedur zuriick. Das SynchronFlag kann fol-
gende Werte annehmen:

. synchron mit Receive (kommt die Antwort nicht innerhalb des Zeitintervalls,
muss sie mit Receive abgeholt werden)

. synchron mit Callback (kommt die Antwort nicht innerhalb des Zeitintervalls,
wird die Callback-Funktion aufgerufen)

. asynchron mit Receive (das Timeout gilt nur fiir das Senden der Nachricht)
. asynchron mit Callback (das Timeout gilt nur fiir das Senden der Nachricht)

Alle Prozeduren mit Antwort sind gekennzeichnet mit:
A
-
Die Antworten werden im Kapitel "Empfangen/Dekodieren von Daten" beschrie-
ben.
In vielen Prozeduren existiert der Fehler:
E_DMSAPI_INTERNAL_ERROR

In diesem Fall ist das DMS auf einen nicht bekannten Fehler gelaufen, z.B.:

* Die Applikation hat mit einem uninitialisierten Pointer auf Daten des DMS
geschrieben

e Das TCPIP ist aus unerkldrlichen Griinden nicht mehr lauffihig.

Die Applikation sollte moglichst "benutzerdatenschonend" verlassen und neu
gestartet werden

Referenz-Handbuch — DMS / API 33

Environment and General Management Services 3 DMS ClientManagement

3.1 Environment and General Management Services

3.1.1 Initialisierung und Beendigung einer DMS-Sitzung

Das DMSAPI ist "Multiprojekting" fdhig, d.h. eine DMSAPI-Applikation kann in
mehrenen Freelance -Prokjekten als Gateway mit verschiedenen Ressourcenum-
mern eingetragen werden. Jedes Freelance Engineering kann fiir "sein" Gateway die
Konfiguration hinunterladen. Uber die verschiedenen Projekte kann die DMSAPI-
Applikation gleichzeitig auf die verschiedenen Ressourcen und Objekte der einzel-
nen Projekte zugreifen.

34

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Environment and General Management Services

Applikations
Beginn

et Project

Directory

DMSAP| Init DMSAP| Init
Hes 1 Hes 2

DWSAR Init
Hesn

DrMIARI DMSAR DMSAR
Management Manageme nt Management

DMSAP Exit DMSAP Ext DMSARP Ext
Res 1 Hes 2 Hesn)

Applikations-
Ende

Referenz-Handbuch — DMS / API 35

Environment and General Management Services 3 DMS ClientManagement

DMSAPI_Init

SYNTAX

DMS_RC DMSAPI_Init (
DMS_RES_NOOwnResNo/* Own Resource No */,
DMS_RES_TYPEOwnResType/* Own Resource Type */,
DMS_INT16 NoOfSrvConn/* Number of ServerConnection */,
DMS_BOOLEAN bStandardServer/* use of StandardServer */

)

Initialisierung der DMS-Applikationsschicht. Ubergeben wird die eigene Ressour-
cenummer und die Anzahl der gleichzeitig bestehenden Serververbindungen. Soll
die zu schreibende Applikation von Freelance Engineering mit der Adressinforma-
tion versorgt werden, ist als Ressourcennummer die gleiche zu wihlen, die in Free-
lance Engineering fiir das Gateway vergeben wurde. Die Anzahl der
Serververbindungen ist auf 1 zu setzen.

Jede Ressource kann nur ein Projekt gleichzeitig verwalten. Soll iiber das DMS-API
auf das Namensmanagement mehrerer Projekte gleichzeitig zugegriften werden, ist
die Initialisierungsroutine mit verschiedenen Ressourcennummern mehrmals aufzu-
rufen. In den verschiedenen Projekten muss dann auch das Gateway mit diesen ver-
schiedenen Ressourcenummern konfiguriert werden.

Soll eine eigene DMSAPI-Serverapplikation geschrieben werden, ist als Wert fiir
den Parameter bStandardServer auf FALSE einzusetzen. In diesem Fall miissen die
Prozeduren aus Kapitel 7 benutzt werden.

Wird keine Serverfunktionalitit benotigt, wird die NoOfServerConn auf 0 gesetzt.
Im DMSDEF.H stehen in der Section:

— DMSAPI_MAX_APPLICATION

— DMSAPI_MAX_CONNECTION

36 Referenz-Handbuch — DMS / API

3 DMS ClientManagement Environment and General Management Services

Parameter:

OwnResNo RessourcenNummer der eigenen Station innerhalb des Freelance
Systems. Logische DMS-Verbindungen bestehen immer zwischen 2
Ressourcen (Wert liegt zwischen 1 und 255). Auf einem Rechner konnen
mehrere logische Ressourcen initialisiert werden. Diese miissen
unterschiedliche Ressourcennummern bekommen.

OwnResType: eigener RessourceTyp
- DMS_OS_DIGIVIS

- DMS_OS_DIGITOOL

- DMS_OS_EPROM

— DMS_OS_MSR

- DMS_OS_DDE_GWY

- DMS_OS_P_GWY

— DMS_OS_GWY
(dieser Typ wird fiir DMSAPI-Applikationen iiblicherweise benutzt)

NoOfSrvConn Anzahl der moglichen Serververbindungen

bStandardServer:

TRUE: Applikation kann als Server zu Freelance Engineering eingesetzt
werden => Freelance Engineering kann die Adressinformation auf den Server
hinunterladen. Das Namensmangement wird durch das Laden aktiviert.
FALSE: Applikation kann eigene Serverfunktionen implementieren Possible
return values:

Mogliche Returnwerte:

Die Funktion wurde aufgerufen, obwohl die DMS-
E_DMSAPI_ALREADY_INIT Schicht fir diese Ressourcennummer schon initia-
lisiert war.
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_INTERNAL_ERROR Fehler bei der Initialisierung der DMS-Schicht.

Referenz-Handbuch — DMS / API 37

Verbindungsmanagement 3 DMS ClientManagement

Die Funktion wurde aufgerufen, obwohl die DMS-

E_DMSAPI_ALREADY_INIT Schicht fir diese Ressourcennummer schon initia-
lisiert war.
E_DMSAPI_MAX_CONNECTION Die Anzahl der Serververbindungen Uberschreitet

die Anzahl der méglichen Verbindungen.

E_DMSAPI_MAX_APPLICATION Die Funktion kann nur von einer maximalen An-
zahl von Applikationen aufgerufen werden.

DMSAPI_Exit
SYNTAX
DMS_RC DMSAPI_Exit (
DMS_RES_NO OwnResNo /* Own Resource No */
)

Beenden der DMS-Applikationsschicht fiir eine Ressource. Alle an dieser Res-
source hingenden DMS-Objekte (Verbindungen, Variablen, ...) werden aufgerdumt.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station innerhalb des Freelance
Systems. Logische DMS-Verbindungen bestehen immer zwischen 2
Ressourcen. (Wert liegt zwischen 1 und 255).

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht fur diese Ressourcennummer nicht initiali-
siert war.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INTERNAL_ERROR Fehler beim Beenden der DMS-Schicht.

3.1.2 Verbindungsmanagement

Skizzierung des Verbindungsaufbau zwischen Client und Serverstation

38 Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

* Die Clientstation sendet iiber UDP einen DMSNameServerrequest an die
beiden iibergebenen IPAdressen und einen festeingestellten UDP-Port.

* Beide Serverstationen senden eine DMSNameServerResponse zuriick. In
dieser Response steht als Information:
— Station ist Primary oder Secondary
— Station hat eine ControlPortNummer, auf der die TCPIP-Verbindung
aufgebaut werden kann

* Clientstation fiihrt zum (als ersten antwortenden) Primary einen Connect auf
den tibertragenden ControlPort aus

. Serverstation, die auf diesem Controlport mit einem "Listen" gewartet hat, ldsst
die Verbindung 6ffnen.

* Clientstation schickt auf der gedffneten Verbindung ein DmsInit-Kommando,
in der sie folgende Information iibertrigt:
— Portnummer des UDP-Ports, an den die zyklischen Variablenlisten
gesendet werden sollen
— Timeout , mit der die Verbindung iiberwacht werden soll
— Versionsnummer der aktuellen DMS-Version
— eigene Ressourcenummer

* Serverstation schickt auf dieses DMSInit-Kommando eine DMSInit-
ResponseOwn resource number
— eigene Ressourcenummer
— eigener Ressourcetyp
— Versionsnummer

* Clientstation tiberpriift die zuriickgebenen Werte und gibt den Status an die
Callbackfunktionen der Applikationen

Sicht einer DMSAPI-Applikation auf die Prozessstation

Die Callbackfunktionen werden automatisch bei Verbindungsauf- und abbau von
der DMSAPI-Schicht aufgerufen.

Die Funktionsbereiche ProgramInv. und Domainmanagement werden nur von Free-
lance Engineering genutzt.

Referenz-Handbuch — DMS / API 39

Verbindungsmanagement 3 DMS ClientManagement

D 5 AP

Connect

F

Callback-FE.
Connect

S

arahlen
Management

Alarm
Management

Programlre. Domain
Managemert Management

Callback-FR.
Disconnect

DM SAPI-

Disconnect

DMSAPI_ConnectByAddr
A
-

SYNTAX

DMS_RC DMSAPI_ConnectByAddr(

DMS_RES_NO OwnResNo /* Own Res No */,
DMS_INT16 nBTRLnk /* BasisTranspSchicht */,
DMS_UINT32 ullPAddr1 /* 1.IPAdr. Res */,

40 Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_UINT32 ullPAddr2 /* 2.IPAddr. Res */,
DMS_RES_NO ResNo /* Resource No */,
DMS_RES_TYPE ResType /* Resource Typ */,

DMS_UINT16 uKeepAliveT /* KeepAliveTimeout */,
DMS_CONN_HANDLE#*IpConnHandle /* ConnectionHandle */,
DMS_INTI16 nSyncFlag /* Synchron Flag */,
DMS_UINT32 ulProcT /* ProzedurTimeout */,
DMS_UINT32 ulRecConnlLen /* Grosse des Speichers auf den

Pointer referenziert */,

DMS_REC_CONN_DATA *RecConn /* RecStruct der Conn */
)

Verbindungsaufbau zu einer DMS-ServerStation: Der Riickgabewert ist ein Verbin-
dungshandle, iiber den spiter die verbundene Ressource identifiziert wird. Dadurch
ist es moglich, zu einer Ressource mehrere Verbindungen aufzubauen. Dann kann
z.B. eine Verbindung fiir Alarmierung, eine weitere fiir Aktualisierung oder Bedie-
nung benutzt werden. Es konnen aber auch alle Dienste auf einer Verbindung ausge-
fiihrt werden. Handelt es sich bei der Serverstation um eine redundant ausgelegte
Station wird automatisch die Verbindung zur aktiven Station gedffnet. Zwischen
Client und Serverstation findet eine Verbindungsiiberwachung statt. Die Verbindung
wird mit dem Parameter "KeepAliveTimeout" iiberwacht. Ist das Synchronflag auf
DMSAPI_SNYC gesetzt und wird die Verbindung innerhalb des angegebenen Pro-
zedurtimeout aufgebaut wird die ConnectionStruktur mit Werten gefiillt.

Nach einem Verbindungsabbruch wird die Verbindung automatisch neu aufgebaut.
Benotigt die Applikation diese Verbindung nicht mehr, ist die Prozedur DMSAPI_-
Disconnect aufzuru-fen.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* nBTRLnk: Gibt an iiber welche BTR-Schicht die DMS-Dienste {ibertragen
werden.

Referenz-Handbuch — DMS / API 41

Verbindungsmanagement 3 DMS ClientManagement

DMS_BTR_TCPIP (

DMS_BTR_REDLNK (Redundancy link on process station)
ullPAddr1: IPAdresse der ServerStation
ullPAddr2: 2. IPAdresse der ServerStation, falls diese redundant ausgelegt ist.

ResNo: RessourcenNummer der Serverstation. Sind auf der ServerStation
mehrere RessourcenNummern installiert, wird die Verbindung zum richtigen
Server hergestellt.

ResType RessourcenTyp der Serverstation. Giiltige Werte sind:
DMS_OS_DIGIVIS

— DMS_OS_DIGITOOL

— DMS_OS_EPROM

— DMS_OS_MSR (usually connected to this station type)
— DMS_OS_DDE_GWY

— DMS_OS_P_GWY

- DMS_OS_GWY

uKeepAliveT: Verbindungsiiberwachung in Sekunden/ Millisekunden
zwischen den beiden Ressourcen, d.h. ein Verbindungabbruch (z.B. bei
Kabelbruch, Ausfall der verbundenen Ressource, 0.4.) wird spétestens nach
Ablauf des Timeouts erkannt. Senden die beiden Ressourcen keine Daten,
tauschen sie innerhalb des halben Timeouts ein KeepAlivePaket aus.

IpConnHandle: Nach dem Verbindungsaufbau wird der Datenaustausch auf
dieser Verbindung iiber diesen ConnectionHandle adressiert.

nSyncFlag

DMSAPI_SYNCHRON: Die Prozedur wartet, solange wie das angegebene "Pro-

zedurTimeout", auf den Verbindungsaufbau. Wird die Verbindung aufgebaut liefert
die RecStruct giiltige Werte zuriick. Auch nach Ablauf des Timeouts lduft der Ver-
bindungsaufbau weiter.

DMSAPI_ASYNCHRON: Der Verbindungsaufbau wird iiber die Callback-Funk-
tion angezeigt bzw. kann iiber die Funktion DMSAPI_GetConnectionStatus gelesen
werden. Das Prozedurtimeout wird nicht ausgewertet.

42

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

] ulProcT:

DMSAPI_NO_TIMEOUT kein Timeout Wert in Millisekunden DMSAPI_WAIT_-
FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag ausgefiihrt ist, bzw. er
nicht ausgefiihrt wer-den kann.

ulRecConnLen: wird nur bei Benutzung des Synchronflags DMSAPI_SYNCHRON
benutzt. Dann hat es die Lange der Structur DMS_REC_CONN_DATA

* RecConn:
typedef struct DMS_REC_CONN_DATA

{DMS_RES_NO OwnResNo; /* Eigene Ressourcenld */
DMS_RES_NO ResNo; /* Ressourcenld der Station */
DMS_RES_TYPE ResType; /* RessourcenTyp der Serverstation */
DMS_CONN_STATUS ConnStatus; /* Verbindungsstatus der Station */
DMS_UINT32 ullPAddr; /* IPAdresse der verb. Station */
DMS_UINT32 ulBoardType; /* BoardType*/

DMS_UINT32 ulConnFlag; /% */

} DMS_REC_CONN_DATA;

Der ConnStatus kann folgende Werte annehmen:
DMS_CONN_OK, /* alles in Ordnung */
DMS_CONN_ABORT, /* keine Verbindung */
DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */
DMS_CONN_INVALID_RES_NO.,/* falsche Ressourcennummer */
DMS_CONN_NO_OS, /* kein Betriebssystem */
DMS_CONN_SECONDARY, /* Nur zum Secondary connected =>

falsche Konfiguration */

DMS_CONN_INVALID_VERSION /* falsche DMS_ Version */

Referenz-Handbuch — DMS / API 43

Verbindungsmanagement 3 DMS ClientManagement

Der ulBoardType kann folgende Werte annehmen:

— DMS_CPU_UNKNOWN
- DMS_CPU_DCP02

- DMS_CPU_DCPI10

- DMS_CPU_PC

Das ulConnFlag kann folgende Werte annehmen:
DMS_RES_PRIMARY /* Verbindung zu einem Primary Server */
DMS_RES_SECONDARY /* Verbindung zu einem Secondary Server */
DMS_RES_CLIENT /* Verbindung zu einem Client */

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
fur diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_TIMEOUT Verbindungsaufbau konnte innerhalb des angebenen

Timeouts nicht durchgefiihrt werden.
E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsaufbau

E_DMSAPI_MAX_CONNECTION Die DMS-Schicht erlaubt nur eine maximale Anzahl von
Verbindungen.

DMSAPI_ConnectByName

LA

-

SYNTAX

DMS_RC DMSAPI_ConnectByName (

DMS_RES_NO OwnResNo /* Own Resource No */,
DMS_CHAR *ResName /* Name der resource */,
DMS_CONN_HANDLE *]pConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /* Synchron flag */,

44 Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_UINT32 ulProcT /* Prozedur timeout */,

DMS_UINT32 ulRecConnLen /*GroBe des Speichers auf
den Pointer referenziert */,

DMS_REC_CONN_DATA *RecConn /* RecStruct der Conn. */

)

Die Prozedur baut die Verbindung zu einer DMS-Ressource auf. Fiir die eigene Res-
source muss das von Freelance Engineering geladene Projekt greifbar sein. Der Res-
sourcennname wird iiber die Funktionen des Namensmanagemet umgewandelt zu:

« BTRLnk
* JPAddrl
* [PAddr2

* KeepAliveTimeout
* ResourceNo
* ResourceType

Verbindungsaufbau zu einer DMS-ServerStation: Der Riickgabewert ist ein Verbin-
dungshandle, tiber den spiter die verbundene Ressource identifiziert wird. Dadurch
ist es moglich, zu einer Ressource mehrere Verbindungen aufzubauen. Dann kann
z.B. eine Verbindung fiir Alarmierung, eine weitere fiir Aktualisierung oder Bedie-
nung benutzt werden. Es kdnnen aber auch alle Dienste auf einer Verbindung ausge-
fiihrt werden. Handelt es sich bei der Serverstation um eine redundant ausgelegte
Station wird automatisch die Verbindung zur aktiven Station gedffnet. Zwischen
Client und Serverstation findet eine Verbindungsiiberwachung statt. Die Verbindung
wird mit dem Parameter KeepAliveTimeout tiberwacht. Ist das Synchronflag auf
DMSAPI_SNYC gesetzt und wird die Verbindung innerhalb des angegebenen Pro-
zedurtimeout aufgebaut wird die ConnectionStruktur mit Werten gefiillt .

Nach einem Verbindungsabbruch wird die Verbindung automatisch neu aufgebaut.
Bendtigt die Applikation diese Verbindung nicht mehr, ist die Prozedur DMSAPI_-
Disconnect aufzuru-fen.

Parameter

Referenz-Handbuch — DMS / API 45

Verbindungsmanagement 3 DMS ClientManagement

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* ResName: Name der Ziel-Ressource, wie er in Freelance Engineering
konfiguriert wurde. .

* IpConnHandle: Nach dem Verbindungsaufbau wird der Datenaustausch auf
dieser Verbindung iiber diesen ConnectionHandle adressiert.

* nSyncFlag

DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene Proze-
durTimeout, auf den Verbindungsaufbau. Wird die Verbindung aufgebaut liefert die
RecStruct giiltige Werte zuriick. Auch nach Ablauf des Timeouts lduft der Verbin-
dungsaufbau

DMSAPI_ASYNCHRON: Der Verbindungsaufbau wird iiber die Callback-Funk-
tion angezeigt bzw. kann iiber die Funktion DMSAPI_GetConnectionStatus gelesen
werden. Das Prozedurtimeout hat keine Bedeutung.

. ulProcT:
DMSAPI_NO_TIMEOUT kein Timeout Wert in Millisekunden

DMSAPI_WAIT_FOREVER:

Prozedur kehrt erst zuriick, wenn der Auftrag ausgefiihrt ist, bzw. er nicht ausge-
fiihrt werden kann.

* ulRecConnLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt. Dann hat es die Linge der Structur
DMS_REC_CONN_DATA

. RecConn:

typedef struct DMS_REC_CONN_DATA {
DMS_RES_NO OwnResNo; /*Eigene Stationsnummer */

DMS_RES_NO ResNo; /* StationsNummer */
DMS_RES_TYPE ResType; /* RessourcenTyp der
Serverstation*®/

46

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_CONN_STATUSConnStatus; /* Verbindungsstatus der Station*/
DMS_UINT32 ullPAddr; /*IPAdresse der verb. Station*/
DMS_UINT32 ulBoardType; /* Board type

DMS_UINT32 ulConnFlag; /* */
} DMS_REC_CONN_DATA;

Der ConnStatus kann folgende Werte annehmen:
DMS_CONN_OK, /* alles in Ordnung */
DMS_CONN_ABORT, /* keine Verbindung */
DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */

DMS_CONN_INVALID_RES_NO, /* falsche
Ressourcennummer */
DMS_CONN_NO_OS, /* kein Betriebssystem */
DMS_CONN_SECONDARY, /* Nur zum Secondary
connected => falsche Konfiguration */
DMS_CONN_INVALID_VERSION /* falsche DMS_Version */

Der ulBoardType kann folgende Werte annehmen:
DMS_CPU_UNKNOWN
DMS_CPU_DCP02
DMS_CPU_DCP10
DMS_CPU_PC

Das ulConnFlag kann folgende Werte annehmen:

DMS_RES_PRIMARY /* Verbindung zu einem Primary Server*/
DMS_RES_SECONDARY /* Verbindung zu einem Secondary Server*/
DMS_RES_CLIENT /* Verbindung zu einem Client */

Referenz-Handbuch — DMS / API 47

Verbindungsmanagement

3 DMS ClientManagement

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht fur diese Ressourcennummer nicht initia-
lisiert wurde.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhatt.

E_DMSAPI_INVALID_NO_CONF

kein Projekt vorhanden

E_DMSAPI_INVALID_CONF

vorhanden

keine Information Uber die angegebene Station

E_DMSAPI_NO_RESOURCE

Die Station kann zur Zeit nicht connected wer-
den, da sich noch Stationen im Zustand dis-
connecting befinden.

E_DMSAPI_TIMEOUT

Verbindungsaufbau konnte innerhalb des ange-
gebenen Timeouts nicht durchgefihrt werden.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler beim Verbindungsaufbau

E_DMSAPI_MAX_CONNECTION

Die DMS-Schicht erlaubt nur eine maximale An-
zahl von Verbindungen.

DMSAPI_ConnectByNo

%
%o
SYNTAX

DMS_RC DMSAPI_ConnectByNo(

DMS_RES_NO
DMS_RES_NO

OwnResNo
ResNo

CONN_HANDLE *lpConnHandle

DMS_INT16
DMS_UINT32
DMS_UINT32

/* Own Resource No */,
/* Resource No */,DMS_-
/* ConnectionHandle */,

nSyncFlag /* Synchron flag */,
ulProcT /* Prozedurtimeout */,
ulRecConnlLen /* GroBle des Speichers

auf den Pointer referenziert */,

48

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_REC_CONN_DATA *RecConn /*RecStruct der Conn */
)

Die Prozedur baut die Verbindung zu einer DMS-Ressource auf. In der eigenen Res-
source muss das von Freelance Engineering geladene Projekt greifbar sein. Die Res-
sourcennnummer wird {iber die Funktionen des Namensmanagemet umgewandelt

zu:
* BTRLnk
* [PAddrl
o [PAddr2

* KeepAliveTimeout
* ResourceNo
* ResourceTyp

Verbindungsaufbau zu einer DMS-ServerStation: Der Riickgabewert ist ein Verbin-
dungshandle, iiber den spiter die verbundene Ressource identifiziert wird. Dadurch
ist es moglich, zu einer Ressource mehrere Verbindungen aufzubauen. Dann kann
z.B. eine Verbindung fiir Alarmierung, eine weitere fiir Aktualisierung oder Bedie-
nung benutzt werden. Es konnen aber auch alle Dienste auf einer Verbindung ausge-
fiihrt werden. Handelt es sich bei der Serverstation um eine redundant ausgelegte
Station wird automatisch die Verbindung zur aktiven Station gedffnet. Zwischen
Client und Serverstation findet eine Verbindungsiiberwachung statt. Die Verbindung
wird mit dem Parameter KeepAliveTimeout iiberwacht. Ist das Synchronflag auf
DMSAPI_SNYC gesetzt und wird die Verbindung innerhalb des angegebenen Pro-
zedurtimeout aufgebaut wird die ConnectionStruktur mit Werten gefiillt .

Nach einem Verbindungsabbruch wird die Verbindung automatisch neu aufgebaut.
Benotigt die Applikation diese Verbindung nicht mehr, ist die Prozedur DMSAPI_-
Disconnect aufzuru-fen.

Parameter

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* ResNo: Nummer der Ziel-Ressource, wie sie in Freelance Engineering
konfiguriert wurde.

Referenz-Handbuch — DMS / API 49

Verbindungsmanagement 3 DMS ClientManagement

* IpConnHandle: Nach dem Verbindungsaufbau wird der Datenaustausch auf
dieser Verbindung iiber diesen ConnectionHandle adressiert.

* nSyncFlag

DMSAPI_SYNCHRON: Die Prozedur wartet, solange wie das
angegebene ProzedurTimeout, auf den Verbindungsaufbau. Wird die
Verbindung aufgebaut liefert die RecStruct giiltige Werte zuriick. Auch
nach Ablauf des Timeouts lduft der Verbindungsaufbau

DMSAPI_ASYNCHRON: Der Verbindungsaufbau wird iiber die
Callback-Funktion angezeigt bzw. kann iiber die Funktion
DMSAPI_GetConnectionStatus gelesen werden. Das Prozedurtimeout hat
keine Bedeutung.

. ulProcT:
DMSAPI_NO_TIMEOUT kein timeout
Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag ausge-
fiihrt ist, bzw. er nicht ausgefiihrt werden kann.

* ulRecConnLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt. Dann hat es die Linge der Structur
DMS_REC_CONN_DATA

. RecConn:

typedef struct DMS_REC_CONN_DATA {

DMS_RES_NO OwnResNo; /* Eigene Stationsnummer */
DMS_RES_NO ResNo; /* StationsNummer der Station */
DMS_RES_TYPE ResType; /*RessourcenTyp der Serverstation */
DMS_CONN_STATUS ConnStatus; /*Verbindungsstatus der Station */
DMS_UINT32 ullPAddr; /*IPAdresse der verb. Station */
DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT32 ulConnFlag; /* */
} DMS_REC_CONN_DATA;

50

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

Der ConnStatus kann folgende Werte annehmen:

DMS_CONN_OK, /* alles in Ordnung */
DMS_CONN_ABORT, /* keine Verbindung */
DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */
DMS_CONN_INVALID RES _NO, /* falsche Ressourcennummer */
DMS_CONN_NO_OS, /* kein Betriebssystem */
DMS_CONN_SECONDARY, /* Nur zum Secondary connected =>

falsche Konfiguration */
DMS_CONN_INVALID_VERSION /* falsche DMS_ Version */

Der ulBoardType kann folgende Werte annehmen:
— DMS_CPU_UNKNOWN
— DMS_CPU_DCP02
— DMS_CPU_DCPI10
— DMS_CPU_PC

Das ulConnFlag kann folgende Werte annhemen:
DMS_RES_PRIMARY /* Verbindung zu einem Primary Server r */
DMS_RES_SECONDARY /* Verbindung zu einem Secondary

Server */
DMS_RES_CLIENT /* Verbindung zu einem Client */
Mogliche Returnwerte:
E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die

DMS-Schicht flr diese Ressourcennummer
nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_INVALID_NO_CONF |kein Projekt vorhanden

Referenz-Handbuch — DMS / API 51

Verbindungsmanagement 3 DMS ClientManagement

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die
DMS-Schicht fir diese Ressourcennummer
nicht initialisiert wurde.

E_DMSAPI_INVALID_CONF keine Information Uber die angegebene Sta-
tion vorhanden

E_DMSAPI_NO_RESOURCE Die Station kann zur Zeit nicht connected
werden, da sich noch Stationen im Zustand
disconnecting befinden

E_DMSAPI_TIMEOUT IVerbindungsaufbau konnte innerhalb des
angegebenen Timeouts nicht durchgefihrt
werden.

E_DMSAPI_INTERNAL_ERROR |Interner Fehler beim Verbindungsaufbau.

E_DMSAPI_MAX_CONNECTION | Die DMS-Schicht erlaubt nur eine maximale
Anzahl von Verbindungen.

DMSAPI_Disconnect
L
-
SYNTAX
DMS_RC DMSAPI_Disconnect(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */
)

Die Funktion fiihrt einen geregelten Verbindungsabbruch zur angegebenen Res-
source durch. Vor dem Beenden einer DMS-Sitzung sollten alle Ressourcen wieder
freigegeben werden. Das Connhandle wird nicht nach Abschluss der Prozedur frei-
gegeben, sondern erst nach dem geregelten Verbindungsabbau. Vorher werden noch
die angegebenen CallbackFunktionen aufgerufen, d.h erst nach Aufruf der Call-
backfunktionen werden die Handles freigegeben.

Parameter:

ConnHandle: ConnectionHandle, der beim Aufruf der Prozedur DMSAPI_Connect
zuriickgegeben wurde .

52

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_CONN_HANDLE |Es wurde kein gultiger Connectionhand-
le Ubergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsabbau

DMSAPI_GetConnectionData
SYNTAX
DMS_RC DMSAPI_GetConnectionData(
DMS_CONN_HANDLE ConnHandle/* ConnectionHandle */,

DMS_UINT32 ulRecConnLen /* GroBe des Speichers auf
den Pointer referenziert*®/
DMS_REC_CONN_DATA *RecConn /* ReceiveStructure of Conn. */

)

Die Funktion liefert zu einem giiltigen Verbindungshandle die Verbindungsstruktur
zuriick. Ist das DMS ohne Callback-Funktion installiert, muss tiber diese Funktion
der Verbindungsstatus der einzelnen Ressourcen kontrolliert werden.

Parameter:

e ConnHandle: ConnectionHandle, der beim Aufruf der Prozedur
DMSAPI_Connect zuriickgegeben wurde .

e ulRecConnLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt. Dann hat es die Linge der Structur
DMS_REC_CONN_DATA

e RecConn:
typedef struct DMS_REC_CONN_DATA {
DMS_RES_NO OwnResNo; /*Eigene Stationsnummer */

Referenz-Handbuch — DMS / API 53

Verbindungsmanagement 3 DMS ClientManagement

DMS_RES_NO ResNo; /*StationsNummer der Station */
DMS_RES_TYPE ResType; /* RessourcenTyp der Serverstation */
DMS_CONN_STATUSConn Status; /* Verbindungsstatus der Station */
DMS_UINT32 ullPAddr; /*TPAdresse der verbundenen Station */
DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT32 ulConnFlag; [* %/

} DMS_REC_CONN_DATA;

Der ConnStatus kann folgende Werte annehmen:

DMS_CONN_OK, /*alles in Ordnung */
DMS_CONN_ABORT, /* keine Verbindung */
DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */
DMS_CONN_INVALID_RES_NO, /* falsche Ressourcennummer */
DMS_CONN_NO_OS, /* kein Betriebssystem */
DMS_CONN_SECONDARY, /* Nur zum Secondary connected =>

falsche Konfiguration*/

DMS_CONN_INVALID_VERSION /* falsche DMS_ Version */

Der ulBoardType kann folgende Werte annehmen:

— DMS_CPU_UNKNOWN
- DMS_CPU_DCP02
- DMS_CPU_DCPI10

- DMS_CPU_PC
Das ulConnFlag kann folgende Werte annehmen:
DMS_RES_PRIMARY /* Verbindung zu einem Primary Server */
DMS_RES_SECONDARY /* Verbindung zu einem Secondary Server */
DMS_RES_CLIENT /* Verbindung zu einem Client */

54

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Verbindungsmanagement

Mogliche Returnwerte:

Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_CONN_HANDLE |Es wurde kein glltiger Connectionhand-
le Gbergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsauf-
bau

E_DMSAPI_NOT_INIT

DMSAPI_SetSystemTime

SYNTAX

DMS_RC DMSAPI_SetSystemTime(
SYSTEMTIME Time /* Zeit */[Pointer to GMT]
)

Die Funktion sendet die angegebene Zeit als Broadcast auf dem Ethernet an alle
angeschlossenen Freelance-Stationen. Es gibt keine Quittung, ob dieses Zeitpaket
bei irgendeiner Station angekommen ist.

Unter Windows lésst sich die aktuelle Uhrzeit iiber die Funktion GetLocal auslesen.

Parameter:
e Time: Typ ist der WindowsTyp SYTEMTIME, der die zu stellende Zeit
beinhaltet.

Referenz-Handbuch — DMS / API 55

Verbindungsmanagement

3 DMS ClientManagement

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht fir diese Ressour-
cennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft. Es
werden keine Zeiten vor 1984 (Beginn
der MMS-Time) gesendet

E_DMSAPI_INTERNAL_ERROR

Interner Fehler beim Zeitsenden

DMSAPI_RestartResource
LA
-

SYNTAX

DMSAPI_RestartResource(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_RESTART _REASON RestartRea /* RestartReason */

)

Diese Prozedur fiihrt auf der Freelance Prozessstation einen Kalt- oder Warmstart

durch.

Nach dem Start wird die Prozessstation neu gebootet. D.h. die Verbindung ab- und

aufgebaut.

Parameter:

. Connhandle: ConnectionHandle fiir diese Ressource

— RestartReason

DMSAPI_RESTART WARM: Warmstart der Prozessstation

DMSAPI_RESTART_COLD: Kaltstart der Prozessstation
DMSAPI_RESTART_TOGGLE: Umschaltung der Prozessstation

56

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Variable Access Services

von Primary zu Secondary. Diese Befehl kann nur an eine redundante Prozesssta-
tion gesendet werden.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wur-
de.

E_DMSAPI_NO_CONNECTION Keine Verbindung zu dieser Station.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_CONN_HANDLE |Es wurde kein giltiger Connecti-
onhandle Ubergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

3.2 Variable Access Services

Uber die Dienste des Variablenmanagements konnen Daten von einem DMS-Ser-
ver:

* einmalig gelesen
» zyklisch gelesen

* einmalig geschrieben werden.

Uber das DMS-API werden vollstindige Variablenlisten gelesen und geschrieben.
Es miissen fiir die verschiedenen Dienste (Einmaliges Lesen, Einmaliges Schreiben,
Zyklisches Lesen) leere Listen erzeugt werden, in die dann Variablen eingefiigt wer-
den. Alle Variablen innerhalb einer Variablenliste werden zum gleichen Zeitpunkt
gelesen bzw. geschrieben. Gleicher Zeitpunkt heif3t hier, dass die Berechnung der
MSR-Funktionen und Tasks fiir die Dauer der Variablenlistenoperation unterbro-
chen wird.

Nach Beendigung der Lese- bzw. Schreiboperation kann die Variablen-Liste folgen-
dermaflen weiterverwendet werden:

Referenz-Handbuch — DMS / API 57

Achtung !!!

3 DMS ClientManagement

==> Loschen von vorhandenen Variablen aus der Variablenliste
==> Hinzufiigen von neuen Variablen in die Variablenliste

==> Andern von Werten innerhalb der Variablenliste

==> Loschen von allen Variablen aus der Variablenliste

==> Loschen der Variablenliste

Danach kann der Lese bzw.Schreibdienst erneut ausgefiihrt werden.

Nicht mehr bendtigte Variablenlisten miissen immer explizit geloscht werden. Auch
beim Verbindungsabbruch zu einer Station muss die Variablenliste geloscht werden.
Nach dem Loschen einer Variablenliste wird fiir diese Variablenliste nichts mehr
empfangen. Wird das Loschen von Variablenlisten von der Applikation "vergessen",
kann die Applikation nach einer bestimmten Anzahl von verlorengegangenen Varia-
blenlisten keine neue mehr kreieren.

Zyklische Variablenlisten miissen vor Anderungen gestoppt werden und kénnen
nach dem Andern neu gestartet werden. Auch nach dem Stoppen einer Variablen-
liste wird fiir diese Variablenliste nichts mehr empfangen.

Einmalig zu lesende oder zu schreibende Variablenlisten lassen sich erst nach Emp-
fang der Antwort dndern. (Es macht wenig Sinn Variablenlisten vor Empfang der
Antwort zu l6schen)

In einer Variablenliste konnen nur Variablen der gleichen Station enthalten sein.

3.3 Achtung !!!

Das Lesen / Schreiben von Variablen belastet den DMS-Server. Werden die Lese-
oder Schreibroutinen aus dem API zyklisch aufgerufen, eventuell so schnell wie
moglich, fiihrt dies auf den Prozessstation zu einer CPU-Belastung von bis zu 80 %.
Deswegen sollten folgende Regeln beachtet werden:

» fiir zyklische Leseauftridge auch den Dienst ReadCycleVarList benutzen und
nicht selbst zyklisch den Dienst ReadVarList benutzen.

58

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Achtung !!!

* zum Lesen und Schreiben moglichst viele Auftrige in einer Variablenliste
durchfiihren und nicht jeden Variablendienst in einer eigenen Variablenliste
durchfiihren. Erst Variablenanforderungen sammeln und dann durchfiihren.

Im normalen Betrieb antwortet die Prozessstation nach einer Zeit von 20 -100 msec.

Die Struktur der Variablenliste ist auf Seite B-70, Empfangen / Dekodieren von
Daten beschrieben.

Die Prozeduren fiir Variablenlistenzugriffe lassen sich in folgendermaf3en gliedern:

Erzeugen einer Variablenliste: DMSAPI_VLCreate
Andern der Variablenliste: : DMSAPI_VLAddWriteVarByName(nur fiir Write)

DMSAPI_VLAddReadVarByName(nur fiir Read)
DMSAPI_VLAddWriteVarByAddr(nur fiir Write)
DMSAPI_VLAddReadVarByAddr(nur fiir Read)
DMSAPI_VLChangeValue (nur fiir Write)
DMSAPI_VLDelVar

DMSAPI_VLClear

einfache Variablendienste: DMSAPI_VLRead
DMSAPI_VLWrite

zyklische Variablendienste: DMSAPI_VLReadCycle
stoppen zykl. Variablenlisten:DMSAPI_VLStopCycle
Loschen von Variablenlisten:DMSAPI_VLDelete

Referenz-Handbuch — DMS / API 59

Achtung !!!

3 DMS ClientManagement

Lebensdauer einer Variablenliste fiir Lese- und Schreibdienste

.

Kreieren der Variablenliste

y

Andern der Variablenliste

¥

Ausfithren des YWariablendienste

¥

Auswerten der Antwort in Callback

117"~

A

Wi

Léschen der Variablenliste

60

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

Lebensdauer einer Variablenliste fiir zyklische Lesedienste

Kreieren der Variablenliste D
T

|
¥

Andern der Variablenliste

I

Iyklizches Lesen der Variablenlite

|
v

Aznerten der Artwort in Callback

T
Darstellung der Variablenwerte in
Grafik oder Databaze

]

Stoppen der Variablenliste

}

Lazchen der Variablenliste

F\Aﬂﬂﬂﬂf\
\U\UKT/\U\U

3.3.1 DMSAPI_VLCreate
SYNTAX
DMS_RC DMSAPI_VLCreate(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 nVLService /* Art des VarList Service */,
DMS_HANDLE *lpDmsHandle /* Identifier fiir Varlist */
)

Durch diese Prozedur wird der Speicher und ein eindeutiger DMS-Handle fiir eine
DMS-Variablenliste erzeugt. Nach dem Erzeugen einer Variablenliste konnen Varia-
blen in diese Liste eingefiigt werden.

Referenz-Handbuch — DMS / API 61

DMSAPI_VLCreate 3 DMS ClientManagement

Gefiillte Variablenlisten konnen iiber die Dienste Read/ Readcycle/ Write genutzt
werden.

Speicher und DMS-Handle werden nur iiber die Funktion DMSAPI_Delete VarList
geloscht.

Parameter:

* Connhandle: ConnectionHandle fiir diese Ressource

* nVLService:

DMSAPI_VL_SINGLE_READ: einmaliges Lesen dieser Variablenliste
DMSAPI_VL_CYCLE_READ: zyklisches Lesen dieser Variablenliste

DMSAPI_VL_SINGLE_WRITE: einmaliges Schreiben dieser VariablenlistelpD-
msHandle Handle dieser Variablenliste, iiber den alle weiteren Operationen auf
diese Variablenliste gesteuert werden.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Keine Ressourcen(Speicher / DMSHandles), um die-

se Variablenliste zu kreieren
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_INVALID_CONN_HANDLE |Es wurde kein gultiger Connectionhandle tibergeben.
E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_VLAddReadVarByName

SYNTAX

DMS_RC DMSAPI_VLAddReadVarByName(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_CHAR *]pszVarname /* Variablenname */,

62

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer auf RecVarStruct */,
DMS_INT16 *IpnIndex /* Index in RecVarStruct */

)

Diese Prozedur fiigt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird iiber den Variablennamen adressiert. Die Prozedur wandelt Variablen-
namen zu DMS-Adressen um. Dadurch benétigt sie mehr Rechenzeit als die Rou-
tine

DMSAPI_VLAddVarReadByAddr.

Nachdem eine Variablenliste gefiillt wurde, kann der gewiinschte Dienst ausgefiihrt
werden. Erst nachdem ein Lesedienst beendet (bzw. gestoppt) wurde, kann die Vari-
ablenliste {iber die Add und DeleteDienste verindert werden.

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benotigen, lidsst
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zuriick. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergrofie einer Variablenliste an. Die Struktur DMS_REC_-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:

e DmsHandle: Variablenlistenhandle fiir diese Variablenliste

e IpszVarname: Name der zu lesenden Variablen

* IplpRecVar: Struktur der ausgefiillten Variablenliste

typedef struct DMS_REC_VARLIST_DATA {
DMS_HANDLEDmsHandle;
DMS_INT16 ActVarNo; /* aktuelle Anzahl von Variablen */
DMS_INT16 MaxVarNo; /* max. Anzahl von Variablen mit

leeren Eintrigen */

DMS_INT16 FreeBytes; /* Anzahl von freien Bytes in der VL */

Referenz-Handbuch — DMS / API 63

DMSAPI_VLCreate 3 DMS ClientManagement

DMS_REC_VAR *IpVar; /*Eigentliche Variablen-Liste */
} DMS_REC_VARLIST_DATA;
Die Struktur DMS_REC_VAR:
typedef struct DMS_REC_VAR {

DMS_VAR_STATUS VarStatus; /* Status der variable */

DMS_VAR_RC VarRc; /* ReturnCode nach Dienst */
DMS_OBJ_PATH ObjPath; /* ObjektPfad auf Server */
DMS_CHAR VarName; /* Variablenname bzw. NULL */
DMS_UINT32 ValueSize; /* GroBe des ValueBuffer */
DMS_VAR_TYPE VarType; /*Typ des Wertes */
DMS_VALUE *VarValue; /* Wert der Variablen oder
NULL */

} DMS_REC_VAR;
Der VarStatus kann folgende Werte annehmen:

DMS_VAR_NOT_VALID Nach Einfiigen des Wertes und vor Ausfiihren des
Dienstes bzw. falls bei Ausfiihrung des Dienstes Fehler
auftrat

DMS_VAR_CHANGED Nach Ausfiihren eines Dienstes

DMS_VAR_DELETED Variable wurde iiber DMSAPI_VLDelVar geloscht,
der Eintrag ist noch vorhanden

Der VarRc kann verschiedene Fehler vom Server annehmen. Siehe Anhang Fehler-
codes.

Der ObjPath hat die Struktur DMS_OBJ_PATH und beinhaltet die Adressierung auf
dem Server.

typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;

64 Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

} DMS_OBJ_PATH;

Der VarType nimmt verschiedene Werte an. (siehe Anhang DMS-Variablentypen)

Der VarValue ist ein Pointer der auf den Wert der Variablen nach Durchfiihrung des
Lesedienstes (sieche Anhang DMS-Variablentypen) zeigt.

* IpnIndex innerhalb der IplpRecVar

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine neue Variablenliste
angelegt werden.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhatt.

E_DMSAPI_INVALID_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information Uber die angegebene Variable vor-
handen

E_DMSAPI_INVALID_DMS_HANDLE |Es wurde kein gliltiger Variablenlistenhandle Uberge-
ben.

E_DMSAPI_INVALID_CONN_HANDLE |Die angegebene Variable befindet sich nicht auf dem
angegebenen Ressource

E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_VLAddWriteVarByName

SYNTAX

DMS_RC DMSAPI_VLAddWriteVarByName(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_CHAR *]pszVarname /* Variablenname */,

Referenz-Handbuch — DMS / API 65

DMSAPI_VLCreate 3 DMS ClientManagement

DMS_VAR_TYPE VarType; /* Typ des Wertes */

DMS_VALUE *|pVarValue; /* Wert der Variablen
oder NULL */

DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer auf
RecVarStruct */,

DMS_INTI16 *pnIndex /* Index in RecVarStruct */
)

Diese Prozedur fiigt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird iiber den Variablennamen adressiert. Die Prozedur wandelt Variablen-
namen zu DMS-Adressen um. Dadurch benétigt sie mehr Rechenzeit als die Rou-
tine

DMSAPI_VLAddVarWriteByAddr.

Nachdem eine Variablenliste gefiillt wurde, kann der Schreibdienst ausgefiihrt wer-
den. Nachdem ein Schreibdienst beendet wurde, kann die Variablenliste iiber die
"Add, Change Delete"-Dienste veridndert werden.

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benétigen, lédsst
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zuriick. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergrofe einer Variablenliste an. Die Struktur DMS_REC_-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:
« DmsHandle: Variablenlistenhandle fiir diese Variablenliste
* IpszVarname: Name der zu lesenden Variablen

* VarType nimmt die folgenden verschiedenen Werte an. (siche Anhang DMS-
Variablentypen)

* IpVarValue ist eine Referenz auf den Wert der Variablen zur Durchfiihrung des
Schreibdienstes (siche Anhang DMS-Variablentypen).

66

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

* IplpRecVar: Struktur der ausgefiillten Variablenliste
* IpnIndex: Index innerhalb der IplpRecVar

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine neue Variablen-
liste angelegt werden.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_VARTYP Ubergebene Variable ist vom falschen Typ.

E_DMSAPI_INVALID_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information Uber die angegebene Variable vor-
handen

E_DMSAPI_INVALID_DMS_HANDLE |Es wurde kein glltiger Variablenlistenhandle lberge-
ben.

E_DMSAPI_INVALID_CONN_HANDLE | Die angegebene Variable befindet sich nicht auf dem
angegebenen Ressource

E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_VLAddReadVarByAddr

SYNTAX

DMS_RC DMSAPI_VLAddReadVarByName (
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH IpOPath; /* Objektpfad auf server */
DMS_VAR_TYPE VarType; /* Typ des Wertes */

DMS_REC_VARLIST_DATA**IplpRecVar /* Pointer auf
RecVarStruct */,

DMS_INT16 *IpnIndex /* Index in
RecVarStruct*/)

Referenz-Handbuch — DMS / API 67

DMSAPI_VLCreate 3 DMS ClientManagement

Diese Prozedur fiigt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird iiber den Objektpfad und den Variablentyp adressiert. Die Prozedur
hat zu der Prozedur DMSAPI_VLAddReadVarByName einen Zeitvorteil, da der
Variablenname nicht in eine DMS-Adresse gewandelt werden muss.

Nachdem eine Variablenliste gefiillt wurde, kann der gewiinschte Dienst ausgefiihrt
werden. Nachdem ein LeseDienst beendet (bzw. gestoppt) wurde, kann die Variab-
lenliste iiber die Add und DeleteDienste verindert werden.

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benotigen, ldsst
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zuriick. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergrofe einer Variablenliste an. Die Struktur DMS_REC._-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:
. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

* ObjPath hat die Struktur DMS_OBJ_PATH und beinhaltet die Adressierung
auf dem

* Server.
e typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;

e VarTypenimmt die folgenden verschiedenen Werte an. (siche Anhang DMS-
Variablentypen)

* IplpRecVar: : Struktur der ausgefiillten Variablenliste
* Ipnlndex: Index innerhalb der IplpRecVar

68

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine
neue Variablenliste angelegt werden.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gultiger Variablenlisten-
handle Gbergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_AddWriteVarByAddr

SYNTAX
DMS_RC DMSAPI_VLAddWriteVarByName(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH IpOPath; /* Objektpfad auf
server */
DMS_VAR_TYPE VarType; /* Typ des Wertes */
DMS_VALUE *lpVarValue; /* Wert der Variablen oder
NULL */
DMS_REC_VARLIST_DATA**]plpRecVar /* Pointer auf RecVarStruct */,
DMS_INT16 *|pnIndex /* Index in RecVarStruct */
)

Diese Prozedur fiigt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird iiber den Objektpfad und den Variablentyp adressiert. Die Prozedur
hat zu der Prozedur DMSAPI_VLAddWriteVarByName einen Zeitvorteil, da der
Variablenname nicht in eine DMS-Adresse gewandelt werden muss.

Nachdem eine Variablenliste gefiillt wurde, kann der gewiinschte Dienst ausgefiihrt
werden. Nachdem ein SchreibDienst beendet wurde, kann die Variablenliste iiber
die Add, Change und DeleteDienste veridndert werden.

Referenz-Handbuch — DMS / API 69

DMSAPI_VLCreate 3 DMS ClientManagement

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benétigen, lasst
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zuriick. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergrofe einer Variablenliste an. Die Struktur DMS_REC._-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:
. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

* ObjPath has the structure DMS_OBJ_PATH and contains the addressing on the
Server.

typedef struct { DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;

* VarType nimmt die folgenden verschiedenen Werte an. (siche Anhang DMS-
Variablentypen)

* IpVarValue ist eine Referenz auf den Wert der Variablen zur Durchfiihrung des
Schreibdienstes (siche Anhang DMS-Variablentypen).

* IplpRecVar: Struktur der ausgefiillten Variablenliste
* IpnIndex: Index innerhalb der IplpRecVar

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine neue Variablenliste
angelegt werden.

E_DMSAPI_INVALID_VARTYP Ubergebene Variable ist vom falschen Typ.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhatt.

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_VL Create

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_DMS_HANDLE | Es wurde kein gultiger Variablenlistenhandle ubergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_VLChangeValue

SYNTAX

DMS_RC DMSAPI_VLChangeValue(

)

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INTI16 nlndex /* Index in RecVarStruct */,
DMS_VAR_TYPE VarType; /* Typ des Wertes */
DMS_VALUE *IpVarValue; /* Wert der Variablen oder
NULL*/

DMS_REC_VARLIST_DATA**IplpRecVar /* Pointer auf
RecVarStruct */,

Diese Prozedur @ndert in einer bestehenden Variablenliste den Wert, der geschrieben
werden soll. Die Variablenliste darf zu dem Zeitpunkt des Prozeduraufrufs nicht auf
die Antwort des vorherigen Schreibzugriff warten.

Die Prozedur wird benotigt, falls mehrmals hintereinander auf die gleichen Variab-
len geschrieben werden soll. Die Variablenliste muss nicht jedesmal neu kreiert

werden.

Parameter:

. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

* nlndex: Index innerhalb der IplpRecVar

* VarType nimmt die folgenden verschiedenen Werte an. (siche Anhang DMS-
Variablentypen)

* IpVarValue ist eine Referenz auf den Wert der Variablen zur Durchfiihrung des
Schreibdienstes (siche Anhang DMS-Variablentypen).

Referenz-Handbuch — DMS / API 71

DMSAPI_VLDelVar 3 DMS ClientManagement

* IplpRecVar: Struktur der ausgefiillten Variablenliste

Mogliche Returnwerte:
E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.
E_DMSAPI_INVALID_INDEX Ungultiger Index in der Variablenliste.
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_INVALID_VARTYP Ubergebene Variable ist vom falschen Typ.
E_DMSAPI_INVALID_DMS_HANDLE | Es wurde kein gultiger Variablenlistenhandle iberge-
ben.
E_DMSAPI_INTERNAL_ERROR Interner Fehler
3.3.2 DMSAPI_VLDelVar
SYNTAX
DMS_RC DMSAPI_VLDelVar(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INT16 nlndex /* Index in RecVarStruct */,
DMS_REC_VARLIST_DATA**IplpRecVar/* auf RecVarStruct */,
)

Diese Prozedur 16scht aus einer bestehenden Variablenliste die Variable, die iiber
den Index adressiert wird. Die Indizes der anderen Variablen werden nicht verin-
dert. Beim Neueinfiigen von Variablen in die Variablenliste werden diese Liicken
ausgefiillt.

Die Prozedur wird benétigt, falls in einer Grafik durch Benutzereingriff Einblend-
bilder gedffnet und geschlossen werden kénnen.

Befindet sich eine Variable im zyklischen Lesezugriff, muss sie vor dem Loschen
von Variablen gestoppt werden.

Parameter:

. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

72 Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLClear

* nlndex: Index innerhalb der IplpRecVar
* IplpRecVar: Struktur der ausgefiillten Variablenliste

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_INDEX Ungultiger Index in der Variablenliste.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_DMS_HANDLE | Es wurde kein gultiger Variablenlisten-
handle Ubergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

3.3.3 DMSAPI_VLClear

SYNTAX
DMS_RC DMSAPI_VLDelVar(

DMS_HANDLE DmsHandle /* VarListHandle */,
)

Diese Prozedur 16scht aus einer bestehenden Variablenliste alle Variablen. Danach
konnen neue Variablen in die Variablenliste eingefiillt werden.Parameter:

. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_DMS_HANDLE | Es wurde kein gultiger Variablenlistenhandle Gbergeben
E_DMSAPI_INTERNAL_ERROR Interner Fehler

Referenz-Handbuch — DMS / API 73

DMSAPI_VLRead 3 DMS ClientManagement

3.3.4 DMSAPI_VLRead

L6

SYNTAX

DMS_RC DMSAPI_VLRead(
DMS_HANDLE DmsHandle /* VarListHandle */;
DMS_INT16 nCBId /* Callbackld */,
DMS_INTI16 nSyncFlag /* Synchron flag */,
DMS_UINT32 ulProcT /* ProzedurTimeout */,
DMS_UINT32 ulRecVarLen » /* Grofle des Speichers

auf den Pointer referenziert */,
DMS_REC_VARLIST_DATA *IpRecVar /* RecStruct der VL */

Diese Prozedur fiihrt zu einer gefiillten Variablenliste den einfachen Lesedienst aus.
Auf diese Anfrage gibt es eine Antwort. Nach Erhalt und Auswertung der Antwort,
kann die Variablenliste {iber die Losch- und Zufiigprozeduren verindert und neu
gelesen werden bzw. komplett geloscht werden.

Parameter:
J DmsHandle: Variablenlistenhandle fiir diese Variablenliste

. nCBId: Callbackld, bzw. wird die Variablenliste iiber die DMSAPI-
Receivefunktion abgeholt; CBId bekommt den Wert DMS_NO_CALLBACK

* nSyncFlag
DMSAPI_SYNCHRON: Die Prozedur wartet, die angegebene
ProzedurTimeout, auf die Antwort des Lesedienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des Lesezugriffs
automatisch zu wiederholen.

. ulProcT:
DMSAPI_NO_TIMEOUT kein timeout

74

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_VLRead

Wert in Millisekunden
DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag
ausgefiihrt ist, bzw. er nicht ausgefiihrt werden kann.

* ulRecVarLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt.

* IpRecVar: beim synchronen Lesen die Struktur der gelesenen Variablenliste mit
den aktuellen Werten (Null bei Asynchron-Betrieb).

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_VARMODE

Der aufgerufene Dienst stimmt mit dem beim Kreieren
Ubergebenen Variablenlistentyp nicht uberein.

E_DMSAPI_NO_CALLBACK

Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Receivebuffer ist zu klein, nur im synchron
Fall mdglich.

E_DMSAPI_TIMEOUT

Der aufgerufene Dienst wurde ausgefihrt, die synchron
angeforderte Antwort wurde noch nicht empfangen. Die-
ser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CONNECTION

Zu der beim Kreieren angegebenen Ressource besteht
zur Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE

Lesedienst konnte zur Zeit nicht ausgefiihrt werden. Es
werden mehr Dienste angefordert, als der Server inner-
halb eines Zeitintervalls bearbeiten kann. Dieser Fehler
kann nicht auftreten, wenn als Timeout DMSAPI_WAIT_-
FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gultiger Variablenlistenhandle Ubergeben.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

Referenz-Handbuch — DMS / API

75

DMSAPI_VLReadCycle 3 DMS ClientManagement

3.3.5 DMSAPI_VLReadCycle

L6

SYNTAX

DMS_RC DMSAPI_VLReadCycle(

DMS_HANDLE DmsHandle /* VarListHandle */;
DMS_UINT32 ulCycleTime /* Zykluszeit in ms */,
DMS_INT16 nCBId /* CallbackId */,
DMS_INT16 nSyncFlag /* Synchron flag */,
DMS_UINT32 ulProcT /*ProzedurTimeout */,
DMS_UINT32 ulRecVarLen /* Grosse des Speichers

auf den Pointer referenziert */,

DMS_REC_VARLIST_DATA *IpRecVar /* RecStruct der VL */
)

Diese Prozedur fiihrt zu einer gefiillten Variablenliste den zyklischen Lesedienst
aus. Auf diese Anfrage gibt es eine Antwort und zyklische Variablenlistennachrich-
ten. Der zyklische Lesedienst wird {iber die Funktion DMSAPI_StopCycleVar
gestoppt. Nach dem Stoppen kann die Variablenliste iiber die Losch- und Zufiigpro-
zeduren verdndert werden und neu gelesen werden bzw. komplett geloscht werden.

Handelt es sich um eine gestoppte Variablenliste, wird der neue zyklische Lesezu-
griff erst gestartet, wenn die Antwort des vorherigen Stoppens eingetroffen ist. Wird
die Variablenliste von der Applikation gestoppt bevor der zyklische Dienst ausge-
fithrt wurde, wird dieser storniert.

Parameter:
. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

* ulCycleTime: Zykluszeit in Millisekunden, die angegebene Zykluszeit wird auf
die nédchste durch 200 dividierbare Zahl gerundet.

76

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_VLReadCycle

e nCBId: Callbackld, bzw. wird die Variablenliste iiber die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

* nSyncFlag

DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort des Lesedienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des Lesezugriffs
automatisch zu wiederholen

. ulProcT:

DMSAPI_NO_TIMEOUT kein Timeout

e Wert in Millisekunden
DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag
ausgefiihrt ist, bzw. er nicht ausgefiihrt werden kann.

* ulRecVarLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt.

* IpRecVar: beim synchronen Lesen die Struktur der gelesenen Variablenliste mit
den aktuellen Werten

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_VARMODE

Der aufgerufene Dienst stimmt mit dem beim Kreieren
Ubergebenen Variablenlistentyp nicht Gberein.

E_DMSAPI_TIMEOUT

Der aufgerufene Dienst wurde ausgefiihrt, die synchron an-
geforderte Antwort wurde noch nicht empfangen. Dieser
Fehler kann nicht auftreten, wenn als Timeout DMSA-
PI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CALLBACK

Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Receivebuffer ist zu klein, nur im synchron
Fall mdglich.

E_DMSAPI_NO_CONNECTION

Zu der beim Kreieren angegebenen Ressource besteht zur
Zeit keine Verbindung.

Referenz-Handbuch — DMS / API

77

DMSAPI_StopCycle 3 DMS ClientManagement

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE Lesedienst konnte zur Zeit nicht ausgefiihrt werden. Es

werden mehr Dienste angefordert, als der Server innerhalb
eines Zeitintervalls bearbeiten kann. Dieser Fehler kann
nicht auftreten, wenn als Timeout DMSAPI_WAIT_FORE-
VER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE | Es wurde kein gltiger Variablenlistenhandle Gibergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

3.3.6 DMSAPI_StopCycle

L6

SYNTAX

DMS_RC DMSAPI_VLStopCycle(
DMS_HANDLEDmsHandle/* VarListHandle */;

)

Die Prozedur stoppt eine laufende zyklische Variabenliste. Nach dem Stoppen einer
zyklischen Variablenliste wird fiir diese Variablenliste nichts mehr empfangen. D.h.
wird diese Prozedur aufgerufen, bevor die Applikation die ersten Werte fiir diese
Variablenliste empfangen hat, wird sie die angeforderten Werte nie erhalten und
auswerten konnen. Aus einer gestoppten Variablenliste konnen Variablen entfernt
und hinzugefiigt werden. Danach kann diese Variablenliste erneut zyklisch gelesen
werden.

Parameter:
. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

* nSyncFlag
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene

78

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_StopCycle

"ProzedurTimeout", auf die Antwort des Stopdienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des Stopzugriffs
automatisch zu wiederholen.

. ulProcT:

DMSAPI_NO_TIMEOUT kein Timeout

Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag ausge-
fiihrt ist, bzw. er nicht ausgefiihrt werden kann.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht flir diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_VARMODE

Es ist kein zyklischer Lesedienst flr diese Variablenlis-
te gestartet.

E_DMSAPI_TIMEOUT

Der aufgerufene Dienst wurde ausgefiihrt, die syn-
chron angeforderte Antwort wurde noch nicht empfan-
gen. Dieser Fehler kann nicht auftreten, wenn als
Timeout DMSAPI_WAIT_FOREVER angegeben wur-
de.

E_DMSAPI_NO_CONNECTION

Zu der beim Kreieren angegebenen Ressource be-
steht zur Zeit keine Verbindung => Liste ist automa-
tisch gestoppt.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE

Stoppdienst konnte zur Zeit nicht ausgefiihrt werden.
Es werden mehr Dienste angefordert, als der Server
innerhalb eines Zeitintervalls bearbeiten kann. Dieser
Fehler kann nicht auftreten, wenn als Timeout DMSA-
PI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gultiger Variablenlistenhandle Uberge-
ben.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

Referenz-Handbuch — DMS / API

79

DMSAPI_VLWrite 3 DMS ClientManagement

3.3.7 DMSAPI_VLWrite

L6

SYNTAX

DMS_RC DMSAPI_VLWrite(

DMS_HANDLE DmsHandle /* VarListHandle */;

DMS_INT16 nCBId /* Callbackld */,

DMS_INTI16 nSyncFlag /* Synchron Flag */,

DMS_UINT32 ulProcT /* ProzedurTimeout */,

DMS_UINT32 ulRecVarLen /* Grosse des Speichers
auf den Pointer referenziert */,

DMS_REC_VARLIST_DATA *IpRecVar /* RecStruct of VL */

)

Diese Prozedur fiihrt zu einer gefiillten Variablenliste den Schreibdienst aus. Auf
diese Anfrage gibt es eine Antwort. Nach dem Erhalt der Antwort kann die Variab-
lenliste iiber die Wertdnderungs-, Losch- und Zufiigprozeduren veridndert, neu
geschrieben bzw. komplett geloscht werden.

. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

. nCBId: Callbackld, bzw. wird die Variablenliste iiber die DMSAPI-
Receivefunktion abgeholt, bekommt CBId den Wert DMS_NO_CALLBACK

* nSyncFlag
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort des Schreibdienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
Schreibzugriffs automatisch zu wiederholen.

J ulProcT:
DMSAPI_NO_TIMEOUT kein Timeout
‘Wert in Millisekunden

80

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_VLWrite

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag
ausgefiihrt ist, bzw. er nicht ausgefiihrt werden kann.

* ulRecVarLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt.

* IpRecVar: beim synchronen Schreiben die Struktur der gelesenen
Variablenliste mit den aktuellen Werten

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_VARMODE Der aufgerufene Dienst stimmt mit dem beim Kreieren
Ubergebenen Variablenlistentyp nicht Uberein.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgefiihrt, die synchron
angeforderte Antwort wurde noch nicht empfangen. Dieser
Fehler kann nicht auftreten, wenn als Timeout DMSA-
PI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Ubergebener Receivebuffer ist zu klein, nur im synchron
Fall mdglich.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource besteht zur
Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE Schreibdienst konnte zur Zeit nicht ausgefihrt werden. Es

werden mehr Dienste angefordert, als der Server innerhalb
eines Zeitintervalls bearbeiten kann. Dieser Fehler kann
nicht auftreten, wenn als Timeout DMSAPI_WAIT_FORE-
VER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE |Es wurde kein glltiger Variablenlistenhandle Gbergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

Referenz-Handbuch — DMS / API 81

DMSAPI_VLDelete

3 DMS ClientManagement

3.3.8 DMSAPI_VLDelete
SYNTAX

DMS_RC DMSAPI_VLDelete(

DMS_HANDLE
)

DmsHandle /* VarListHandle */

Diese Prozedur 16scht eine bestehende Variablenliste. Auch wenn sich die Variab-
lenliste im zyklischen Lesen befindet, wird sie automatisch gestoppt und geldscht.
Nach dem Loschen werden keine Callbackfunktion fiir diese Variablenliste mehr

aufgerufen.

Parameter:

. DmsHandle: Variablenlistenhandle fiir diese Variablenliste

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht flr diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gliltiger Variablenlistenhandle tberge-
ben.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

82

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Alarmmanagement

3.4 Alarmmanagement

Starten der Alarmerfassung nach Verbindungsaufbau

Callback-Fkt.
Connect
s SE—

O S API-Get
AlarmSumimary

Callback- |
Alarme)

Applikations
AlarmDatabase

Applikations
Alarmgquitt.

Callback | DIk S Pl
AckAlarme | A cknowd A larm
Callback-Fht |
Disconnect]

Nach dem Starten des GetAlarmSummary wird die Callback-Funktion fiir die
Alarme bei jedem Eintreffen von neuen Alarm automatisch aufgerufen. Die Appli-
kation speichert sich diese Alarme in einer Alarmdatenbank und kann sie bei Bedarf
quittieren. Auf jede Alarmquittung gibt es eine Antwort. Die Callback-Funktion fiir
die AcknowledgeAlarme wird aufgerufen.

Referenz-Handbuch — DMS / API 83

DMSAPI_GetAlarmSummary 3 DMS ClientManagement

3.4.1 DMSAPI_GetAlarmSummary
L A
%o

SYNTAX

DMS_RC DMSAPI_GetAlarmSummary(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 nCBId /* Callbackid */,
DMS_INTI16 nSyncFlag /* Synchron Flag */,
DMS_UINT32 ulProcT /* ProzedurTimeout*/,
DMS_UINT32 ulRecAlalen /* GroBle des Speichers

auf den Pointer referenziert */,

DMS_REC_ALARMLIST_DATA*IpAlarmRec /* Pointer auf AlarmListStruct */
)

Nach einem GetAlarmSummary werden alle auf der Prozessstation liegenden und
alle ab diesem Zeitpunkt anfallenden Alarme an den Client gesendet. Nach einem
Verbindungsabbruch muss dieser Dienst neu angefordert werden.

Parameter:
. Connhandle: ConnectionHandle fiir diese Ressource

. nCBId: Callbackld, bzw. werden die Alarme iiber die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

* nSyncFlag
DMSAPI_SYNCHRON:Die Prozedur wartet,solange wie das angegebene
"ProzedurTimeout", auf die 1. Antwort des GetAlarmSummarydienstes.
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
Schreibzugriffs automatisch zu wiederholen.

84 Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_GetAlarmSummary

e ulProcT:
DMSAPI_NO_TIMEOUT kein Timeout
Wert in Millisekunden
DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag
ausgefiihrt ist, bzw. er nicht ausgefiihrt werden kann.

* ulRecAlalLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt und enthilt die Linge des folgenden
Speichers.

* IpAlarmRec: beim synchronen Empfangen der Struktur des
GetAlarmSummary mit den ersten ca.43 Alarmen

typedef struct DMS_REC_ALARMLIST_DATA {
DMS_ALARM_LIST_TYPE ListType;
DMS_INTI16 ActAlarmNo; /* aktuelle Anzahl von Alarmen */
DMS_REC_ALARM *IpAlarm; /* Alarm liste */

} DMS_REC_ALARMLIST_DATA;

Das Element ListType kann folgende Werte annehmen:

DMS_ALARM_GAS alte Alarme, die iiber ein GetAlarmSummary angefordert
worden. Es folgen noch alte Alarme.

DMS_ALARM_LAST_GAS Alle alten Alarme, die iiber GetAlarmSummary ange-
fordert wurden sind angekommen.

DMS_ALARM_EVENTS Liste mit aktuell anfallenden Alarmen

Beim Element IpAlarm handelt es sich um die folgende AlarmListe mit

ActAlarmNo Eintrdgen.

typedef struct DMS_REC_ALARM ({
DMS_DT TransitionTime; /* Alarmzeit */
DMS_OBJNO Objectld; /* ObjNummer */
DMS_WORDI16 AlarmIndex; /* Alarm index */
DMS_ALARM_TYPE AlarmType; /* Alarm Typ */
DMS_OBJNO ObjectClass; /* ObjektKlasse */

Referenz-Handbuch — DMS / API 85

DMSAPI_GetAlarmSummary 3 DMS ClientManagement

DMS_ALARM_STATUS CurrAlarmStatus; /* aktu. AlarmStat */
DMS_ALARM_STATUS PrevAlarmStatus; /* alter AlarmSt. */

DMS_ALARM_PRIO Priority; /* Alarmprio */
DMS_BOOLEAN NotificationLost; /* Alarmburst */
DMS_RC Ic; /* AlarmFehler */
DMS_UINT32 ValueSize; /* Grofle A-Wert */
DMS_VAR_TYPE AlarmValType; /* Datentyp */
DMS_VALUE *AlarmValue; /* Alarmwert */

} DMS_REC_ALARM,;

Der Alarmtyp kann Werte annehmen, iiber die der Text fiir die Systemmeldungen
indentifiziert werden kann.

Der CurrAlarmStatus und PrevAlarmStatus kann folgende Werte annehmen:

DMS_ALARM_INACT_INACTNACKED | Inaktiv/NichtQuittiert
DMS_ALARM_ACT_ACTNACKED Aktiv/Aktiv_NichtQuittiert
DMS_ALARM_INACT_INACTACKED | Inaktiv/Inaktiv_Quittiert

DMS_ALARM_ACT_ACTACKED Aktiv/Quittiert
DMS_ALARM_INACT_ACTNACKED Inaktiv/Aktiv_NichtQuittiert
DMS_ALARM_AP_DELETED Alarmpunkt wurde gel6éscht

Der AlarmValType nimmt die verschiedenen Werte fiir die verschiedenen Datenty-
pen an. (siehe Anhang DMS-Variablentypen)

Der AlarmValue ist eine Referenz auf den Wert des Alarmpunktes (sieche Anhang
DMS-Variablentypen).

86 Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_CreateAckAlarmList

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht fur diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_CONN_HANDLE

Es wurde kein gliltiger Connectionhandle libergeben.

E_DMSAPI_TIMEOUT

Der aufgerufene Dienst wurde ausgefiihrt, die syn-
chron angeforderte Antwort wurde noch nicht empfan-
gen. Dieser Fehler kann nicht auftreten, wenn als
Timeout DMSAPI_WAIT_FOREVER angegeben wur-
de.

E_DMSAPI_NO_CONNECTION

Zu der angegebenen Ressource besteht zur Zeit keine
Verbindung.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK

Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Receivebuffer ist zu klein, nur im syn-
chron Fall méglich.

E_DMSAPI_NO_RESOURCE

GetAlarmSummary konnte zur Zeit nicht ausgefuhrt
werden. Es werden mehr Dienste angefordert, als der
Server innerhalb eines Zeitintervalls bearbeiten kann.
Dieser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

3.4.2 DMSAPI_CreateAckAlarmList
DMSAPI_CreateAckAlarmList(ConnHandle, &DmsHandle);

TDurch diese Prozedur wird der Speicher und ein eindeutiger DMS-Handle fiir eine
DMS-Quittierungsalarmliste erzeugt. Nach dem Erzeugen dieser Liste konnen
AlarmQuittungen eingefiigt werden.

Getiillte Qutittierungslisten konnen iiber den Acknowledge Alarm an den Server
gesendet werden. Nach dem Empfang kann die Quittierungsliste iiber die Funktion
Clear geleert werden und neue Quittierungsmeldungen eingefiigt werden.

Referenz-Handbuch — DMS / API

87

DMSAPI_AddAckAlarmByAddr 3 DMS ClientManagement

Speicher und DMS-Handle werden nur iiber die Funktion DMSAPI_Delete AckA-
larmList gel6scht.

Parameter:
. Connhandle: ConnectionHandle fiir diese Ressource

* DMS_Handle: Handle dieser Quittierungsliste, {iber den alle weiteren
Operationen auf die Liste gesteuert werden

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht fir diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_NO_RESOURCE Keine Ressourcen(Speicher / DMSHandles), um diese

Quittierungsliste zu kreieren

E_DMSAPI_INVALID_CONN_HANDLE | Es wurde kein gultiger Connectionhandle Gbergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

3.4.3 DMSAPI_AddAckAlarmByAddr

DMSAPI_AddAckAlarmByAddr (DmsHandle, AlarmPoint, AlarmStatus,
&Alarmlndex,)

Diese Prozedur fiigt zu einer bestehenden Quittierungsliste ein Element hinzu. Das
Element wird iiber den AlarmPunkt und den AlarmStatus beschrieben.

Nachdem eine Quittierungsliste gefiillt wurde, kann der Quittierungsdienst ausge-
fiihrt werden. Nachdem die Quittierungen ausgewertet wurden, kann die Liste
geleert und erneut verwendet werden.

Parameter:

* Dmshandle: Handle fiir die Alarmquittierungsliste
* AlarmPoint des zu quittierenden Alarms

e AlarmStatus des zu quittierenden Alarms

. AlarmIndex innerhalb der zuriickkommenden RecStruct

88

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_ClearAckAlarmList

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE

Quittierungsliste ist voll. Sie muss erst versendet werden.
Danach kénnen die weiteren Alarme quittiert werden.

E_DMSAPI_INVALID_ARG

Ubergabeparameter ist fehlerhaft

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gultiger Handle tGbergeben.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

3.4.4 DMSAPI_ClearAckAlarmList
DMSAPI_ClearAckAlarmList(DmsHandle)

Diese Prozedur 16scht alle Quittierungen aus einer bestehenden Alarmquittierungs-
liste. Die Prozedur kann nicht aufgerufen werden, falls gerade eine Quittierung fiir

diese Liste lauft.

Parameter:

* Dmshandle: Handle fiir diese Alarmquittierungsliste

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht fur diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gultiger Handle Gibergeben.

E_DMSAPI_SERVICE_IN_USE

Die Antwort auf die Quittierung fir diese Liste ist noch
nicht vom Server eingetroffen.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

3.4.5 DMSAPI_AckAlarmList

L6

Referenz-Handbuch — DMS / API

89

DMSAPI_AckAlarmList 3 DMS ClientManagement

DMSAPI_AckAlarmList(DmsHandle, CBId, SyncMode, Timeout,and RecStruct);

Diese Prozedur fiihrt, zu einer gefiillten Alarmquittierungsliste, den Quittierungs-
dienst durch. Auf diese Anfrage gibt es eine Antwort. Nach Erhalt und Auswertung
der Antwort, kann die Liste iiber die Losch- und Zufiigeprozeduren veridndert wer-
den und erneut quittiert werden bzw. komplett gelscht werden.

Parameter:

Dmshandle: Handlefiir diese Quittierungsliste

CBId: Callbackld, bzw. wird die Quttierung iiber die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

SyncFlag / ProcTimeOut
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort der Quittierung.

DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
Schreibzugriffs automatisch zu wiederholen.

ProcTimeOut:
0 kein Timeout
Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag
ausgefiihrt ist, bzw. er nicht ausgefiihrt werden kann.

RecStruct: beim synchronen Aufruf die Struktur der gelesenen
Quittierungsliste mit den aktuellen Werten

90

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

DMSAPI_DeleteAckAlarmList

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_TIMEOUT

Der aufgerufene Dienst wurde ausgefuhrt, die synchron
angeforderte Antwort wurde noch nicht empfangen.
Dieser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CONNECTION

Zu der beim Kreieren angegebenen Ressource besteht
zur Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK

Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Receivebuffer ist zu klein, nur im syn-
chron Fall méglich.

E_DMSAPI_NO_RESOURCE

Quittierungsdienst konnte zur Zeit nicht ausgefuhrt wer-
den. Es werden mehr Dienste angefordert, als der Ser-
ver innerhalb eines Zeitintervalls bearbeiten kann. Die-
ser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gultiger Listenhandle ubergeben.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

3.4.6 DMSAPI_DeleteAckAlarmList

L6

DMSAPI_DeleteAckAlarmList(DmsHandle);

Diese Prozedur 16scht eine bestehende Alarmquittierungsliste. Wurde die Antwort
fiir den Quittierungsauftrag noch nicht empfangen, wird sie bei Empfang nicht an
die Applikation weitergeleitet.

Parameter:

Referenz-Handbuch — DMS / API

91

DMSAPI_AckAlarmBylList 3 DMS ClientManagement

* Dmshandle: Handle fiir diese Alarmquittierungsliste

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_DMS_HANDLE | Es wurde kein gultiger Handle Gbergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

3.4.7 DMSAPI_AckAlarmByList

L6

SYNTAX

DMS_RC DMSAPI_ AckAlarmByList(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_HANDLE *IpDmsHandle /* Identifier fuer Acklist */,
DMS_INTI16 nCBId /* CallbackId */,
DMS _INT16 ActAlarmNo /* aktuelle Anzahl von zu

quittierenden Alarmen */,

DMS_REC_ACKALARM *IpAlarmAck /* Pointer auf AlarmAckStruct */

DMS_INT16 nSyncFlag /* Synchron Flag */,
DMS_UINT32 ulProcT /* ProzedurTimeout*/,
);

Diese Prozedur fiihrt zu einer iibergebenen, von der Applikation selbstgefiillten,
Alarmquittierungsliste den Quittierungsdienst durch. Auf diese Anfrage gibt es eine
Antwort. Nach Erhalt und Auswertung der Antwort, wird die Liste automatisch
geldscht, d.h. der DmsHandle ist ungiiltig. Bei der synchronen Antwort auf diese
Anfrage werden in die iibergebene Liste die FehlerCodes auf die einzelnen Quittie-
rungen kodiert.

92

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_AckAlarmBylList

Parameter:
. ConnHandle: Connectionhandle fiir diese Ressource
* IpDmsHandle: Handle fiir diese Quittierungsliste

e nCBId: Callbackld, bzw. wird die Quttierung iiber die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

* ActAlarmNo: : Anzahl der iibergebenen zu quittierenden Alarme

IpAlarmAck: ausgefiillte Liste mit Alarmen, die quittiert werden sollen Beim Ele-
ment IpAlarm handelt es sich um die folgende AlarmListe mit ActAlarmNo Eintré-

gen.
typedef struct DMS_REC_ACKALARM {

DMS_OBJNO Objectld; /* ObjNumber */

DMS_WORDI16 AlarmIndex; / * AlarmIndex */
DMS_ALARM_STATUS AlarmStatus; /* Curr. AlarmSt. */

DMS_RC rc; /* Alarm error */
} DMS_REC_ACKALARM,;

Der AlarmStatus kann folgende Werte annehmen:

DMS_ALARM_INACT_INACTNACKED Inaktiv/NichtQuittiert

DMS_ALARM_ACT_ACTNACKED Aktiv/Aktiv_NichtQuittiert
DMS_ALARM_INACT_INACTACKED Inaktiv/Inaktiv_Quittiert
DMS_ALARM_ACT_ACTACKED Aktiv/Quittiert
DMS_ALARM_INACT_ACTNACKED Inaktiv/Aktiv_NichtQuittiert
DMS_ALARM_AP _DELETED Alarmpunkt wurde geloscht

* nSyncFlag
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort der Alarmquittierung.

Referenz-Handbuch — DMS / API 93

DMSAPI_AckAlarmBylList

3 DMS ClientManagement

DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden der
Alarmquittierung automatisch zu wiederholen.

. ulProcT:

DMSAPI_NO_TIMEOUT kein timeout

Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag ausge-
fiihrt ist, bzw. er nicht ausgefiihrt werden kann.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_TIMEOUT

Der aufgerufene Dienst wurde ausgefuhrt, die synchron
angeforderte Antwort wurde noch nicht empfangen.
Dieser Fehler kann nicht auftreten, wenn

als Timeout DMSAPI_WAIT_FOREVER angegeben
wurde.

E_DMSAPI_NO_CONNECTION

Zu der beim Kreieren angegebenen Ressource besteht
zur Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhatt.

E_DMSAPI_NO_CALLBACK

Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Receivebuffer ist zu klein, nur im syn-
chron Fall méglich.

E_DMSAPI_NO_RESOURCE

Quittierungsdienst konnte zur Zeit nicht ausgefihrt wer-
den. Es werden mehr Dienste angefordert, als der Ser-
ver innerhalb eines Zeitintervalls bearbeiten kann. Die-
ser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE

Es wurde kein gultiger Listenhandle tbergeben.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

94

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Domainmanagement

3.5 Domainmanagement

Das Domainmangement dient dem Austausch von groBeren Konfigurationsdaten-
mengen zwischen DMS-Client und DMS-Server. Diese Datenmengen werden
Domains genannt. Ein Client kann folgende Domaindienste auf dem Server anfor-
dern:

. Hinunterladen von Domains auf den Server
. Heraufladen von Domains vom Server
e Loschen von Domains auf dem Server

Dieses Domainmangement kann nur von Freelance Engineering ausgefiihrt werden.
Die Prozeduren sind daher nicht fiir die DMSAPI-Applikationen freigegeben und
beschrieben.

3.6 Programinvokation Management

Zur Zeit ist das Management fiir "ProgramInvokation" nur fiir Freelance Enginee-
ring implementiert und freigegeben. Das Namensmanagement der DMSAPI-Appli-
kation besitzt zur Zeit keine Konfigurationsinformation zur Umsetzung der
Tasknamen auf der Prozessstation zu DMS-Adresse.

DMSAPI_StartPI

L6

DMSAPI_StartPIByName (CBId, PIName, PILen, PI-Parameter, &DMS_Handle,
SyncMode, Timeout, &PIMsg)

DMSAPI_StartPIByAddr (ConnHandle, CBId, ObjNo, PILen, PI-Parameter, &
DMS_Handle, SyncMode, Timeout, &PIMsg)

Die Prozedur fiihrt auf einer DMS-Serverstation einen "StartProgramInvokation"-
Dienst aus. Entweder wird die "ProgramInvokation" iiber den Namen identifiziert
oder iiber Objektnummer und Verbindung.

Parameter:

Referenz-Handbuch — DMS / API 95

Programinvokation Management 3 DMS ClientManagement

. Connhandle: ConnectionHandle fiir diese Ressource

e CBId: Callbackld, bzw. werden die Alarme iiber die DMSAPI-Receivefunktion
abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

* PIName: Name des PI-Objektes, das gestartet werden soll, das
DMSNamemangement muss aktiviert sein

* ObjNo: Objektnummer des PI-Objektes, das gestartet werden soll
* PlILen: Ldnge der PI-Parameter

e PI-Parameters: Parameter, die an die PI iibergeben werden

* Dmshandle: Handle fiir diese Quittierungsliste

e CBId: Callbackld, bzw. wird die Quttierung iiber die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

* SyncFlag / ProcTimeOut
DMSAPI_SYNCHRON: Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort des PI-Startens.
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
PIStartzugriffs automatisch zu wiederholen.

. ProcTimeOut:
0 kein Timeout
Wert in Millisekunden

* DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zuriick, wenn der Auftrag
ausgefiihrt ist, bzw. er nicht ausgefiihrt werden kann.

* RecStruct: Beim synchronen Aufruf der Prozedur befindet sich darin die
Struktur der PI-Antwort mit den aktuellen Werten

96 Referenz-Handbuch — DMS / API

3 DMS ClientManagement Programinvokation Management

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht far
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgefiihrt, die synchron an-
geforderte Antwort wurde noch nicht empfangen. Dieser Feh-
ler kann nicht auftreten, wenn als Timeout DMSAPI_WAIT_-
FOREVER angegeben wurde.

E_DMSAPI_NO_CONNECTION Zu der angegebenen Ressource besteht zur Zeit keine Ver-

bindung.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF Zu dem angegebenen PI-Objekt gibt es keine Information im
Namensmagement

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF |Ubergebener Receivebuffer ist zu klein, nur im synchron Fall
moglich.

E_DMSAPI_NO_RESOURCE StartPrograminvokation konnte zur Zeit nicht ausgefihrt wer-

den. Es werden mehr Dienste angefordert, als der Server in-
nerhalb eines Zeitintervalls bearbeiten kann. Dieser Fehler
kann nicht auftreten, wenn als Timeout DMSAPI_WAIT_FO-
REVER angegeben wurde.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_StopPI

L5

DMSAPI_StopPI (ConnHandle, PIName, PILen, PI-Parameter, &DMS_Handle,
SyncMode, Timeout,&PIMsg)

Referenz-Handbuch — DMS / API 97

Empfangen/Dekodieren von Daten 3 DMS ClientManagement

DMSAPI_ResetPI

L6

DMSAPI_ResetPI (ConnHandle, PIName, PILen, PI-Parameter, &DMS_Handle,

SyncMode, Timeout,&PIMsg)

3.7 Empfangen/Dekodieren von Daten

Applikationen haben im DMS-API drei Moglichkeiten um Nachrichten von der Ser-
verstation zu empfangen:

In der Prozedur, die die Anfrage stellt, kann synchron auf die Antwort gewartet
werden. Hierbei stellt die Applikation den Speicher zur Verfiigung in den die
Nachricht kodiert wird. Die Nachrichten fiir die zyklischen Variablenlisten
miissen weiter empfangen werden.

Die Applikation kann die Antworten iiber die DMSAPI_Receive-Funktion
aktiv abholen. Hierbei stellt die Applikation den Speicher zur Verfiigung in den
die Nachricht kodiert wird.

Die Applikation kann sich iiber Callback-Funktion iiber eintreffende
Nachrichten informieren lassen. Der Speicher in der die Nachricht kodiert ist,
gehort dem DMS-API. Nach dem Beenden der Callback-Funktion ist der
Speicher ungiiltig.

3.7.1 Strukturdefinitionen

Werden Nachrichten von der Serverstation empfangen, wird die Applikation
benachrichtigt. Sie erhélt Daten fiir folgende eintreffende Nachrichten.

==>

==>

Verbindungsaufbau/abbau: Verbindungsstruktur
Variablendienste: Variablenstruktur

InformationReport: InformationReportstruktur, die
weitergehende Strukturdefinition ist

98

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

Strukturdefinitionen

==>

applikationsabbhiingig Freelance definiert die
Strukturen fiir Kurven und Storablaufprotokolle

Alarmdienste:
Alarmquittierungsdienst:
Downloaddienste:
ProgramInvokationdieste:

Versionsidnderungen:

Alarmstruktur
Alarmquittierungsstruktur
Downloadstruktur
ProgramInvokationstruktur

Versionsstruktur

Im Kapitel DMS-Utilities gibt es fiir diese Strukturen eine globale Funktion, die zu
Debugzwecken den Inhalt dieser Strukturen ausgibt:

DMSAPI_DumpRecData

Datentyp

Komponente

Wertebereich

DMS_RC

rc

DMS_CONN_HANDLE

ConnHandle: Handle der Ver-
bindung

DMS_INT32

BuffLen:

Lénge des folgenden Buffers,
die L&nge muss bei synchro-
nen Aufrufen bzw. beim syn-
chronen Empfangen von Da-
ten Uber die DMSAPI-
Receivefunktion grof3 ge-nug
sein.

Referenz-Handbuch — DMS / API

99

Strukturdefinitionen

3 DMS ClientManagement

DMS_INT32 BuffType DMS_REC_CONN_STATION_TYPE
DMS_REC_VARLIST_TYPE
DMS_REC_INFO_REPORT_TYPE
DMS_REC_ALARMLIST_TYPE
DMS_REC_ALARMACK_LIST_TYPE
DMS_REC_PI_TYPE
DMS_REC_DOM_TYPE
DMS_REC_VERS_TYPE
DMS_REC_UNION IpRecBuff: Union Uber alle
Receivestrukturen
Verbindungsstruktur
Beim Verbindungsaufbau kann der ReturnCode folgende Werte annehmen:
« E_DMSAPI_OK: Alles in Ordnung
* E_DMSAPI_INVALID_STATION_TYPE: Falscher Stationstyp
e E_DMSAPI_INVALID_STATION_NO: Falsche Stationsnummer
« E_DMSAPI_NO_OS: Kein Betriebssystem
Beim Verbindungsabbbau kann der ReturnCode nur folgenden Wert annehmen:
» E_DMSAPI_ABORT: Verbindung abgebrochen
Datentyp Komponente Wertebereich
DMS_INT32 |IBoardType: DMS_CPU_UNKNOWN
Typ des CPU-Board DMS_CPU_DCP02
DMS_CPU_DCP10
DMS_CPU_PC
DMS_CPU_HK80
DMS_INT32 |IOSType: DMS_OSVERSION_EPROM DMS_OS-
ON_GWY

100

Referenz-Handbuch — DMS / API

3 DMS ClientManagement

Strukturdefinitionen

DMS_INT32 |IGwySubType DMS_SUBTYPE_UNKN_GWY
Untertyp des Gateways DMS_SUBTYPE_P_GWY
DMS_SUBTYPE_DDE_GWY
DMS_UINT32 |ullPAddress
DMS_INT32 |OwnStationNo: Eigene Stationsnum-
mer wird nur bendtigt, falls Station als
Serverstation fungiert.
DMS_INT32 |IRedFlag DMS_STATION_PRIMARY DMS_STA-
TION_SECONDARY
Variablenstruktur
Die Variablenstruktur wird mit folgenden Returncodes aufgerufen:
. E_DMSAPI_OK: Alles in Ordnung
« E_DMSAPI_ABORT: Verbindung abgebrochen
Datentyp Komponente Wertebereich
DMS_HANDLE D MSHandle
DMS_INT16 MaxNoOfVar
Maximale Anzahl der Variablen
DMS_INT16 ActNoOfVar
Anzahl der belegten Variablen
DMS_INT16 FreeBytes
Anzahl der freien Bytes in Liste
DMS_VAR_ELEM DMSVarElem
Eine Tabelle mit MaxNoOfVar Eintrdgen
von denen ActNoOfVar giiltig sind.

Referenz-Handbuch — DMS / API

101

Strukturdefinitionen

3 DMS ClientManagement

Die Struktur des DMS_VAR_ELEMS

Datentyp Komponente Wertebereich
DMS_OBJPATH DMS-Adressierung:

ObjNumber

CmpNumber
DMS_CHAR VarName Variablenname oder

NULL

DMS_UINT32 ValueSize
DMS_VAR_RC VarRc: ReturnCode fiir diese 1 Varia-

ble

DMS_VAR_TYPE

VarType: Typ der Variablen

DMS_VAR_TYPE_WORD16
DMS_VAR_TYPE_WORD32

DMS_VAR_STATUS |VarStatus DMS_NOT_VALID
DMS_CHANGED
DMS_NOT_CHANGED
DMS_DELETED

DMS_VALUE VarValue Falls die Variable ungultig bzw. ge-

16scht ist wird hier ein NullPointer
Ubergeben

Infomationreportstruktur

Die Variablenstruktur wird nur mit folgendem Returncode aufgerufen:

. E_DMSAPI_OK: Alles in Ordnung

Datentyp Komponente Wertebereich
DMS_INT32 IRId MSR supports:
- DMSAPI_CP_ID
- DMSAPI_SAP_ID
DMS_INT32 Buffer (application-depen-
dent)

102

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Strukturdefinitionen

Die Struktur fiir DMSAPI_CP_ID und DMSAPI_CP_ID

Datentyp Komponente Wertebereich
DMS_INT16 NoOfVar

Anzahl der Variable-

nelemente
DMS_OBJNO ObjNumber Objektnummer des Bau-

steins

DMS_VAR_TYPE VarType[6] Datentypen der Variablen
DMS_INT16 ContentLen Lange der Daten
DMS_DT StartEreigniszeit fur Ar-

chivierung
DMS_BYTE Daten: DMS_DT

- NoOfVar Zeitstempel

- Daten

Alarmstruktur
Die Alarmstruktur wird nur mit folgendem Returncode aufgerufen:

. E_DMSAPI_OK: Alles in Ordnung

Datentyp Komponente Wertebereich
DMS_INT32 NoOfAlarm
Anzahl der Alarmele-
mente
DMS_ALARM_EL |DMSAlarmElem
EM

Referenz-Handbuch — DMS / API 103

Strukturdefinitionen

3 DMS ClientManagement

Die Struktur der DMS_ALARM_ELEM

Datentyp Komponente Wertebereich
DMS_APATH DMS-Adressierung:
¢ ObjNumber
¢ AlarmNumber
DMS_DT Alarm zeit
DMS_WORD16 Alarm Type
DMS_ASTATCurr CurrAlarmStatus

DMS_ASTATPrev

PrevAlarmStatus

DMS_BOOLEAN

NotificationLost

DMS_VALUE

IpMsgValue

Alarmquittierungsstruktur

Die Alarmstruktur wird mit folgenden Returncodes aufgerufen:

. E_DMSAPI_OK: Alles in Ordnung
» E_DMSAPI_ABORT: Verbindung abgebrochen

Datentyp

Komponente

Wertebereich

DMS_INT32

NoOfAckAlarm
Anzahl der quittierten Alarme

DMS_ALARM_ACK_ELEM |DMSAlarmElem

104

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Strukturdefinitionen

Die Struktur der DMS_ALARM_ELEM

Datentyp Komponente Wertebereich

DMS_APATH DMS-Adressie-
rung:
ObjNumber
AlarmNumber

DMS_ASTAT CurrAlarmStatus

DMS_RC rc: ReturnCode flr
einzelne Quittie-

rung

Downloadstruktur

Die Downloadstruktur wird mit folgenden Returncodes aufgerufen:

E_DMSAPI_OK: Alles in Ordnung

W_DMSAPI_DL_IS_RUNNING: Download lduft noch
E_DMSAPI_ABORT: Verbindung ist abgebrochen
E_DMSAPI_DOWNLOAD_ABORT: Server hat Download abgebrochen
E_DMSAPI_INVALID_CONEF: Server konnte Domain nicht

installieren/L6schen
Datentyp Komponente Wertebereich
DMS_INT32 DMSHandle
DMS_INT32 Percent: Down- 0-100
loadstatus in Pro-
zent

Programminvokationstruktur

Die "Programminvokation"-Struktur wird mit folgenden Returncodes aufgerufen:

E_DMSAPI_OK: Alles in Ordnung

Referenz-Handbuch — DMS / API 105

Synchrone Dienste

3 DMS ClientManagement

» E_DMSAPI_ABORT: Verbindung ist abgebrochen
. E_DMSAPI_INVALID_CONEF: Server konnte PI nicht finden
e E_DMSAPI_PI_IN_USE: Server konnte PI nicht ausfiihren, da sie gerade

ausgefiihrt wird

Datentyp

Komponente Wertebereich

DMS_INT32

DMSHandle

Versionsstruktur

Die Versionsstruktur wird nur mit folgendem Returncode aufgerufen:

E_DMSAPI_OK: Alles in Ordnung

Bei jeder Umkonfiguration wird jede Callback-Funktion benachrichtigt, fiir welche
Ressource eine Umkonfiguration stattgefunden hat. Nach einer Umkonfigurierung
hat das Namemanagement neue Werte. Eventuell sind die laufenden Variablenlisten
ungiiltig, bzw. verweisen auf andere Variablen.

3.7.2 Synchrone Dienste

Datentyp Komponente
DMS_INT32 RessourcenNo
DMS_CHAR Projektname
DMS_INT32 MajorVersionNo
DMS_INT32 MinorVersionNo
DMS_INT32 PatchVersionNo
DMS_INT32 MaxObjN

Alle Dienste, die einen Dienst auf dem Server ausfiihren und damit diesen zum Sen-
den einer Antwort veranlassen, konnen synchron aufgerufen werden. Der Dienst
kommt erst zuriick, wenn die Antwort da ist. Der Antwortbuffer wird von der Appli-

106

Referenz-Handbuch — DMS / API

3 DMS ClientManagement DMSAPI_RegisterCltCB

kation zur Verfiigung gestellt. Die Antwort wird in der Ubergabestruktur zuriickge-
geben.

DMSAPI_Receive (ReceiveTimeOut,&RecStruct);

Alle Dienste, die einen Dienst auf dem Server ausfiihren und damit diesen zum Sen-
den einer Antwort veranlassen, konnen asynchron aufgerufen werden. Der Dienst
kommt sofort nach dem Senden zuriick. Ist fiir den Dienst keine Callback-Funktion
installiert, (CBId ist auf DMS_NO_CALLBACK gesetzt) muss die Antwort iiber
die DMSAPI_Receivefunktion abgeholt werden. Der Antwortbuffer wird von der
Applikation zur Verfiigung gestellt. Die Antwort wird in der Ubergabestruktur
zuriickgegeben.

3.7.3 DMSAPI_RegisterCItCB

SYNTAX
DMS_RC DMSAPI_RegisterCItCB(
DMS_INTI16 nCBId /* CallbackId */,
DMS_REC_DATA_PROC CallBackProc/* Callbackfunction */
);

Diese Prozedur registriert eine Callbackfunktion mit einer bestimmten CallbackId.
Die registrierte Callbackfunktion wird beim Empfangen von Daten aufgerufen.
Beim Verbindungsaufbau und Abbau werden alle registrierten Callback-Funktionen
aufgerufen.

Das Registrieren der verschiedenen Callback-Funktionen sollte / muss vor dem Auf-
ruf des DMSAPI_Init stattfinden. Direkt nach dem Initialisieren ist das DMS aktiv
und kann ab dem Zeitpunkt mit Clientstationen verbunden werden.

Diese Verbindungen werden den Applikationen auch iiber die Verbindungsstruktur
in den Callback-Funktionen angezeigt.

Parameter:

* nCBId: Callbackld, fiir welche die folgende Prozedur installiert wird.

Referenz-Handbuch — DMS / API 107

DMSAPI_RegisterCltCB 3 DMS ClientManagement

* CallBackProc: Callbackfunktion, die beim Empfangen von Daten fiir die CBID
aufgerufen wird. Wird als Parameter NULL {iibergeben, wird die Callback-
Funktion deinstalliert.

typedef DMS_RC (* DMS_REC_DATA_PROC) (DMS_REC_-
DATA *DmsRec);

Mogliche Returnwerte:
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist

nicht installiert.

E_DMSAPI_DUPLICATE_CALLBACK | Fur die angegebene Callbackld ist schon
eine Funktion installiert.

E_DMSAPI_NO_RESOURCE Die maximale Anzahl der Callbackfuntki-
onen ist registriert.
E_DMSAPI_INTERNAL_ERROR Interner Fehler

DMSAPI_RegisterFreeCItCB (&CBID, (*DMSRC) (Fnc(&RecStruct)))

Diese Prozedur registriert eine Callbackfunktion und gibt eine freie Callbackld
zuriick. Die registrierte Callbackfunktion wird beim Empfangen von Daten aufgeru-
fen. Beim Verbindungsaufbau und Abbau werden alle registrierten Callback-Funkti-
onen aufgerufen.

Das Registrieren der verschiedenen Callback-Funktionen sollte / muss vor dem Auf-
ruf des DMSAPI_Init stattfinden. Direkt nach dem Initialisieren ist das DMS aktiv
und kann ab dem Zeitpunkt mit Clientstationen verbunden werden.

Diese Verbindungen werden den Applikationen auch iiber die Verbindungsstruktur
in den Callback-Funktionen angezeigt.

Parameter:

* CBId: Callbackldentifikation, fiir welche die folgende Prozedur installiert
wird.

108

Referenz-Handbuch — DMS / API

3 DMS ClientManagement Callback function (&RecStruct)

* Fnc: Callbackfunktion, die beim Empfangen von Daten fiir die CBId
aufgerufen wird. Wird als Parameter NULL iibergeben, wird die Callback-
Funktion deinstalliert.

Mogliche Returnwerte:

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist
nicht installiert.

E_DMSAPI_DUPLICATE_CALLBACK |Fur die angegebene Callbackld ist
schon eine Funktion installiert.

E_DMSAPI_NO_RESOURCE Die maximale Anzahl der Callback-
funktionen ist registriert.
E_DMSAPI_INTERNAL_ERROR Interner Fehler

3.7.4 Callback function (&RecStruct)

Wird der DMS-Dienst fiir eine Callback-Funktion aufgerufen, wird die Antwort an
die Callback-Funktion iibergeben. Nach Beendigung der Callbackfunktion ist der
Datenbereich ungiiltig. Gibt die Callbackfunktion einen ReturnCode ungleich Null
zuriick wird die Verbindung eingerissen und neu aufgebaut.

In Multitasking (bzw. Multithreading)- Umgebungen kann die Callback-Funktion
aus verschiedenen Task-Kontexten "gleichzeitig" aufgerufen werden. Hier kann in
der Funktion auch auf das Eintreffen von Ereignissen gewartet werden. Dieses
Ereignis darf aber nicht der Empfang von weiteren Daten auf dieser Verbindung
sein. Nur die anderen Verbindungen werden weiter bedient.

Bei Verbindungsauf- und abbauen werden immer alle Callback-Funktionen aufgeru-
fen. Auch die Verbindung zu Freelance Engineering wird dann angezeigt.

Bei jeder Konfigurationsinderung werden ebenso alle CallbackFunktionen aufgeru-
fen. Hier muss die Applikation selber entscheiden, was getan werden muss. Z.B.
welche Dienste gingen gerade schief, weil die Konfiguration nicht gestimmt hat und
konnen nun wiederholt werden. Oder auch welche Variablen miissen neu gelesen
werden, weil sich die internen Freelance Adressinformationen gedndert haben. Kon-
figurationsidnderungen konnen durch Sperren des Objektverzeichnisses verhindert

Referenz-Handbuch — DMS / API 109

Callback function (&RecStruct) 3 DMS ClientManagement

werden. In diesem Fall meldet Freelance Engineering, dass sich die Downloads
nicht durchfiihren lassen.

110 Referenz-Handbuch — DMS / API

4 Namensverwaltung

4 Namensverwaltung

Das Namemanagement steht nur auf Stationen zur Verfiigung, die in Freelance
Engineering als Gateway konfiguriert und geladen wurden. Das Empfangen, der von
Freelance Engineering zu ladenden Dateien (Domains), geschieht iiber die Server-
prozeduren des Domainmangements. Die Domains sind binédrkodiert.

Das Namemangement gilt nur fiir eine Ressource, d.h. wird das DMSAPI fiir meh-
rere Ressourcen gleichzeitig betrieben haben die Ressourcen unterschiedliche
Adressriume.

z.B:

Resource 1 verwaltet Projektl
Resource 2 verwaltet Projekt2

Die Umkonfiguration von Freelance Engineering kann verhindert werden, wenn das
Objektverzeichnis gesperrt wird. Hier gibt es die Funktionen: DMSAPI_LockOV
und DMSAPI_UnlockOV.

Das Namemanagement verfiigt iiber folgende Informationen:

* Versionsinformation: Freelance Engineering iiberpriift, ob die Version des
angeschlossen Gateways mit der konfigurierten Version iibereinstimmt.

. Stationsinformation iiber die IPAdressen, Versionen, u.a. aller Stationen eines
Freelance projektes

* VariablenInformation iiber alle Variablen, fiir die in Freelance Engineering ein
Lese- oder Schreibzugriff konfiguriert wurde

¢ MSR-Stelleninformationen iiber alle MSR-Stellen, fiir die in Freelance
Engineering ein Lese- oder Schreibzugriff konfiguriert wurde

* Informationen iiber Freelance Objektklassen, mit allen ComponentenNamen
fiir die adressierbaren Variablen eines Bausteins.

Referenz-Handbuch — DMS / API 111

Dateiverzeichnis 4 Namensverwaltung

4.1 Dateiverzeichnis

Vor dem Initialisieren des DMSAPI kann die Applikation ein Gatewayverzeichnis
bestimmen unter dem ein Directorybaum angelegt wird. Unter dem Verzeichnis
wird fiir jede initalisierte Ressource ein eigenes Directory angelegt. Dieses Direc-
tory bekommt den Namen Res<OwnResNo>. In diesem Verzeichnis wird eine Datei
namens "Proj.dom" abgelegt, in dem das zuletzt fiir diese Resource benutzte Projekt
steht. Unter dem Verzeichnis wird fiir jedes Projekt ein eigenes Directory mit dem
Namen des Projektes angelegt. In diesem Verzeichnis werden durch den Download
von Freelance Engineering folgende Dateien abgelegt:

* vers.dom:Datei mit den Informationen iiber die eigene Projektversion

* ov.dom:Datei mit den Informationen iiber die GroB3e des Objektverzeichnis und
den Ladezustand der einzelnen Objekte

. stat.dom:Datei mit den Informationen iiber die verschiedenen Ressourcen

. version.dom:Datei mit den Informationen iiber die Versionsinformation auf den
einzel nen Ressourcen

* tag.dom:Datei mit den Informationen iiber die MSR-Stellen
e var.dom:Datei mit den Informationen iiber die Variablen

* fb<Num>.dom:Datei mit den Informationen fiir die einzelnen Objektklassen,
wie Funktionsbausteine, SFC und benutzerdefinierten Strukturen

Im Beispiel ist im Windows Explorer ein Gatewayverzeichnis auf Laufwerk D:
unter freelance\proj angelegt. Unter diesem Verzeichnis wurden 2 Gateways mit den
Ressourcenummern 88 und 123 angelegt. Die Ressource 88 wurde von Freelance
Engineering mit den Projekten projA und projB geladen, die Ressource 123 von
einem anderen Freelance Engineering mit den Projekten projl, proi2 und proj3.

112 Referenz-Handbuch — DMS / API

4 Namensverwaltung DMSAPI_SetProjectDir

BX Exploring - D:\freelance\proj

File Edt View Tools Help
Al Folders
#-_] Windows
E g Sesi_2[D]
=] freelance
=4 proj
= res088
(] proja
{1 projB
= res123
] projt
] pro2
1 proj3
-] Program Files

ap018gr.omp

4.1.1 DMSAPI_SetProjectDir
SYNTAX
DMS_RC DMSAPI_SetProjectDir(

DMS_CHAR * szProjectDir
);
Wird das DMS-API auf einem Rechner mit Festplatte betrieben und auf diesem die
Gateway-Konfiguration hinuntergeladen, kann das Gateway Verzeichnis durch die
Funktion DMSAPI_SetProjectDir gesetzt werden. Durch dieses Setzen werden
automatisch alle Freelance Domains unter diesem Verzeichnis installiert. Andert
sich durch den Aufruf dieser Funktion das Projektverzeichnis, wird automatisch die
Verbindung zu allen Client-Stationen (in der Regel Freelance Engineering) unter-
brochen. Das Projektdirectory wird fiir alle Ressourcen auf das gleiche Verzeichnis
gesetzt. Solange das Projektverzeichnis nicht gesetzt ist kann Freelance Engineering
keine Konfiguration laden.

Referenz-Handbuch — DMS / API 113

DMSAPI_ChangeProject 4 Namensverwaltung

Parameter:

* szProjectDir: giiltiges Verzeichnis

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die
DMS-Schicht flr diese Ressourcennummer
nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_DIR auf Directory kann nicht zugegriffen werden

E_DMSAPI_CONFIGURING Freelance Engineering lIadt gerade Konfigura-
tion

E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.1.2 DMSAPI_ChangeProject

SYNTAX

DMSAPI_ChangeProject(
DMS_RES_NOOwnResNo /* eigene Ressourcenummer */,
DMS_CHAR #*szProjectName /* Projektname */

)

Wird das DMS-API auf einem Rechner mit Festplatte betrieben und auf diesem die
Gateway-Konfiguration hinuntergeladen, kann das Gateway Verzeichnis durch die
Funktion DMSAPI_ChangeProject gesetzt werden. Durch dieses Setzen werden
automatisch alle Freelance Domains unter diesem Verzeichnis installiert. Andert
sich durch den Aufruf dieser Funktion das Projektverzeichnis, wird automatisch die
Verbindung zu allen Client-Stationen (in der Regel Freelance Engineering) unter-
brochen. Ist das angegebene Projekt nicht vorhanden, liefern die Funktionen des
Namemangements nichts zuriick. Freelance Engineering setzt beim Initialisieren

114

Referenz-Handbuch — DMS / API

4 Namensverwaltung Projektinformation

und beim Laden der ganzen Station selbstindig das Projektverzeichnis auf den Pro-
jektnamen von Freelance Engineering.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* szProjektname: Der Projektname muss ein giiltiger Dateiname sein

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht far

diese Ressourcennummer nicht initialisiert wurde.
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhatt.
E_DMSAPI_CONFIGURING Freelance Engineering ladt gerade Konfiguration
E_DMSAPI_INVALID_DIR auf Directory kann nicht zugegriffen werden
E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.2 Projektinformation

4.2.1 DMSAPI_GetProjectinfo

SYNTAX

DMS_RC DMSAPI_GetProjectInfo(
DMS_RES_NO OwnResNo /* Eigene Ressourcen. . */,
DMS_VERSION_DATA* IpVersionData /* Versionsdata */

);

Es stehen die folgenden Informationen zur Verfiigung, wenn das DMSAPI iiber die
Funktion DMSAPI_Init initialisiert wurde. Bei jedem Download von Freelance
Engineering erhalten alle angemeldeten Callbackfunktionen diese Informationen
automatisch.

Referenz-Handbuch — DMS / API 115

Projektinformation 4 Namensverwaltung

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* IpVersionData:
typedef struct DMS_VERSION_DATA {

DMS_CHAR *ProjName; /* Projektname */

DMS_WORDI16wMajorVersion; /* MajorversionsNummer*/
DMS_WORD16 wMinorVersion; /* MinorversionsNummer */
DMS_WORDI16 wPatchVersion; /* PatchversionsNummer */

} DMS_VERSION_DATA,;

Der Projektname kann durch die Funktion DMSAPI_ChangeProject geéindert wer-
den. Unterscheidet sich der aktuelle Projektname von dem Projekt das Freelance
Engineering berarbeitet und wird von Freelance Engineering aus die Gatewaystation
geladen erhilt die Gatewaystation automatisch Projektname und folgende Versions-
nummern von Freelance Engineering.

Die Majorversionsnummer dndert sich bei jedem "Laden der ganzen Station" von
Freelance Engineering. Der alte Wert wird inkrementiert.

Die Minorversionsnummer dndert sich mit jedem einzelnen Objekt, das von Free-
lance Engineering hinuntergeladen wird. Der alte Wert wird inkrementiert.

Die Patchversionsnummer dndert sich auf dem Gateway nicht. Sie bleibt konstant
auf 0.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-Schicht fiir
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

116

Referenz-Handbuch — DMS / API

4 Namensverwaltung Sperren des "Namemanagement”

4.3 Sperren des "Namemanagement"

4.3.1 DMSAPI_LockOV

SYNTAX
DMS_RC DMSAPI_LockOV(

DMS_RES_NO OwnResNo /* Eigene Ressourcen. */
);

Soll iiber einen bestimmten Zeitraum eine Umkonfiguration von Freelance Enginee-
ring verhindert werden, kann diese iiber das Sperren des Objektverzeichnisses ver-
hindert werden. Freelance Engineering zeigt dann an, dass auf dieses Gateway keine
Konfiguration geladen werden kann.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
far diese Ressourcennummer nicht initialisiert wurde.
E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_ALREADY_DONE Objektverzeichnis ist schon gesperrt
E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.3.2 DMSAPI_UnlockOV

SYNTAX
DMSAPI_UnlockOV
DMS_RES_NO OwnResNo /* Eigene Ressourcen. */
);

Soll nach einer Sperrung des Objektverzeichnisses die Umkonfiguration durch Free-
lance Engineering wieder zugelassen werden ist diese Prozedur aufzurufen.

Referenz-Handbuch — DMS / API 117

Stationsinformation 4 Namensverwaltung

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht

fir diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_NO_CONF
E_DMSAPI_ALREADY_DONE
E_DMSAPI_INTERNAL_ERROR

kein Projekt vorhanden

Sperrung des OV ist schon aufgehoben

Interner Fehler

4.4 Stationsinformation

Uber die ServerProzeduren des Domainmangements werden folgende 2 Binrdo-
mains empfangen:

Stationname |IP-address 1 |IP-address 2 |StatNo StatType |TimeOut
DPS1 172.16.1.2 |172.16.1.3 2 RED_MSR |45
DPS2 172.16.1.4 |0.0.0.0 3 MSR 120
GWY1 172.16.1.5 |0.0.0.0 4 GWY 15
Table 1.

StationNo | MajorVersion MinorVersion PatchVersion

2 142 340 0

3 10 223 2

118

Referenz-Handbuch — DMS / API

4 Namensverwaltung DMSAPI_GetFirstResourcelnfo

Der Zugriff auf diese Stationsinformation wird iiber folgende 2 Prozeduren gesteu-
ert:

. DMSAPI_GetFirstResourcelnfo
. DMSAPI_GetNextResourcelnfo

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus 2 Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide Tasks
nicht alle Elemente aus der Stationsdomains sondern abwechselnd die nichsten Ele-
mente aus der Domain.

Nach Umkonfiguration dieser Stationsdomain durch Freelance Engineering muss
immer erneute die Prozedur ein GetFirst aufgerufen werden. Die Getnext-Routine
liefert sonst einen Fehler zuriick.

4.4.1 DMSAPI_GetFirstResourcelnfo

SYNTAX

DMS_RC DMSAPI_GetFirstResourcelnfo(
DMS_RES_NO OwnResNo /* Eigene ResNum */,
DMS_UINT32 *IpulNoOfRes /* Anzahl der Ressourcen */,
DMS_UINT32 ResNamelLen /* max. Linge Ressname */,
DMS_CHAR *|pResName /* Ressname */,
DMS_NAME_RESOURCE_DATA*IpResInfo /* RessInfo */

);

Die Prozedur gibt die Informationen, iiber die erste Ressource, innerhalb der Res-
sourcendomain zuriick.

Parameter:

Referenz-Handbuch — DMS / API 119

DMSAPI_GetFirstResourcelnfo

4 Namensverwaltung

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss

aufgerufen sein.

* IpulNoOfRes: Anzahl der vorhandenen Ressourcen wird zuriickgegegeben

* ResNameLen: Linge des folgenden Buffers (DMS_MAX_RESNAME_LEN)

* IpResName:Buffer fiir Ressourcenname

* IpResInfo: Ressourceinformation

typedef struct DMS_NAME_RESOURCE_DATA {

DMS_WORD32 dwIPAddrl;
DMS_WORD32 dwlIPAddr2;
DMS_RES_NO ResNo;
DMS_RES_TYPE ResType;
DMS_UINT16 wTimeOut; /* in sec. */
DMS_UINT16 wMajorVersionNo;
DMS_UINT16 wMinorVersionNo;
DMS_UINT16 wPatchVersionNo;

} DMS_NAME_RESOURCE_DATA;

Der ResType kann folgende Werte annehmen:

DMS_OS_DIGIVIS
DMS_OS_DIGITOOL
DMS_OS_EPROM
DMS_OS_MSR
DMS_OS_DDE_GWY
DMS_OS_P_GWY
DMS_OS_GWY

120

Referenz-Handbuch — DMS / API

4 Namensverwaltung

DMSAPI_GetNextResourcelnfo

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht flr diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF

kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF |Ubergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine Station im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.4.2 DMSAPI_GetNextResourcelnfo

SYNTAX

DMS_RC DMSAPI_GetNextResourcelnfo(

);

DMS_RES_NO OwnResNo /* Figene RessNummer */,
DMS_UINT32 ResNamelLen /* max. Linge Ressname */,
DMS_CHAR *|pResName /* Ressname */,

DMS_NAME_RESOURCE_DATA*lpResInfo /* RessInfo */

Die Prozedur gibt die Informationen, iiber die weiteren Ressourcen, innerhalb der
Ressourcendomain zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

. ResNamelLen: Linge des folgenden Buffers (DMS_MAX_RESNAME_LEN)

* IpResName:Buffer fiir Ressourcenname

* IpResInfo: Ressourceinformation

typedef struct DMS_NAME_RESOURCE_DATA {

Referenz-Handbuch — DMS / API 121

DMSAPI_GetNextResourcelnfo

4 Namensverwaltung

DMS_WORD32 dwlPAddrl;
DMS_WORD32 dwlPAddr2;
DMS_RES_NO ResNo;
DMS_RES_TYPE ResType;

DMS_UINT16 wTimeOut; /* in sec. */
DMS_UINT16 wMajorVersionNo;
DMS_UINTI16 wMinorVersionNo;
DMS_UINTI16 wPatchVersionNo;
} DMS_NAME_RESOURCE_DATA;

Der ResType kann folgende Werte annehmen:

DMS_OS_DIGIVIS
DMS_OS_DIGITOOL
DMS_OS_EPROM
DMS_OS_MSR
DMS_OS_DDE_GWY
DMS_OS_P_GWY
DMS_OS_GWY

Parameter:

OwnResourceNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init

muss aufgerufen sein.

StationNameLen: Linge des folgenden Buffers

IpStationName:Buffer fiir Stationsname

IpStationlInfo: Stationsinformation

122

Referenz-Handbuch — DMS / API

4 Namensverwaltung Variableninformation

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht fur
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_NO_ACCESS Funktion: Getfirst wurde nicht aufgerufen

E_DMSAPI_SMALL_RCV_BUFF |Ubergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine weiteren Stationen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.5 Variableninformation

Uber die ServerProzeduren des Domainmangements wird folgende Binirdomain
empfangen:

Variable name | Data type Access |StatNo |ObjNo |CompNo
ANA_E DIGI_FLOAT3 2 R 1 131 1
BIN_A1 DIGI_BOOLEAN R/W 2 131 2

Der Zugrift auf diese Variableninformation wird {iber folgende 2 Prozeduren
gesteuert:

. DMSAPI_GetFirstVarInfo
. DMSAPI_GetNextVarInfo

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus 2 Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide Tasks

Referenz-Handbuch — DMS / API 123

DMSAPI_GetFirstVarinfo 4 Namensverwaltung

nicht alle Elemente aus der Variablendomain sondern abwechselnd die nichsten
Elemente aus der Domain.

Nach Umkonfiguration dieser Stationsdomain durch Freelance Engineering muss
immer erneut dieProzedur ein GetFirst aufgerufen werden. Die Getnext-Routine lie-
fert sonst einen Fehler zuriick.

4.5.1 DMSAPI_GetFirstVarinfo

SYNTAX
DMS_RC DMSAPI_GetFirstVarInfo(
DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

DMS_UINT32 *pulNoOfVar /* Anzahl der Var */,
DMS_UINT32 VarNameLen /* max. Laenge Varname */,
DMS_CHAR *IpVarName /* Variablenname */,

DMS_NAME_VAR_DATA*lpVarInfo /* VariablenInfo */);

Die Prozedur gibt die Informationen, iiber die erste Variable, innerhalb der Variab-
lendomain zurtick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* IpulNoOfVar: Anzahl der vorhandenen Variablen wird zuriickgegeben

e VarNameLen: Linge des folgenden Buffers(DMS_MAX_VARNAME_LEN)
* IpVarName: Buffer fiir Variablenname

* IpVarlnfo: Variableninformation

typedef struct DMS_NAME_VAR_DATA {

124

Referenz-Handbuch — DMS / API

4 Namensverwaltung DMSAPI_GetNextVarInfo

DMS_WORD32 dwAccessRights;
DMS_VAR_TYPE VarType;
DMS_RES_NO ResNo;
DMS_OBJ_PATH Opath;
} DMS_NAME_VAR_DATA;
dwAccessRights kann die folgenden Werte annehmen:DMS_READ_ONLY
DMS_READ_WRITE
VarType kann verschiedenen Werte annehmen. (siche Anhang DMS-Variablenty-
pen)
Opath ist die DMS-Adressierung auf dem Server:
typedef struct {
DMS_OBJNOObjNo;
DMS_CMPNOCmpNo}
DMS_OBIJ_PATH;

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht far
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF |Ubergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine Variablen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.5.2 DMSAPI_GetNextVarinfo
SYNTAX
DMS_RC DMSAPI_GetNextVarInfo(

Referenz-Handbuch — DMS / API 125

DMSAPI_GetNextVarlnfo 4 Namensverwaltung

DMS_RES_NO OwnResNo /*Eigene RessourceNummer */,
DMS_UINT32 VarNameLen /* max. Linge Varname */,
DMS_CHAR *IpVarName /*Variablenname */,
DMS_NAME_VAR_DATA*lpVarlnfo /*VariablenInfo */);

Die Prozedur gibt die Informationen, iiber die weiteren Variablen, innerhalb der
Variablendomain zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* VarNameLen: Linge des folgenden Buffers(DMS_MAX_VARNAME_LEN)

e IpVarName: Buffer fiir Variablenname

* IpVarlnfo : Variableninformation

typedef struct DMS_NAME_VAR_DATA {
DMS_WORD32dwAccessRights;
DMS_VAR_TYPE VarType;
DMS_RES_NO ResNo;
DMS_OBJ_PATH Opath;

} DMS_NAME_VAR_DATA;

dwAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY
DMS_READ_WRITE

VarType kann verschiedenen Werte annehmen. (siehe Anhang DMS-Variablenty-
pen)

Opath ist die DMS-Adressierung auf dem Server:

typedef struct {

126

Referenz-Handbuch — DMS / API

4 Namensverwaltung

MSR-Stelleninformation

DMS_OBJNOObjNo;
DMS_CMPNOCmpNo}

DMS_OBJ_PATH;

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-Schicht fir
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF

kein Projekt vorhanden

E_DMSAPI_NO_ACCESS

Funktion: Getfirst wurde nicht aufgerufen

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF

keine weiteren Variablen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

4.6 MSR-Stelleninformation

Uber die ServerProzeduren des Domainmangements wird folgende Binirdomain

empfangen:
MSR name | ResNo | Access |Object class ObjNo |CmpNo
ANA_ZA 1 R DIGI_ANA_Z(267) 2689 |0
BinOver 1 RW DIGI_BINOV(279) 2788 |0
StructTst |2 RW Structured var (520) |131 12

Der Zugriff auf diese MSR-Stellen-Information wird iiber folgende 2 Prozeduren

gesteuert:

* DMSAPI_GetFirstTaglnfo
* DMSAPI_GetNextTaglnfo

Referenz-Handbuch — DMS / API

127

MSR-Stelleninformation 4 Namensverwaltung

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus zwei Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide
Tasks nicht alle Elemente aus der MSR-Stellendomain sondern abwechselnd die
ndchsten aus der Domain.

Nach Umkonfiguration dieser MSR-Stellendomain durch Freelance Engineering
muss immer erneut die Prozedur GetFirst aufgerufen werden. Die Getnext-Routine
liefert sonst einen Fehler zuriick.

DMSAPI_GetFirstTaginfo
SYNTAX
DMSAPI_GetFirstTagInfo(
DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

DMS_UINT32 *IpulNoOfTag/* Anzahl der Tags */,
DMS_UINT32 TagNameLen/* max. Linge Tagname */,
DMS_CHAR *lpTagName /* MSR-Stellenname */,

DMS_NAME_TAG_DATA*1pTagInfo /* Taginfo*/
)
Die Prozedur gibt die Informationen, iiber die erste MSR-Stelle, innerhalb der
MSR-Stellendomain zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* lpulNoOfTag : Anzahl der vorhandenen MSR-Stellen wird zuriickgegeben
* TagNameLen: Linge des folgenden Buffers(DMS_MAX_TAGNAME_LEN)
* IpTagName:Buffer fiir MSR-Stellenname

128

Referenz-Handbuch — DMS / API

4 Namensverwaltung MSR-Stelleninformation

* IpTaglnfo : MSR-Stelleninformation
typedef struct DMS_NAME_TAG_DATA {

DMS_WORD32 dwAccessRights;
DMS_RES_NO ResNo;
DMS_OBIJNO ObjClass;

DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

dwAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY
DMS_READ_WRITE

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht fur
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Ubergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine MSR-Stellen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR | Interner Fehler

DMSAPI_GetNextTaginfo

SYNTAX

DMSAPI_GetNextTagInfo(
DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,
DMS_UINT32 TagNameLen /* max. Linge Tagname */,
DMS_CHAR *lpTagName /* MSR-Stellenname */,

Referenz-Handbuch — DMS / API 129

MSR-Stelleninformation 4 Namensverwaltung

DMS_NAME_TAG_DATA*1pTagInfo /* Taglnfo*/

Die Prozedur gibt die Informationen, iiber alle weiteren MSR-Stellen, innerhalb der
MSR-Stellendomain zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

» TagNameLen: Length of the next buffer in sequence
(DMS_MAX_TAGNAME_LEN)

* IpTagName: Buffer for tag name

* IpTaglnfo: Tag information

typedef struct DMS_NAME_TAG_DATA {
DMS_WORD32 dwAccessRights;
DMS_RES_NO ResNoj;
DMS_OBJNO ObjClass;
DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

dwAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY
DMS_READ_WRITE

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
far diese Ressourcennummer nicht initialisiert wurde.
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

130 Referenz-Handbuch — DMS / API

4 Namensverwaltung MSR-Stelleninformation

E_DMSAPI_NO_CONF kein Projekt vorhanden
E_DMSAPI_EMPTY_CONF keine weiteren MSR-Stellen im Projekt vorhanden
E_DMSAPI_SMALL_RCV_BUFF |Ubergebener Buffer ist zu klein.
E_DMSAPI_NO_ACCESS Funktion: Getfirst wurde nicht aufgerufen
E_DMSAPI_INTERNAL_ERROR |Interner Fehler

DMSAPI_GetTagByAddr
CGEXPORT DMS_RC DMSAPI_GetTagByAddr (
DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

DMS_RES_NO ResNo /* RessNummer */,
DMS_OBJNO ObjNo /* ObjektPfad */,
DMS_UINT32 TagNameLen /* max. Linge Tagname */,
DMS_CHAR *|pTagName /* MSR-Stellenname */,

DMS_NAME_TAG_DATA*]pTagInfo /* Taginfo*/
);
Die Prozedur gibt die Informationen iiber einen "Tag", der iiber Ressourcenummer
und Objektnummer adressiert wird, zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* ResNo: RessourcenNummer der ServerStation.

* ObjNo: Objektnummer des gesuchten Objektes

e TagNameLen: Linge des folgenden Buffers(DMS_MAX_TAGNAME_LEN)
* IpTagName:Buffer fiir MSR-Stellenname

* IpTaglnfo : MSR-Stelleninformation

typedef struct DMS_NAME_TAG_DATA {

Referenz-Handbuch — DMS / API 131

Objektklassen-Stelleninformation 4 Namensverwaltung

DMS_WORD32 dwAccessRights;

DMS_RES_NO ResNo;

DMS_OBJNO ObjClass;

DMS_OBJNO ObjNo;

DMS_CMPNO CmpNoj;

} DMS_NAME_TAG_DATA;

dwAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY
DMS_READ_WRITE

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht

fur diese Ressourcennummer nicht initialisiert wurde.
E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_NO_CONF kein Projekt vorhanden
E_DMSAPI_SMALL_RCV_BUFF |Ubergebener Buffer ist zu klein.
E_DMSAPI_INVALID_CONF keine MSR-Stellen flr die Adresse im Projekt vorhanden
E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.7 Objektklassen-Stelleninformation

Uber die ServerProzeduren des Domainmangements werden mehrere Bindrdomains
empfangen:

Analogzihler: Objektklasse 267

Variablenname | Zugriff DatenTyp ComponentNr

Enable RW DIGI_BOOLEAN 1

132 Referenz-Handbuch — DMS / API

4 Namensverwaltung Objektklassen-Stelleninformation

Eingang R DIGI_FLOAT32 2

BinirUberwacher: Objektklasse 279

Variablenname | Zugriff DatenTyp ComponentNr
Enable R DIGI_BOOLEAN 1
Eingang RW DIGI_BOOLEAN 2

Datenbaustein: Objektklasse 520 (Namen sind vom Anwender definiert)

Variablenname | Zugriff DatenTyp ComponentNr
Struct1 RW Datenbaustein 510 1
Struct2 Rw Datenbaustein 510 n

Datenbaustein: Objektklasse 510 (Namen sind vom Anwender definiert)

Variablenname | Write DatenTyp ComponentNr
Elem1 RW DIGI_BOOLEAN 1
Elem2 RW DIGI_FLOAT32 2
Elemn RW DIGI_INT32 n

Im Beispiel handelt es sich bei dem Datenbaustein 520 um eine mehrstufige Adres-
sierung:

Die mehrstufige Adressierung iiber Variablennamen lautet dann z.B.:

StructTst/Struct2/Elem?2

Referenz-Handbuch — DMS / API 133

DMSAPI_GetFirstCmpOfObjClass 4 Namensverwaltung

Die KomponentenNummer berechnet sich dann:
KomponentenNummer von StructTst +
KomponentenNummer von Struct2 +
KomponentenNummer von StrucElem?2 .

Es ist eine beliebig tiefe Schachtelung moglich. Rekursion muss ausgeschlossen
sein.

* DMSAPI_GetFirstCmpOfObjClass
* DMSAPI_GetNextCmpOfObjClass

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus zwei Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide
Tasks nicht alle Elemente aus der Objektlassendomains sondern abwechselnd die
néchsten aus der Domain.

Nach Umkonfiguration dieser Stationsdomain durch Freelance Engineering muss
immer ein erneutes GetFirst aufgerufen werden. Die Getnext-Routine liefert einen
Fehler zuriick.

Die verfiigbaren Komponenten aller Bausteine sind im Handbuch "Freelance 200
Zusatzprogramme - Anhang" aufgelistet.

4.7.1 DMSAPI_GetFirstCmpOfObjClass

SYNTAX

DMS_RC DMSAPI_GetFirstCmpOfObjClass(
DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,
DMS_OBJNO ObjClass /* Objektklasse */,

134

Referenz-Handbuch — DMS / API

4 Namensverwaltung DMSAPI_GetFirstCmpOfObjClass

DMS_UINT32 *IpulNoOfCmp /* Anzahl der Komponenten */,
DMS_UINT32 CmpNameLen /* max. Linge Komp.namen */,
DMS_CHAR *lpCmpName /* Komponentenname */,
DMS_NAME_OBJ_DATA *IpObjlnfo /* ObjektInfo */

);

Die Prozedur gibt die Informationen, iiber die erste Komponente, innerhalb der

angegebenen Objektklasse zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

e ObjClass: Objektnummer der gesucht Objektklasse
* IpulNoOfCmp : Anzahl der vorhandenen Komponenten wird zuriickgegeben

* CmpNameLen: Linge des folgenden
Buffers(DMS_MAX_COMPNAME_LEN)

* IpCmpName: Buffer fiir Komponentenname
* IpObjInfo: Information iiber die 1. Komponente der Objektklasse
typedef struct DMS_NAME_OBJ_DATA {
DMS_WORD16 nRWFlag;
DMS_CMPNO CmpNo;
DMS_VAR_TYPE VarType;
DMS_WORDI6 Reserved;
} DMS_NAME_OBJ_DATA,;

dwAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY

DMS_READ_WRITE

Referenz-Handbuch — DMS / API 135

DMSAPI_GetNextCmpOfObjClass

4 Namensverwaltung

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT

Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht flr diese Ressourcennummer nicht initiali-
siert wurde.

E_DMSAPI_INVALID_ARG

Ubergabeparameter sind fehlerhatt.

E_DMSAPI_NO_CONF

kein Projekt vorhanden

E_DMSAPI_EMPTY_CONF

keine Objektklasse dieses Typs vorhanden

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Buffer ist zu klein.

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

4.7.2 DMSAPI_GetNextCmpOfObjClass

OwnResNo /* Eigene RessourceNummer */,
ObjClass /* Objektklasse */,

CmpNameLen/* max. Linge Komp.namen */,

SYNTAX
DMS_RC DMSAPI_GetNextCmpOfObjClass(
DMS_RES_NO
DMS_OBJNO
DMS_UINT32
DMS_CHAR

pCmpName / Komponentenname */,

DMS_NAME_OBJ_DATA*IpObjInfo /* ObjektInfo */

);

Die Prozedur gibt die Informationen, iiber alle weiteren Komponenten, innerhalb
der angegebenen Objektklasse zuriick.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss

aufgerufen sein.

* ObjClass: Objektnummer der gesucht Objektklasse

* CmpNameLen: Linge des folgenden
Buffers(DMS_MAX_COMPNAME_LEN)

136

Referenz-Handbuch — DMS / API

4 Namensverwaltung Adressen-Konvertierung

* IpCmpName:Buffer fiir Komponentenname
* IpObjInfo:Information iiber die 1. Komponente der Objektklasse
typedef struct DMS_NAME_OBIJ_DATA {
DMS_WORD16 nRWFlag;
DMS_CMPNO CmpNo;
DMS_VAR_TYPE VarType;
DMS_WORDI16 Reserved;
} DMS_NAME_OBIJ_DATA,;

dwAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY

DMS_READ_WRITE

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
flr diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF | Ubergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine weiteren Informationen Uber diese Objektklasse vor-
handen

E_DMSAPI_INTERNAL_ERROR |Interner Fehler

4.8 Adressen-Konvertierung

Zusitzlich zu diesen Grundfunktionen gibt es die Moglichkeit "Variablennamen" in
"Freelance -Objektpfad" zu wandeln und umgekehrt.

Referenz-Handbuch — DMS / API 137

DMSAPI_GetVarNameByOPath 4 Namensverwaltung

4.8.1 DMSAPI_GetVarNameByOPath

SYNTAX

DMS_RC DMSAPI_GetVarnameByOPath (
DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,
DMS_RES_NO ResNo /* RessNummer */,
DMS_OBJ_PATH *lpOPath /* ObjektPfad */,
DMS_UINT32 VarNameLen /* Max. . Linge Varname */,
DMS_CHAR *IpVarName /* VariablenName */);

Die Prozedur wandelt einen Objektpfad in einen Variablennamen um.
Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

* ResNo: RessourcenNummer der ServerStation.
e IpOPath: Objektpfad der gesuchten Variablen
typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH;
e VarNamelLen: Linge des folgenden Buffers (DMS_MAX_VARNAME_LEN)
* IpVarName:Buffer fiir Variablenname

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht fir

diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

Referenz-Handbuch — DMS / API

4 Namensverwaltung

DMSAPI_GetVarlnfoByName

E_DMSAPI_NO_CONF

kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF

Ubergebener Buffer ist zu klein.

E_DMSAPI_INVALID_CONF

keine Information Uber die Variable vorhanden

E_DMSAPI_INTERNAL_ERROR

Interner Fehler

4.8.2 DMSAPI_GetVarinfoByName

SYNTAX

DMS_RC DMSAPI_GetVarInfoByName(

DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,
DMS_CHAR *lpVarName /* VariablenName */,
DMS_RES_NO *IpResNo /* RessNummer */,
DMS_OBJ_PATH *pOPath /*ObjektPfad*/,
DMS_VAR_TYPE *lpVarType /* DigiTyp */,

DMS_WORD32
);

* IpAccessRights

/* Access Rights */

Die Prozedur wandelt einen Variablennamen in einen "Objektpfad" um. Dabei muss
es sich bei dem Variblennamen nicht um eine Variable handeln, die iiber die Funkti-
onen GetFirstVar und GetNextVar erhalten werden, sondern es kann sich auch um

eine aus "Tag" und Komponentennamen zusammengesetzte Variable handlen.

Parameter:

* OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss

aufgerufen sein.

* IpVarName: Name der gesuchten Variable

* IpResNo: RessourcenNummer der ServerStation.

* IpOPath: Objektpfad der gesuchten Variablen

typedef struct {

Referenz-Handbuch — DMS / API

139

DMSAPI_GetVarinfoByName 4 Namensverwaltung

DMS_OBJNO ObjNo;
DMS_CMPNOCmpNo;
} DMS_OBJ_PATH,;

* IpVarType kann verschiedenen Werte annehmen. (siche Anhang DMS-
Variablentypen)

* IpAccessRights kann die folgenden Werte annehmen:
DMS_READ_ONLY
DMS_READ_WRITE

Mogliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
fur diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information Uber die Variable vorhanden

E_DMSAPI_INTERNAL_ERROR |Interner Fehler

140 Referenz-Handbuch — DMS / API

5 Server Management

5 Server Management

Es gibt vordefinierte Funktionen iiber die das von Freelance Engineering benétigte

ServerManagement ausgefiihrt werden kann:

* Ablegen der Konfigurationsdomains fiir das Namemanagement auf Platte

* Start/Stop des DMS's wihrend einer Umkonfiguration

. Auslesen der Versionsinformation.

Freelance
Engineerin

g

{—

[—

h

Server-
Management

o —

Yerbindungs-
Management

Applikations

Callback-Fkt.

h

Yersions-

Kantrolle

Konfigurations-
Management

Applikations-

Callback-Fkt

Referenz-Handbuch — DMS / API

141

5 Server Management

142 Referenz-Handbuch — DMS / API

6 DMS utilities DMSAPI_GetStringByValue

6 DMS utilities

6.1 DMSAPI_GetStringByValue
SYNTAX

DMS_RC DMSAPI_GetStringBy Value(

DMS_UINT32 ulStrLen /* GroBe des Speichers auf den
Pointer referenziert*/,

DMS_CHAR *lpszString /* Speicher fuer String */,
DMS_VAR_TYPEVarType /* VariablenTyp */,
DMS_VALUE *lpvVarValue /* Variablenwert*/
);
Die Prozedur wandelt einen Freelance -Wert in einen druckbaren String um.
Parameter:
* ulStrlen: maximale Linge des Buffers
* IpszString:Buffer fiir String
e Vartype:Typ des Wertes
e IpvVarValue:Freelance-Wert

Mogliche Returnwerte:

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_SMALL_RCV_BUFF |Buffer zu klein
E_DMSAPI_INTERNAL_ERROR | Interner Fehler

Referenz-Handbuch — DMS / API 143

DMSAPI_GetValueByString 6 DMS utilities

6.2 DMSAPI_GetValueByString

SYNTAX

DMS_RC DMSAPI_GetValueByString(

DMS_UINT32 ulValLen /* GroBe des Speichers auf den Pointer
referenziert */,
DMS_VALUE *lpvVarValue /* Speicher fuer Variablenwert */,

DMS_VAR_TYPEVarType /* VariablenTyp */,
DMS_CHAR *IpszString /* Wert als String */
);
Die Prozedur wandelt einen eingelesen String in einen Freelance -Wert um.
Parameter:
* ulValLen: maximale Linge des Buffers
* lpvVarValue:Buffer fiir Value
e Vartype:Typ des Wertes
* IpvVarValue:Freelance -Wert als String

Mogliche Returnwerte:

E_DMSAPI_INVALID_ARG Ubergabeparameter sind fehlerhaft.
E_DMSAPI_SMALL_RCV_BUFF Buffer zu klein
E_DMSAPI_INTERNAL_ERROR Interner Fehler

144 Referenz-Handbuch — DMS / API

6 DMS utilities DMSAPI_GetVarlLen

6.3 DMSAPI _GetVarLen
SYNTAX

int DMSAPI_GetVarLen(
DMS_VAR_TYPE VarType /* VariablenTyp */

Die Prozedur gibt fiir einen Freelance -Datentyp die Linge des Speichers zuriick,
die eine Variable dieses Typs in einer Variablenliste benotigt.

Parameter:

* VarType can take various different values. (See Appendix - DMS Variable
Types)

Mogliche Returnwerte:

Die Linge des Datentypen in Bytes oder -1 falls ein ungiiltiger Variablentyp iiberge-
ben wird.

6.4 DMSAPI_DumpRecData

SYNTAX

void DMSAPI_DumpRecData(
DMS_REC_DATA * DmsRecData /* */
)3
Die Prozedur gibt (Dump) die Struktur einer Receivestruktur auf StandardOutput.
Parameter:

. RecData: ReceiveData

Referenz-Handbuch — DMS / API 145

DMSAPI_DumpRecData 6 DMS utilities

146 Referenz-Handbuch — DMS / API

Anhang A Variablen Typen und Fehler Codes DMS-Variablentypen

Anhang A Variablen Typen und Fehler Codes

A.1 DMS-Variablentypen

Im DMSAPI bestehen Variablen immer aus Typ und Wert. Die Variablentypen kon-
nen folgende Werte annehmen:

Define fir Variablentyp Wert fur Typedef in UNION DMS_VALUE
Variablentyp

DMS_VAR_TYPE_BOOLEAN |0x01 DMS_BOOLEAN Boolean;

typedef unsigned char DMS_BOOLEAN;
DMS_VAR_TYPE_CHAR 0x02 DMS_CHAR Char;

typedef char DMS_CHAR,;
DMS_VAR_TYPE_BYTE 0x03 DMS_BYTE Byte;

typedef unsigned char DMS_BYTE;
DMS_VAR_TYPE_INT8 0x04 DMS_INTS Int8;

typedef char DMS_INTS;
DMS_VAR_TYPE_WORD16 0x05 DMS_WORD16 Word16;

typedef unsigned short DMS_WORD16;
DMS_VAR_TYPE_UINT16 0x06 DMS_UINT16 Uint16;

typedef unsigned short DMS_UINT16;
DMS_VAR_TYPE_INT16 0x07 DMS_INT16 Int16;

typedef short DMS_INT16;
DMS_VAR_TYPE_WORD32 0x08 DMS_WORD32 Word32;

typedef unsigned long DMS_UINT32;
DMS_VAR_TYPE_UINT32 0x09 DMS_UINT32 Uint32;

typedef unsigned long DMS_UINT32;

Referenz-Handbuch — DMS / API 147

DMS-Variablentypen Anhang A Variablen Typen und Fehler Codes

DMS_VAR_TYPE_INT32 0x0A DMS_INT32 Int32;
typedef long DMS_INT32;
DMS_VAR_TYPE_FLOAT32 0x0B DMS_FLOAT32 Float32;
typedef float DMS_FLOAT32;
DMS_VAR_TYPE_TIME 0x0C DMS_TIME DmsTime;
typedef long DMS_INT32;
DMS_VAR_TYPE_DT 0x0D DMS_DT DmsDT;

/* ms since 1.1.1970 0.00 hrs GMT */
typedef struct {
DMS_WORD32 dwMSecondsHigh;
DMS_WORD32 dwMSecondsLow;
} DMS_DT;

DMS_VAR_TYPE_STRINGS8 Ox0E DMS_STRING8 String8;

typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[10];

} DMS_STRINGS;

DMS_VAR_TYPE_STRING16 |O0xOF DMS_STRING16 String16;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[18];
} DMS_STRING16;
DMS_VAR_TY- 0x10 DMS_STRING32 String32;
PE_STRING32 typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[34];
} DMS_STRING32;

148 Referenz-Handbuch — DMS / API

Anhang A Variablen Typen und Fehler Codes DMS-Variablentypen

DMS_VAR_TY- 0x11 DMS_STRING64 String64;
PE_STRING64 typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[66];
} DMS_STRING64;

DMS_VAR_TYPE_STRING128 |0x12 DMS_STRING128 String128;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[130];
} DMS_STRING128;

DMS_VAR_TYPE_STRING256 |0x13 DMS_STRING256 String256;
typedef struct {
DMS_WORD16 wMaxStringLen;
DMS_CHAR Content[258];
} DMS_STRING256;

DMS_VAR_TYPE_OBJNO 0x2C DMS_OBJNO ObjNo;
typedef unsigned long DMS_UINT16;
DMS_VAR_TYPE_CMPNO 0x2D DMS_CMPNO CmpNo;

typedef unsigned long DMS_UINT16;

Referenz-Handbuch — DMS / API 149

DMS-FehlerCodes Anhang A Variablen Typen und Fehler Codes

A.2 DMS-FehlerCodes

Define fur Error Wert far Error | Beschreibung des Fehlers
E_DMSAPI_OK 0x00000000 Kein Fehler
E_DMSAPI_NOT_INIT 0x00000001 Das DMSAPI ist fiir die angegebene
Ressource nicht initialisiert
E_DMSAPI_INVALID_CONF 0x00000002 Keine Konfiguration flir angegebene Na-
men vorhanden
E_DMSAPI_INVALID_ARG 0x00000003 Funktion wurde mit falschem Parameter
aufgerufen
E_DMSAPI_SMALL_RCV_BUFF 0x00000004 Der ubergebene Buffer ist zu klein
E_DMSAPI_EMPTY_CONF 0x00000005 Fir die angegebene Namemana-
ge—ment-Klasse ist keine Information
vorhanden

E_DMSAPI_INTERNAL_ERROR 0x00000006 Interner DMS-Fehler ist aufgetreten.
Aus Sicherheitsgriinden sollte die Appli-
kation méglichst schnell und "daten-
schonend" verlassen werden.

E_DMSAPI_ACCESS_ERROR 0x00000007 Auf angegebene Station oder Variable
kann nicht zugegriffen werden.
E_DMSAPI_NO_CONF 0x00000008 FUr die angegebene Ressource ist keine

Konfiguration vorhanden

E_DMSAPI_INVALID_DMS_HAND- |0x00000009 Der ubergebene DMS-Handle ist nicht

LE gultig

E_DMSAPI_INVALID_- 0x0000000a Der Ubergebene ConnectionHandle ist
CONN_HANDLE nicht gultig
E_DMSAPI_NO_RESOURCE 0x0000000b Das DMS hat zur Zeit keine Ressour-

cen. Unter Umstanden kénnen Ressour-
cen nicht zurlickgegeben werden, weil
Callbackfunktionen die Applikation blo-
ckieren.

150 Referenz-Handbuch — DMS / API

Anhang A Variablen Typen und Fehler Codes

DMS-FehlerCodes

E_DMSAPI_VARLIST_IN_USE 0x0000000c Eine Variablenliste kann nicht verandert
werden, solange ein Dienst noch nicht
abgeschlossen ist.

E_DMSAPI_NO_CALLBACK 0x0000000d FUr den Ubergebenen Callbackld ist kei-
ne Callbackfunktion angege-ben.

E_DMSAPI_DUPLICATE_CALL- 0x0000000e Unter der angegebene Callbackld wurde

BACK schon eine Callback-Funktion angemel-
det.

E_DMSAPI_INVALID_INDEX 0x00000000f In der Variablenliste befindet sich unter
dem angebenen Index keine glltige Va-
riable.

E_DMSAPI_INVALID_VARTYPE 0x00000010 Der Wert des Variablentyps ist ungultig

E_DMSAPI_INVALID_VARMODE 0x00000011 Variablenliste wurde flr einen Dienst
kreiert und soll nun fiir einen anderen
Dienst benutzt wer-den.

E_DMSAPI_NO_CONNECTION 0x00000012 Keine Verbindung zu der angegebenen
Station

E_DMSAPI_ALREADY_INIT 0x00000013 Das DMSAPI wurde fir diese Station
schon initialisiert

E_DMSAPI_MAX_APPLICATION 0x00000014 Das DMSAPI kann nur fir eine bestimmt
Anzahl Ressourcen initialisiert werden.

E_DMSAPI_MAX_CONNECTION 0x00000015 Das DMSAPI kann nur zu einer be-
stimmten Anzahl von Ressourcen Ver-
bindungen 6ffnen.

E_DMSAPI_TIMEOUT 0x00000016 Der Dienst konnte nicht innerhalb des
angegebenen Timeouts ausgefihrt wer-
den.

E_DMSAPI_INVALID_DIR 0x00000017 Das angebene Verzeichnis existiert

nicht.

Referenz-Handbuch — DMS / API

151

DMS-FehlerCodes Anhang A Variablen Typen und Fehler Codes

152 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele DMSAPI-Beispiele

Anhang B Applikationsschnittstelle Freelance
Beispiele

B.1 DMSAPI-Beispiele

Die Beispiele werden bei der DMSAPI - Installation vom Setup in das angegebene
Freelance-Verzeichnis

(z.B. c:\Freelance) unter

... \dmsapi\ - incluce
- lib
- samples
angelegt.

B.2 Variablendienste

B.2.1 Einfaches Lesen "read.c"
/*
*/
#f 0
FILENAME $Workfile: read.c $

VERSION $Revision: 1.0 $ (0)
HISTORY

HISTORY_END

/* $Log: read.c_v $

Referenz-Handbuch — DMS / API 153

Variablendienste

Anhang B Applikationsschnittstelle Freelance Beispiele

*/
#endif
/ £

Demo program for DMSAPI-communication (Windows) :

— Calling convention : dmsard <OwnStationNo> <Variablename>

— Init of DMSAPI

— Register of a Callback-Function

— Connect to a Station

— Create a VariableList

— In aloop the Variable given as argument will be read once with
async and once with sync option

*/

#include <windows.h>

#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>
#include <time.h>
#include "dmstyp.h"
#include "dmsapi.h"

#include "dmserr.h"

int StationConnect=0;

int ReadFlag=0;

154

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI
Attention : this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code !
*/
DMS_REC_VARLIST_DATA *lpVarList;

int 1;

switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
/* DMSAPI calls Callback everytime a station connects or
disconnects */
if (!lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;
break;
case DMS_REC_VARLIST_TYPE:
/* case value for a received variable value */
DMSAPI_DumpRecData(lpDmsRec);
ReadFlag=1;
IpVarList = IpDmsRec->SrvBuff.lpVarList;
for (i = 0; i < IpVarList->MaxVarNo; i++)
{

Referenz-Handbuch — DMS / API 155

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

if (IpVarList->lpVar[i]. VarStatus !|= DMS_VAR_DELETED)
{
if (IpVarList->lpVar[i]. VarRc)
{
/* DMSAPI reports an error in Read Operation */
} else
if (IpVarList->lpVar[i]. VarStatus = DMS_VAR_NOT_VALID)
{
/* Read was successful :
Datatype in IpVarList->IpVar[i]. VarType,
Value in lpVarList->IpVar[i].VarValue
*/

break;
default:

printf ("unexpected Case\n");

}
return(0);
}

/ *

If there is no valid config in c:\digimat\gwy\resxxx
this function waits for config from Freelance Engineering

you can change the ProjectDir by SetProjectDir

156 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ReslInfo;

if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,
&ReslInfo)) {

printf ("No Config for GWY-Id %d : Configure from Freelance Engineering
and press any key to continue\n",

OwnResNo);
for (;3) {
Sleep(100);
if (kbhit()) {
getch();
break;

Referenz-Handbuch — DMS / API 157

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

int wmain (int argc, TCHAR ** argv) {

DMS_HANDLE nVLHandle=-1;
DMS_RC rc;
DMS_RES_NO OwnStationNo=37;
DMS_RES_NO StationNo=5;

DMS_CONN_HANDLE ConnHandle;
DMS_REC_VARLIST_DATA *IpRecVar;

DMS_INT16 Index;

DMS_INT16 OwnCallBackld=1;
char szAscStation[20];

char szAscVarName[20];
BOOL fUnicodeError=FALSE;

DMS_OBJ_PATH Path;
DMS_VAR_TYPE Dtype; /* DigiTyp */
DMS_WORD?32 Access;

char Temp[3500];

DMS_REC_DATA RecData;

/* Sessionstart */

if (argc!=3) {

printf ("Calling Convention: dmsadr <iOwnStationNo> <VarName>");

return(0);

158 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);

WideCharToMultiByte(CP_ACP ,0,argv[1],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);

sscanf(szAscStation,"%d",&OwnStationNo);

WideCharToMultiByte(CP_ACP ,0,argv[2],-1,
(LPSTR)szAscVarName,20,NULL,&fUnicodeError);

/* init with standard GWY */

if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)

printf ("Error in DMSAPI_Init : %x\n");
goto _LBL_FNC_XIT;
}
/* register CallBack - Function */
rc=DMSAPI_RegisterClItCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf("Fehler beim Register Proc \n");
goto _LBL_FNC_XIT;
}
/* check, if there is a valid config */
WaitForConfig(OwnStationNo);
/* look for variable in configuration */
rc=DMSAPI_GetVarInfoByName(OwnStationNo,szAscVarName,
&StationNo,&Path,&Dtype,& Access);

Referenz-Handbuch — DMS / API 159

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

if (rc){
printf(" Variable not found in configuration \n");
goto _LBL_FNC_XIT;
}
else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",
szAscVarName,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,
(int)Dtype,(int)Access);

/* Connecting to Station */
if (rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf("Fehler beim Connect %081x to Station %d\n",rc,StationNo);
goto _LBL_FNC_XIT;
}
while (!StationConnect) {
Sleep(100);
printf ("trying to connect to Station %d ..\n",StationNo);
if (kbhit()) goto _LBL_FNC_XIT;
}
printf ("Station connected\n");
/* create VarList */

if (lc=DMSAPI_VLCreate (ConnHandle, DMSAPI_VL_SINGLE_READ,&nVL-
Handle))!=E_DMSAPI_OK) {

printf("Error in VLCreate %lx\n",rc);
goto _LBL_FNC_XIT;

160 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

/* build VarListe*/

if (rc=DMSAPI_VLAddReadVarByName (nVLHandle,szAscVarName,
&lpRecVar,&Index))!=E_ DMSAPI_OK) {
printf("Error in AddVar : %Ix\n",rc);
goto _LBL_FNC_XIT;

for (;;) {

/* Async Read Loop */

if (rc=DMSAPI_VLRead(nVLHandle,0OwnCallBackId, DMSAPI_STD_A-
SYNC))!=E_DMSAPI_OK) {

printf("Error in VLRead %Ix\n" rc);

/* Antwort auswerten */

while ('ReadFlag) {

Sleep(10);

if (kbhit()) goto _LBL_FNC_XIT;
}
ReadFlag=0;

IpRecVar=(DMS_REC_VARLIST_DATA *) Temp;

Referenz-Handbuch — DMS / API 161

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

if ((rc=DMSAPI_VLRead(nVLHandle,0,DMSAPI_SYN-
CHRON,1000,3500,IpRecVar))

I=E_ DMSAPI_OK) {
printf("Fehler beim VLRead sync %Ix\n",rc);
goto _LBL_FNC_XIT;

}
RecData.SrvType=DMS_REC_VARLIST_TYPE,;

RecData.SrvBuff.IpVarList=IpRecVar;
DMSAPI_DumpRecData(&RecData);

_LBL_FNC_XIT:

/* Disconnect */

if (rc=DMSAPI_VLDelete(nVLHandle))!=E_DMSAPI_OK)
printf("Error in VLDelete %Ix\n",rc);

DMSAPI_Disconnect(ConnHandle);

while (StationConnect) {

Sleep(100);

if (kbhit()) break;

162

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c”

/* DMS_Ende */

DMSAPI_Exit(OwnStationNo);
return(0);

}

B.2.2 Zyklisches Lesen "acycle.c"
/*
*/

#if 0
FILENAME acycle.c
HISTORY

1 deu create

HISTORY_END

#endif
/*
DMSAPI-demo showing the use of the ReadCyclic call
— Init of DMSAPI
— Register of a Callback-Function
— Connect to a Station
— Create a VariableList
— Inaloop the Variable given as argument will be read cyclic
*/

#include <windows.h>

Referenz-Handbuch — DMS / API 163

Zyklisches Lesen "acycle.c” Anhang B Applikationsschnittstelle Freelance Beispiele

#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>
#include <time.h>
#include "dmstyp.h"
#include "dmsapi.h"
#include "dmserr.h"
int StationConnect=0;
int ReadFlag=0;

/*

If there is no valid config in c:\digimat\gwy\resxxx

this function waits for config from Freelance Engineering
you can change the ProjectDir by SetProjectDir

before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ResInfo;

if (DMSAPI_GetFirstResourcelnfo(OwnResNo,&NoOfRes,10,Resname,
&ResInfo)) {

164 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c”

printf ("No Config: Configure from Freelance Engineering and press any key to

continue\n");
for (;3) {
Sleep(100);
if (kbhit()) {
getch();
break;

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread
which has a higher priority than the main thread

you have to protect your data and code !

*/

DMS_REC_VARLIST_DATA *lpVarList;
inti;
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:

Referenz-Handbuch — DMS / API

165

Zyklisches Lesen "acycle.c” Anhang B Applikationsschnittstelle Freelance Beispiele

if (!lpDmsRec->DmsRc)

StationConnect=1;
else

StationConnect=0;
break;

case DMS_REC_VARLIST_TYPE:
ReadFlag=1;
DMSAPI_DumpRecData(lpDmsRec);

IpVarList = IpDmsRec->SrvBuff.lpVar-
List;

for (i = 0; i < IpVarList->MaxVarNo;
i++)

if (IpVarList-
>lpVar[i].VarStatus != DMS_VAR_DELETED)
{
if (IpVarList->IpVar[i].VarRc)
{
/*

DMSAPI reports an error in Read Operation */
} else
if (IpVarList->lpVar[i]. VarStatus != DMS_VAR_NOT_VALID)
{
/* Read was successful :
Datatype in lpVarList->IpVar[i]. VarType,
Value in IpVarList->IpVar[i]. VarValue

166

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c”

*/

break;
default:

printf ("unknown case\n");

return(0);

int wmain (int argc, TCHAR ** argv) {

DMS_HANDLE nVLHandle=-1;
DMS_RC Ic;

DMS_RES_NO OwnStationNo=37;
DMS_RES_NO StationNo=5;

DMS_CONN_HANDLE ConnHandle;
DMS_REC_VARLIST_DATA *IpRecVar;

DMS_INT16 Index;

DMS_INT16 OwnCallBackld=1;
DMS_INT16 i

char szAscStation[20];

char szAscVarName[20];
BOOL fUnicodeError=FALSE;

Referenz-Handbuch — DMS / API 167

Zyklisches Lesen "acycle.c” Anhang B Applikationsschnittstelle Freelance Beispiele

DMS_OBJ_PATH Path;
DMS_VAR_TYPE Dtype; /* DigiTyp */
DMS_WORD32 Access;

/* session start */

if (arge<3) {
printf ("Calling Convention: dmsacyc <OwnStationNo> <VarName> <Var-
Name>");

return(0);

}
wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);

WideCharToMultiByte(CP_ACP ,0,argv[1],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);

sscanf(szAscStation,"%d",&OwnStationNo);

if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
goto _LBL_FNC_XIT;

/* register CallBack - Funktion */

rc=DMSAPI_RegisterCItCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf("Error in Register Proc \n");

goto _LBL_FNC_XIT;

168 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c”

}
WaitForConfig(OwnStationNo);

/* Connecting to Station */

WideCharToMultiByte(CP_ACP ,0,argv[2],-1,
(LPSTR)szAscVarName,20,NULL,&fUnicodeError);

rc=DMSAPI_GetVarInfoByName(OwnStationNo,szAscVarName,
&StationNo,&Path,&Dtype,& Access);

if (rc) {
printf("not found %s \n",szAscVarName);
goto _LBL_FNC_XIT;

}

if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf("Error in Connect %081x\n" rc);

goto _LBL_FNC_XIT;

while (!StationConnect) {
Sleep(100);
if (kbhit()) goto _LBL._FNC_XIT;
}
printf ("Station connected\n");

/* create VariablenList */

Referenz-Handbuch — DMS / API 169

Zyklisches Lesen "acycle.c” Anhang B Applikationsschnittstelle Freelance Beispiele

if ((rc=DMSAPI_VLCreate (ConnHandle, DMSAPI_VL_CYCLE_READ,&nVL-
Handle))!=E_DMSAPI_OK) {

printf("Error in VLCreate %Ix\n",rc);
goto _LBL_FNC_XIT;

/* build VariableList */

for (i=2;i<argc;i++) {
WideCharToMultiByte(CP_ACP ,0,argvl[i],-1,
(LPSTR)szAscVarName,20,NULL,&fUnicodeError);
rc=DMSAPI_GetVarInfoByName(OwnStationNo,szAscVarName,
&StationNo,&Path,&Dtype,&Access);
if (rc) printf("Var not found in config %s \n",szAscVarName);
else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",
szAscVarName,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,
(int)Dtype,(int)Access);
if (rc=DMSAPI_VLAddReadVarByName (nVLHandle,szAscVarName,
&lpRecVar,&Index))!=E_ DMSAPI_OK) {
printf("Error in AddVar :%Ix\n",rc);
goto _LBL_FNC_XIT;

for (;;) {

/* read cyclic */

170 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c”

if (rc=DMSAPI_VLReadCycle(nVLHandle,1000,0wnCallBacklId,
DMSAPI_STD_ASYNCQ))!=E_DMSAPI_OK) {
printf("Error in VLRead %Ix\n",rc);
goto _LBL_FNC_XIT;

printf ("Readcycle\n");

/* check response */

while (!ReadFlag) {
Sleep(1);
if (kbhit()) goto _LBL_FNC_XIT;

if ((rc=DMSAPI_VLStopCycle(nVLHandle))!=E_DMSAPI_OK) {
printf("Fehler beim VLStop %Ix\n",rc);
goto _LLBL._FNC_XIT;
}
ReadFlag=0;
}

_LBL_FNC_XIT:

/* Disconnect */

Sleep(1000);

Referenz-Handbuch — DMS / API 171

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

if ((rc=DMSAPI_VLDelete(nVLHandle))!=E_DMSAPI_OK)
printf("Error in VLDelete %Ix\n",rc);

DMSAPI_Disconnect(ConnHandle);

while (StationConnect) {

Sleep(100);

if (kbhit()) break;

/* the end */

DMSAPI_Exit(OwnStationNo);
return(0);

}

B.2.3 Einfaches Schreiben "awrite.c"
/*
*/

#if 0
FILENAME awrite.c
#endif
#if O
HISTORY

1 deu create

172 Referenz-Handbuch — DMS / API

n

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c

HISTORY_END
#endif
/ £

Demo program for DMSAPI-communication (Windows) :

Calling convention : dmsawrt <OwnStationNo>

Init of DMSAPI

Register of a Callback-Function

— look for the first float variable in the config.

Connect to the Station with this variable

In a loop the Variable will be written
*/

#include <windows.h>

#include "cgen.h"
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>
#include <time.h>
#include "digityp.hg"
#include "dmstyp.h"
#include "dmsapi.h"

#include "dmserr.h"

Referenz-Handbuch — DMS / API 173

Einfaches Schreiben "awrite.c”

Anhang B Applikationsschnittstelle Freelance Beispiele

int
int
int
int
int

int

StationConnect = 0;
WriteFlag = 0;
ListNo = 0;
RespNo = 0;
success=0;

failed=0;

[*

DMSAPI-Callback

DMS_RC

Rec)

*/

OwnDMSAPICallback(DMS_REC_DATA * IpDms-

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/

DMS_REC_VARLIST_DATA *lpVarList;
DMS_INTI6 i;

switch

{

(IpDmsRec->SrvType)

case DMS_REC_CONN_TYPE:

174

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

/* DMSAPI calls Callback everytime a station connects or disconnects */

{

if (lpDmsRec->DmsRc)
StationConnect = 1;
else
{
StationConnect = 0;
}
break;

case DMS_REC_VARLIST_TYPE:

/* case value for a received variable value or a write conf. */
IpVarList = IpDmsRec->SrvBuff.lpVarList;
for (i = 0; i < IpVarList->MaxVarNo; i++)

if (IpVarList->lpVar[i]. VarStatus != DMS_VAR_DELETED)

{

if (IpVarList->lpVar[i].VarRc)

{

/* error occured writing the value ! */

failed++;

{

else

/* write was successful*/

CEeSS++,

suc-

Referenz-Handbuch — DMS / API 175

Einfaches Schreiben "awrite.c”

Anhang B Applikationsschnittstelle Freelance Beispiele

}
WriteFlag = 1;

ListNo++;

RespNo++;

break;
default:

printf("unexpected Case\n");
}
return (0);

/%

Main-Programm

*/

int

wmain(int argc, TCHAR ** argv)

{

DMS_HANDLE nVLHandle =-1;
DMS_RC IC;

DMS_RES_NO OwnStationNo = 123;
DMS_RES NO StationNo = 5;

int

i, TempStationNo;

DMS_CONN_HANDLE ConnHandle = -1;
DMS_REC_VARLIST_DATA *IpRecVar;
DMS_INT16 Index;

176

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

/*

DMS_INT16 OwnCallBackld = 1;
DMS_VALUE DmsValue;
DMS_FLOAT32 AddConst;
DMS_UINT32 NoOfVar;
DMS_NAME_VAR_DATA Varlnfo;
DMS_CHAR Name[50];
DMS_CHAR szAscStation[50];

BOOL fUnicodeError = FALSE;
DMS_INT16 j, ActVarNo, NoAnswer = 0;
DWORD dwOldTicks = GetTickCount();

If station no.

1s handed over, it will be converted

*/

onNo>");

if (argc <=1)
{

printf("Calling Convention: dmsawrt <iOwnStati-

return (0);
}
if (argc > 1)
{
WideCharToMultiByte(CP_ACP, 0, argv[1], -1,
(LPSTR) szAscStation, 10, NULL,

&fUnicodeError);

Referenz-Handbuch — DMS / API 177

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

sscanf(szAscStation, "%d", & TempStationNo);
OwnStationNo = (DMS_RES_NO) TempStationNo;

/*
DMSAPI-Init
*/
/* init with standard GWY */
if ((rc = DMSAPI_Init(OwnStationNo, DMS_OS_GWY, 1, TRUE))
'=E_DMSAPI_OK)
{ printf("Error DMSAPI_Init %081x \n", rc);
goto _LLBL._FNC_XIT;
}
/*
Setting CallBack - Function
*/
rc = DMSAPI_RegisterCItCB(OwnCallBackld, OwnDMSAPICall-
back);
if (rc)
{
printf("Error DMSAPI_Register Proc %081x \n", rc);
goto _L.BL._FNC_XIT;
}
/*

Read first variable of datatype Float

178 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

*/

rc = DMSAPI_GetFirstVarInfo(OwnStationNo, &NoOfVar, 50,
Name, & Varlnfo);

if (rc)
{

printf("No Config for GWY-Id %d : Configure from
Freelance Engineering and press any key to continue\n",

OwnStationNo);
for (;;)
{
Sleep(100);
if (kbhit())
{
getch();
break;
}
}

rc = DMSAPI_GetFirstVarInfo(OwnStationNo,
&NoOfVar, 50, Name, & VarInfo);

if (rc)
{
printf("Error DMSAPI_GetFirstVarIlnfo %08Ix \n", rc);
goto _LBL_FNC_XIT;

Referenz-Handbuch — DMS / API 179

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

for (3)
{
if (VarInfo.VarType == DIGI_FLOAT?32)
break;
rc = DMSAPI_GetNextVarInfo(OwnStationNo, 50, Name, & VarInfo);

if (rc)
{

printf("Error DMSAPI_GetNextVa-
rInfo %08Ix \n", rc);

goto _LBL_FNC_XIT;

/>{<
Connect to corresponding station
*/
StationConnect = 0;
if ((rc = DMSAPI_ConnectByNo(OwnStationNo, VarInfo.ResNo,
&ConnHandle,

DMSAPI_STD_A-
SYNC)) !=E_DMSAPI_OK)

{
printf("Error DMSAPI_ConnectByNo %081x\n");
goto _LBL_FNC_XIT;

180 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

}

while (!StationConnect)
{
Sleep(100);
if (kbhit())
goto _LBL_FNC_XIT;

/*
Creating VariableList
*/

if ((rc = DMSAPI_VLCreate(ConnHandle, DMSAPI_VL_SING-
LE_WRITE, &nVLHandle)) != E_DMSAPI_OK)

{
printf("Fehler beim VLCreate %Ix\n", rc);

goto _LBL_FNC_XIT;

[*

Adding Variable to List
we are filling the List with 280 variables(always the same)

*/

DmsValue.Float32 = (DMS_FLOAT32) 0.0;
AddConst = (DMS_FLOAT32) 1.0;

Referenz-Handbuch — DMS / API 181

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

for (ActVarNo = 0; ActVarNo < 280; ActVarNo++)
{
if ((rc = DMSAPI_VLAddWriteVarByName(nVLHandle, Name, DIGI_FLOAT32,
&DmsValue, &IpRecVar, &Index)) != E_DMSAPI_OK)

printf("Error DMSAPI_VLAddWrite-
VarByName: %lx\n", rc);

break;

}
ActVarNo--;

printf("Anzahl der Var %d\n", ActVarNo);

/>{<
Loop: writes 1.Var from 0.0 to 1000.0, then from
1000.0 t0 0.0
*/
for (5;)

{
if (DmsValue.Float32 == (DMS_FLOAT?32) 0.0)

AddConst = (DMS_FLOAT32) 1.0;
else
if (DmsValue.Float32 == (DMS_FLOAT?32) 1000.0)
AddConst = (DMS_FLOAT32) - 1.0;

182 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele

Einfaches Schreiben "awrite.c"

[*

Write VariableList

*/

rc = DMSAPI_VLWrite(nVLHandle, OwnCallBackld, DMSAPI_STD_ASYNC);

if (rc)
{

Handle)) != E_DMSAPI_OK)

printf("Error in VLWrite %081x\n", rc);
if ((rc = DMSAPI_VLClear(nVL-

{

printf("Error VLClear %Ilx\n", rc);

goto _LBL_FNC_XIT;

}
}
/*
Wait for Answer
*/
else
{
1=0;

while (!WriteFlag)
{

1++;

if (kbhit())
goto _LBL_FNC_XIT;

Referenz-Handbuch — DMS / API

183

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

if (i > 10000)

{

NoAns-
Wer++;

if ((rc = DMSAPI_VLDelete(nVLHandle)) != E_ DMSAPI_OK)

printf("Error VLDelete %lx\n", rc);
if ((rc = DMSAPI_VLCreate(ConnHandle,

DMSA-
PI_VL_SINGLE_WRITE, &nVLHandle)) != E_ DMSAPI_OK)

printf("Fehler beim VLCreate %Ix\n", rc);
goto _LBL_FNC_XIT;

/*

Adding Variable to List
*/

DmsVaieHo-
at32 = (DMS_FLOAT32) 0.0;

AddConst = (DMS_FLOAT32) 1.0;

for (j = 0; j < ActVarNo; j++)

{
if ((rc = DMSAPI_VLAddWriteVarByName(nVLHandle, Name, DIGI_FLOAT32,

184

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

&Dms-
Value, &lpRecVar, &Index)) != E_DMSAPI_OK)

{

printf("Error DMSAPI_VLAddWriteVarByName:%Ix\n", rc);
goto _LBL_FNC_XIT;

break;

}

printf("Received WriteRequests: %d LostWriteNo %d
write failed %d VarsPerSec %d\r",

RespNo, NoAnswer,failed, (RespNo * ActVarNo *
1000) / (GetTickCount() - dwOldTicks));

RespNo = 0;
dwOldTicks = GetTickCount();
WriteFlag = 0;

/>{<
Change Value for next Write

*/
DmsValue.Float32 += AddConst;

for (j = 0; j < ActVarNo; j++)
{

Referenz-Handbuch — DMS / API 185

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

rc = DMSAPI_VLChangeValue(nVL-
Handle, j,

DIGI_FLO-
AT32, &DmsValue, &IpRecVar);

if (rc)

printf("Error DMSAPI_-
VLChangeValue Index% d %08Ix\n", j, rc);

goto _LBL_FNC_XIT;

_LBL_FNC_XIT:

/*

Deleting VariableList
*/

if ((rc = DMSAPI_VLDelete(nVLHandle)) != E_DMSAPI_OK)
printf("Error VLDelete %lx\n", rc);

/*

Disconnecting Station

*/

186 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

Sleep(2000);
if (ConnHandle !=-1)
DMSAPI_Disconnect(ConnHandle);

while (StationConnect)
{
Sleep(100);
if (kbhit())
break;

/*
DmsApi-Exit

*/
DMSAPI_Exit(OwnStationNo);
printf("Exit done\n");

return (0);

B.3 Alarmdienste "aalarm.c"
/*
*/
#f 0
FILENAME aalarm.c
HISTORY

1 deu create

Referenz-Handbuch — DMS / API 187

Alarmdienste "aalarm.c" Anhang B Applikationsschnittstelle Freelance Beispiele

HISTORY_END
#endif
/*
DMSAPI-Demo showing the use of the message function calls
Init DMSAPI
— Register a Callback-Function
— Connect a Station
— callto GetAlarmSummary
— receive the messages
— AutoAcknowledge of all non acknowledged messages

*/

#include "cgen.h"
#include <windows.h>
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <conio.h>
#include <time.h>
#include "dmstyp.h"
#include "dmsapi.h"

#include "dmserr.h"

#define ESCAPE goto _LBL_FNC_XIT;

188 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

DMS_INT16 OwnCallBackld=1;

/*
If there is no valid config in c:\digimat\gwy\resxxx
this function waits for config from Freelance Engineering
you can change the ProjectDir by SetProjectDir
before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {
DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ReslInfo;

if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,
&ReslInfo)) {

printf ("No Config: Configure from Freelance Engineering and press any key to
continue\n");

for (5) {
Sleep(100);
if (kbhit()) {
getch();
break;

Referenz-Handbuch — DMS / API 189

Alarmdienste "aalarm.c" Anhang B Applikationsschnittstelle Freelance Beispiele

}
DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI
Attention : this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code !
*/

DMS_RC rcloc;

DMS_REC_ACKALARM AckAL[DMSAPI_MAX_ALARM_IN_ACKAL];

DMS_REC_ALARMLIST_DATA *lpRecAL;

int1i;

DMS_INT16 Ackno=0;

DMS_HANDLE DmsHandle;

DMSAPI_DumpRecData(lpDmsRec);

switch (IpDmsRec->SrvType) {

case DMS_REC_CONN_TYPE:
if (lpDmsRec->DmsRc) {
if (IpDmsRec->SrvBuff.lpConn->ulConnFlag != DMS_RES_CLIENT) {
/* every time a station connects, a getAlarmsummary should be called */
rcloc=DMSAPI_GetAlarmSummary(IlpDmsRec->ConnHandle,
OwnCallBackld, DMSAPI_STD_ASYNC);
if (rcloc) {
printf("GetAlarmSummary %08Ix\n",rcloc);

190 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

}
break;

case DMS_REC_ALARMLIST_TYPE:
/* this case is for the messages */
IpRecAL=IpDmsRec->SrvBuff.lpAlarmList;
for (i=0;i<lpRecAL->ActAlarmNo;i++) {

if (IpRecAL->IpAlarm[i].CurrAlarmStatus==DMS_ALARM_INACT _I-
NACTNACKED ||

IpRecAL->IpAlarm[i].CurrAlarmStatus==DMS_ALARM_ACT_ACT-
NACKED Il

IpRecAL->IpAlarml[i].CurrAlarmStatus==DMS_ALARM_INACT_AC-
TNACKED) {

AckAL[Ackno].Objectld=lpRecAL->IpAlarm[i].Objectld;
AckAL[Ackno].AlarmIndex=IpRecAL->IpAlarm[i].AlarmIndex;
AckAL[Ackno].AlarmStatus=IpRecAL->IpAlarm[i].CurrAlarmStatus;
AckAL[Ackno].rc=E_DMSAPI_OK;

Ackno++;

}
if (Ackno) {
/* there are some messages to acknowledge */

rcloc=DMSAPI_AckAlarmByList(IlpDmsRec->ConnHandle,&Dms-
Handle,

OwnCallBackId,Ackno,AckAL,DMSAPI_STD_ASYNC);
if (rcloc) printf ("Error in Alarmacknowledge %081x\n",rcloc);

else printf ("Acknowledge %d\n",Ackno);

Referenz-Handbuch — DMS / API 191

Alarmdienste "aalarm.c" Anhang B Applikationsschnittstelle Freelance Beispiele

break;
default:

break;

return(0);
}
int main (int argc, char * * argv) {
DMS_RC rc;
DMS_RES_NO OwnStationNo=88;
DMS_RES_NO StationNo=5;
DMS_CONN_HANDLE ConnHandle;
if (argc!=3) {
printf ("Calling Convention: dmsala <OwnStationNo> <MsrStationNo>");

return(0);

sscanf(argv([1],"%d",&OwnStationNo);
sscanf(argv[2],"%d",&StationNo);
/* DMSAPI-Init */

if ((re=DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE))!=E_DMSA-
PI_OK) {

printf("Error DMSAPI_Init %081x \n",rc);
goto _LBL_FNC_XIT;

192 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

rc=DMSAPI_RegisterCltCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf("Error DMSAPI_Register Proc %081x \n",rc);
goto _LBL_FNC_XIT;

WaitForConfig(OwnStationNo);
if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf("Error DMSAPI_ConnectByNo %081x\n");
goto _LBL_FNC_XIT;
}
for (5) {
/* nothing to do here, it all happens in the callback function */
Sleep(100);
if (kbhit()) {
getch();
goto _LBL_FNC_XIT;

}
_LBL_FNC_XIT:

/* Disconnect */
rc=DMSAPI_RegisterCltCB(OwnCallBackld,NULL);
DMSAPI_Disconnect(ConnHandle);

Sleep(1000);

Referenz-Handbuch — DMS / API 193

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

/* DMS_Ende */
DMSAPI_Exit(OwnStationNo);
printf("Exit erreicht\n");

return(0);

B.4 Namensverwaltung "name.c"
/*
*/
#if 0
Projekt: Freelance
FILENAME name.c $
COMMENT
DMSAPI - Demo showing the use of the name management
COMMENT_END
VERSION $Revision: 1.0 $ (0)
HISTORY
HISTORY_END
/* $Log: name.c_v $
*/
#endif
/%
/*
DMSAPI - Demo showing the use of the name management
— Init of DMSAPI

— register a Callback-Function

194 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

— Output of all informations the name management can give
— conversion routines for the variable names

*/

#include <windows.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <malloc.h>

#include <conio.h>

#include <time.h>

int StationConnect=0;

/*

DMS-API-Callback
*/

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread
which has a higher priority than the main thread

you have to protect your data and code !
*/

Referenz-Handbuch — DMS / API 195

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

DMSAPI_DumpRecData(lpDmsRec);
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
if (!lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;
break;
default:

printf ("unknown case\n");

return(0);

/*

If there is no valid config in c:\digimat\gwy\resxxx

this function waits for config from Freelance Engineering
you can change the ProjectDir by SetProjectDir

before calling DMSAPI_Init

*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];
DMS_UINT32 NoOfRes;
DMS_NAME_RESOURCE_DATA ReslInfo;

196 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

if (DMSAPI_GetFirstResourcelnfo(OwnResNo,&NoOfRes,10,Resname,

&ResInfo)) {

printf ("No Config: Configure from Freelance Engineering and press any key to

continue\n");
for (5) {
Sleep(100);
if (kbhit()) {
getch();
break;

/*

main-Programm

*/

int main (int argc, char * * argv) {

DMS_RC IC;

DMS_RES_NO StationNo=1;
DMS_RES_NO OwnStationNo=19;
DMS_VAR_TYPE Dtype; /* DigiTyp */
DMS_WORD?32 Access;
DMS_UINT32 j,1,NoOfVar;
DMS_UINT32 NoOfCmp;

Referenz-Handbuch — DMS / API

197

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

DMS_CHAR Name[50] ;
DMS_CHAR CmpName[50] ;
DMS_NAME_RESOURCE_DATA StatInfo;
DMS_NAME_VAR_DATA Varlnfo;
DMS_NAME_TAG_DATA Taglnfo;
DMS_NAME_OBJ_DATA Objlnfo;

DMS_INT16 OwnCallBacklId=1;
DMS_OBJ_PATH Path;
/ *
check para

*/
if (arge>1) {
sscanf(argv[1],"%d",&OwnStationNo);

else

{

printf("Calling Convention: dmsnam <iOwnStationNo> \n\n");

return (0);
}
/*
start a session
*/
rc=DMSAPI_Init(OwnStationNo,DMS_OS_MSR,1,TRUE);
if (rc) {

printf("Error in Init %x\n",rc);

goto _LBL_FNC_XIT;

198 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

}
/*
Set CallBack function
*/
rc=DMSAPI_RegisterCltCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf("Error in Register %x \n",rc);
goto _L.BL._FNC_XIT;
}
WaitForConfig(OwnStationNo);
/*
get the info about the configured stations
*/

printf("Stations:\n");

rc=DMSAPI_GetFirstResourceInfo(OwnStationNo,&NoOfVar,50,Name,& Sta-
tInfo);

if (Irc) {
for (i=0;i<NoOfVar-1;i++) {
printf("%s\n",Name);
rc=DMSAPI_GetNextResourceInfo(OwnStationNo,50,Name,&StatInfo);
if (rc) printf ("Error %081x\n",rc);
}
printf("%s\n" ,Name);

Referenz-Handbuch — DMS / API 199

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

else printf ("Error %081x\n",rc);

/*

get the info about the configured variables

*/
printf(" Variables:\n");
rc=DMSAPI_GetFirstVarInfo(OwnStationNo,&NoOfVar,50,Name,& VarInfo);
if ('rc) {
for (i=0;i<NoOfVar-1;i++) {
printf("%s/DigVal 3 0.22\n",Name,(int) VarInfo.OPath.ObjNo,
(int)VarInfo.OPath.CmpNo);
rc=DMSAPI_GetNextVarlnfo(OwnStationNo,50,Name,& Varlnfo);
if (rc) printf ("Error %081x\n",rc);
}
printf("%s\n",Name,(int) VarInfo.OPath.ObjNo,
(int)VarInfo.OPath.CmpNo);
}
else printf ("Error %081x\n",rc);
/*

get the info about the configured tags
for every found Tag : get info about the tag (all pins and parameter)

*/

printf("Tags:\n");
rc=DMSAPI_GetFirstTaglnfo(OwnStationNo,&NoOfVar,50,Name,&Taglnfo);
if ('re) {

for (i=0;i<NoOfVar;i++) {

200 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

printf ("Tag %s : %d\n",Name,(int) TagInfo.ObjClass);
rc=DMSAPI_GetFirstCmpOfObjClass(OwnStationNo,TagInfo.ObjClass,
&NoOfCmp,50,CmpName,&Objlnfo);
if (Irc) {
for (j=0;j<NoOfCmp-1;j++) {
if (Irc) {
printf("%s/%s\n" ,Name,CmpName);
}
else printf ("- Error ");

rc=DMSAPI_GetNextCmpOfObjClass(OwnStati-
onNo, TagInfo.ObjClass,

50,CmpName,&Objlnfo);
}
if (Irc) {
/* if (ObjInfo.nRWFlag)*/
printf("%s/%s\n" ,Name,CmpName);
}
else printf ("- Error \n");
}
else

printf(" No components %081x\n",rc);

if (i<NoOfVar-1) {
rc=DMSAPI_GetNextTaglnfo(OwnStationNo,50,Name,&TagInfo);
if (rc) printf ("Error %081x\n",rc);

Referenz-Handbuch — DMS / API 201

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

}
else printf ("Error %08Ix\n",rc);

/*
now showing the conversion routine DMSAPI_GetVarInfoByName

*/

printf("now showing the conversion routine DMSAPI_GetVarInfoByName\n");
for (53) {

printf("give a name of a Variable (quit with 'q")\n");

scanf("%s",Name);

if (Name[0]=='q' && strlen(Name)==1) goto _LBL._FNC_XIT;

else {

rc=DMSAPI_GetVarInfoByName(OwnStationNo,Name, & Stati-
onNo,&Path,&Dtype,

&Access);
if (rc) printf("variable not found \n");
else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",
Name,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,
(int)Dtype,(int)Access);

}

}
_LBL_FNC_XIT:
/ *k

the end

*/
DMSAPI_Exit(OwnStationNo);

202 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Setzen der Zeit "settime.c"

return (0);

B.5 Setzen der Zeit "settime.c"
/%
*/
#if 0
FILENAME settime.c
HISTORY
1 deu create
HISTORY_END
#endif

/* DMSAPI-demo showing the use of the DMSAPI_SetRemoteTimeByString
call

— Calling convention: dmstime dd.mm.yyyy hh:mm:ss
— Init
— DMSAPI_SetRemoteTimeByString
— Exit DMS

*/

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

Referenz-Handbuch — DMS / API 203

Setzen der Zeit "settime.c" Anhang B Applikationsschnittstelle Freelance Beispiele

#include <time.h>
#include "dmstyp.h"
#include "dmsapi.h"
#include "dmserr.h"
int main (int argc, char ** argv) {
DMS_RES_NO OwnStationNo=187;
char Time[100];
DMS_RC rc;
if (arge<3) {
printf ("Calling Convention: dmstime dd.mm.yyyy hh:mm:ss
on a system with german local settings\n");
printf ("Calling Convention: dmstime mm/dd/yyyy hh:mm:ss
on a system with english local settings\n");
return(0);
}
if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
goto _LBL_FNC_XIT;
sprintf(Time," %s %s", argv[1],argv[2]);

/* the DMSAPI will only accept strings which have the correct syntax correspon-
ding to the

settings in your Registry (--> control panel -> international)
*/
if ((rc =DMSAPI_SetSystemTimeByString(Time)) != E_DMSAPI_OK)
printf ("Error in SetSystemTime %x : \n",rc);
_LBL_FNC_XIT:
DMSAPI_Exit(OwnStationNo);

204

Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele =~ Redundanzwechsel Primary - Secondary

return(0);

B.6 Redundanzwechsel Primary - Secondary "toggle.c"
i
*/
#if O
FILENAME toggle

HISTORY

1 deu create
HISTORY_END
#endif
/*

DMSAPI-demo showing the use of the ReadCyclic call
— Init of DMSAPI
— Register of a Callback-Function
— Connect to a Station
— issue a RestartResource with Toggle _cmd
— sleep given time
— toggle again in loop

*/

#include <windows.h>
#include <dos.h>
#include <stdlib.h>
#include <stdio.h>

#include <string.h>

Referenz-Handbuch — DMS / API 205

Redundanzwechsel Primary - Secondary "toggle.c" Anhang B Applikationsschnittstelle Freelance

#include <ctype.h>
#include <conio.h>
#include <time.h>

#include "dmstyp.h"
#include "dmsapi.h"
#include "dmserr.h"

int StationConnect=0;

int PIRecv=0;

#define MAX_DMS_VL 10
/%

If there is no valid config in c:\digimat\gwy\resxxx

this function waits for config from Freelance Engineering
you can change the ProjectDir by SetProjectDir

before calling DMSAPI_Init

*/
void WaitForConfig(DMS_RES_NO OwnResNo) {
DMS_CHAR Resname[10];

DMS_UINT32 NoOfRes;

DMS_NAME_RESOURCE_DATA Reslnfo;
if (DMSAPI_GetFirstResourcelnfo(OwnResNo,&NoOfRes,10,Resname,
&ResInfo)) {

printf ("No Config: Configure from Freelance Engineering and press any key to
continue\n");

for (5;) {
Sleep(100);
if (kbhit()) {

206 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele =~ Redundanzwechsel Primary - Secondary

getch();
break;

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *IpDmsRec) {
/* Callback-function called by DMSAPI
Attention : this function is called in the context of a communication thread
which has a higher priority than the main thread
you have to protect your data and code !
*/
printf("OwnCallback\n");
DMSAPI_DumpRecData(lpDmsRec);
switch (IpDmsRec->SrvType) {
case DMS_REC_CONN_TYPE:
if (lpDmsRec->DmsRc)
StationConnect=1;
else
StationConnect=0;
break;
default:
printf ("Was ist das?\n");
break;

Referenz-Handbuch — DMS / API 207

Redundanzwechsel Primary - Secondary "toggle.c" Anhang B Applikationsschnittstelle Freelance

return(0);

}
int wmain (int argc, TCHAR ** argv) {

DMS_RC rc;

DMS_RES_NO OwnStationNo=37;
DMS_RES_NO StationNo=5;
DMS_CONN_HANDLE ConnHandle;
DMS_INT16 OwnCallBacklId=1;
DMS_INT16 i;

char szAscStation[20];

BOOL fUnicodeError=FALSE;
int TimeCount,PISnd=0;

/* session start*/
if (arge<4) {
printf (

"Calling Convention: dmsatog <OwnStationNo> <StationNo> <ToggleTime
Sec>");

return(0);

}

wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);

WideCharToMultiByte(CP_ACP ,0,argv[1],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);

sscanf(szAscStation,"%d",&OwnStationNo);

WideCharToMultiByte(CP_ACP ,0,argv[2],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);

sscanf(szAscStation," %d",&StationNo);

208 Referenz-Handbuch — DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele =~ Redundanzwechsel Primary - Secondary

WideCharToMultiByte(CP_ACP ,0,argv[3],-1,
(LPSTR)szAscStation,10,NULL,&fUnicodeError);
sscanf(szAscStation," %d",&TimeCount);
if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
goto _LLBL._FNC_XIT;
/* register CallBack - Function */
rc=DMSAPI_RegisterCltCB(OwnCallBackld,OwnDMSAPICallback);
if (rc) {
printf("Error in Register Proc \n");
goto _LLBL._FNC_XIT;
}
/* check if config available */
(OwnStationNo);
/* Connecting to Station */
if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,
&ConnHandle, DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {
printf("Error in Connect %081x\n" rc);
goto _LBL_FNC_XIT;
}
(!StationConnect) {
Sleep(100);
if (kbhit()) goto _LBL_FNC_XIT;
}
printf ("Station connected\n");
for (5;) {

printf ("issue toggle command to station %d\n",StationNo);

Referenz-Handbuch — DMS / API 209

Redundanzwechsel Primary - Secondary "toggle.c" Anhang B Applikationsschnittstelle Freelance

/* issue a Red-Toggle on the process station */

DMSAPI_RestartResource(ConnHandle, DMS_RESTART_TOG-
GLE);

for (i=0;i<TimeCount;i++) {
Sleep(1000);
if (kbhit()) goto _LBL._FNC_XIT;

}
_LBL_FNC_XIT:

/* Disconnect */
Sleep(1000);
DMSAPI_Disconnect(ConnHandle);
while (StationConnect) {

Sleep(100);
if (kbhit()) break;

}

/* the end */

DMSAPI_Exit(OwnStationNo);

return(0);

210 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

Anhang C DMS-API-Dateien

C.1 dmstyp.h
/*
COMMENT

st sfe sk she she she sk ske sie st ste st sfe sfe sfe sfe she she she sk sie st s st sie st sfe sfe she she she she sfe sk st e sie st ste sfe s she sk she she sk sk siesiesie st ste st sfe sk sk sk skl koo
*

DMS-API
Digimatik Message Specification Application Interface
Kommunication Protocol for Freelance Process Level

Type and other Definitions

st sfe sk she she sk she ske sie e st st sfe sfe sfe sfe she she she she sk s sk sie st sfe sfe sfe she she she sk sfe sk sk s sie st ste sfe sfe she she she she sk sk st st ste st sie sk skl koo
*

COMMENT_END
FILENAME $Workfile: dmstyp.h $
VERSION $Revision: 1.7.1.1 $ (0)

HISTORY
HISTORY_END

[/t st ste st st s ke ke sheste st s s s ke shesteste st s s ke shesfesteste s s s ke sfesfeste st sk sfesfestesteste stk ket stestestesteolokoskoskostokosiokokoskokololoiok
stttk /

$Log: dmstyp.h_v $

Referenz-Handbuch — DMS / API 211

Anhang C DMS-API-Dateien

sfe sfe sfe sfe sfe she she she sfe s e sie sfe sfe sfe sfe sfe sfe she she sfe sk sk sie sie sfe sfe sfe sfe sfe she she sfe she sk st e sie sfe sfe sfe sfe sfe she she sk sfe st stesie ste ste sfe sfe sfe sfe sl sheoskeoskeokeotoioiekekok
deskestestokokok /

#if __cplusplus
extern "C" {

#endif

#ifndef _DMSAPI_TYP_H
#define _DMSAPI_TYP_H
IE

FREELANCE Basic-Datatypes
*/

typedef unsigned short DMS_WORDI16;
typedef unsigned long DMS_WORD32;
typedef float DMS_FLOAT32;
typedef signed char DMS_INTS;

typedef short DMS_INT16;

typedef long DMS_INT32;

typedef DMS_WORD16 DMS_UINT16;
typedef DMS_WORD32 DMS_UINT32;
typedef char DMS_CHAR;

typedef unsigned char DMS_BYTE;
typedef unsigned char DMS_BOOLEAN;

typedef DMS_UINT16 DMS_OBINO;
typedef DMS_UINT16 DMS_CMPNO;
typedef DMS_INT32 DMS_TIME;

212 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

typedef struct

{
DMS_WORD32 dwMSecondsHigh; /* ms since 1.1.1970 0.00 Uhr GMT (high)

*/
DMS_WORD32 dwMSecondsLow; /* ms since 1.1.1970 0.00 Uhr GMT (low)
*/
} DMS_DT;
/*
FREELANCE String-Datatypes
*/
#define DMS_STRING_ALGN 2 /* 2 Bytes Allignement at the end of each
String */

/* F*%F DMS_STRINGS - Typ *#%*% */
#define DMS_STRING8_LENGTH 8§
typedef struct {
DMS_WORD16 wMaxStringlen; /* max Len of String */

DMS_CHAR Content[DMS_STRING8_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRINGS;
typedef DMS_STRINGS * LPDMS_STRINGS;
#define DMS_STRING16_LENGTH 16

typedef struct {
DMS_WORD16 wMaxStringlen; /* max Len of String */

DMS_CHAR Content[DMS_STRING16_LENGTH+DMS_STRING_ALGN];
/* Content */

Referenz-Handbuch — DMS / API 213

Anhang C DMS-API-Dateien

} DMS_STRING6;
typedef DMS_STRING16 * LPDMS_STRINGI6;
[w3 STRING32 - Typ #5 %/

#define DMS_STRING32_LENGTH 32
typedef struct {
DMS_WORDI16 wMaxStringl.en; /* max Len of String */

DMS_CHAR ContentDMS_STRING32_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRING32;
typedef DMS_STRING32 * LPDMS_STRING32;

/% # DMS_STRINGG64 - Typ #5555 %/

#define DMS_STRING64_LENGTH 64

typedef struct {

DMS_WORDI16 wMaxStringl.en; /* max Len of String */

DMS_CHAR Content[DMS_STRING64_LENGTH+DMS_STRING_ALGN];
/* content */

} DMS_STRING64;

typedef DMS_STRING64 * DMS_LPSTRING64;

/¥ ##%% DMS_STRING128 - Typ **#*%* */

214

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

#define DMS_STRING128_LENGTH 128

typedef struct {
DMS_WORD16 wMaxStringlen; /* max Len of String */

DMS_CHAR Cont-
ent[DMS_STRING128_LENGTH+DMS_STRING_ALGN]; /* Content */

} DMS_STRINGI28;

typedef DMS_STRING128 * LPDMS_STRING128;

[*F#EF DMS_STRING256 - Typ **%%%* #/

#define DMS_STRING256_LENGTH 256
typedef struct {
DMS_WORDI16 wMaxStringlen; /* max Len of String */

DMS_CHAR Cont-
ent[DMS_STRING256_LENGTH+DMS_STRING_ALGN]; /* content */

} DMS_STRING256;
typedef DMS_STRING256 * LPDMS_STRING256;
/%

FREELANCE Datatype-Union
*/

typedef union {
DMS_WORDI16 Word16;
DMS_WORD32 Word32;
DMS_FLOAT32 Float32;

Referenz-Handbuch — DMS / API 215

Anhang C DMS-API-Dateien

DMS_INTS Int8;
DMS_INT16 Intl6;
DMS_INT32 Int32;
DMS_UINT16 Uintl6;
DMS_UINT32 Uint32;
DMS_CHAR Char;
DMS_BOOLEAN Boolean;
DMS_BYTE Byte;
DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;
DMS_TIME DmsTime;
DMS_DT DmsDT;
DMS_STRINGS8 Strings;
DMS_STRING16 String16;
DMS_STRING32 String32;
DMS_STRING64 String64;
DMS_STRINGI128 String128;
DMS_STRING256 String256;

} DMS_VALUE;

maximale StringlL.aengen

*/

#define DMS_MAX_RESNAME_LEN 10
#define DMS_MAX_VARNAME_LEN 40
#define DMS_MAX_TAGNAME_LEN 15

216

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

#define DMS_MAX_COMPNAME_LEN 15

/*

DMS Resource number and type

*/
typedef unsigned short DMS_RES_NO;

typedef unsigned short DMS_RES_TYPE;

/*

DMS variable types

*/
typedef unsigned short DMS_VAR_TYPE;

#define DMS_VAR_TYPE_BOOLEAN 0x01

#define DMS_VAR_TYPE_CHAR 0x02
#define DMS_VAR_TYPE_BYTE 0x03
#define DMS_VAR_TYPE_INT8 0x04
#define DMS_VAR_TYPE_WORD16 0x05
#define DMS_VAR_TYPE_UINT16 0x06
#define DMS_VAR_TYPE_INT16 0x07
#define DMS_VAR_TYPE_WORD32 0x08
#define DMS_VAR_TYPE_UINT32 0x09
#define DMS_VAR_TYPE_INT32 0x0A
#define DMS_VAR_TYPE_FLOAT32 0x0B
#define DMS_VAR_TYPE_TIME 0x0C
#define DMS_VAR_TYPE_DMSTIME 0x0D

Referenz-Handbuch — DMS / API 217

Anhang C DMS-API-Dateien

#define DMS_VAR_TYPE_STRINGS O0xOE /* Strings */
#define DMS_VAR_TYPE_STRING16 0xOF /* Strings */
#define DMS_VAR_TYPE_STRING32 0x10 /* Strings */
#define DMS_VAR_TYPE_STRING64 Ox11 /* Strings */
#define DMS_VAR_TYPE_STRING128 0x12 /* Strings */
#define DMS_VAR_TYPE_STRING256 0x13 /* Strings */
#define DMS_VAR_TYPE_OBIJNO 0x2C

#define DMS_VAR_TYPE_CMPNO 0x2D

[*

DMS var error type

*/
typedef unsigned long DMS_VAR_RC;
/*
DMS error
*/
typedef unsigned long DMS_RC;
/*
DMS ConnectionHandle
*/

218 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

typedef int DMS_CONN_HANDLE;
#define DMSAPI_HANDLE_MIN_NO 0
#define DMSAPI_HANDLE_MAX_NO 150
#define DMSAPI_NO_HANDLE -1

/*
DMS Service Handle

*/
typedef short DMS_HANDLE;
/*

DMS Variable ObjPath
*/

typedef struct {
DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;

} DMS_OBJ_PATH;

/%

DMS - Client Receive Services
*/

#define DMSAPI_SYNCHRON 1

#define DMSAPI_ASYNCHRON 2

#define DMSAPI_WAIT_FOREVER Oxffffffff
#define DMSAPI_NO_TIMEOUT 0

Referenz-Handbuch — DMS / API 219

Anhang C DMS-API-Dateien

#define DMSAPI_STD_ASYNC DMSAPI_ASYNCHRON, DMSAPI_WAIT_FO-
REVER, 0, NULL

typedef enum {

DMS_REC_CONN_TYPE,
DMS_REC_VARLIST_TYPE,
DMS_REC_INFO_REPORT_TYPE,
DMS_REC_ALARMLIST_TYPE,
DMS_REC_ACKALARMLIST_TYPE,
DMS_REC_PROGRAM_INVOCATION_TYPE,
DMS_REC_DOMAIN_TYPE,
DMS_REC_VERSION_TYPE

DMS_REC_SERVICE_TYPE;

Connection management

*/

typedef enum {

DMS_CONN_OK, /* ok.*/

DMS_CONN_ABORT, /* no connection */
DMS_CONN_INVALID_RES_TYPE, /* wrong resource type */
DMS_CONN_INVALID_RES_NO, /* wrong resource number */
DMS_CONN_NO_OS, /* no operation system */
DMS_CONN_SECONDARY, /* remote station is secondary =>

cannot connect */

220

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

DMS_CONN_INVALID_VERSION /* wrong DMS_ Version */
} DMS_CONN_STATUS;

/*

values for nBTRLnk in connect- routines

*/

#define DMS_BTR_TCPIP 1 /* Standard BTR using TCPIP */
#define DMS_BTR_REDLNK 2 /* BTR only for redundant resource */

/*

values for connection flag

*/

#define DMS_RES_PRIMARY 1 /* connection to a primary server */
#define DMS_RES_SECONDARY 2 /* connection to a secondary server */
#define DMS_RES_CLIENT 3 /* connection to a client */

/¥

values for the cpu board type

*/

#define DMS_CPU_UNKNOWN 0 /* .. */
#define DMS_CPU_DCPO02 1 /*CPU_O01, 960CA/CF */
#define DMS_CPU_DCP10 2 /*CPU_02, 960Hx */
#define DMS_CPU_PC 3 /*PC */

Referenz-Handbuch — DMS / API

221

Anhang C DMS-API-Dateien

[*

values for OS_RES_TYPE

*/

#define DMS_OS_DIGIVIS 1
#define DMS_OS_DIGITOOL 2
#define DMS_OS_EPROM 3
#define DMS_OS_MSR 4
#define DMS_OS_DDE_GWY 5
#define DMS_OS_P_GWY 6
#define DMS_OS_GWY 7

typedef struct DMS_REC_CONN_DATA {

DMS_RES_NO OwnResNo; /* Own Resource Id */
DMS_RES_NO ResNo; /* remote resource Id */
DMS_RES_TYPE ResType; /* OS Types */
DMS_CONN_STATUS ConnStatus; /* connection state */
DMS_UINT32 ullPAddr; /* IP-adresse of remote resource */
DMS_UINT32 ulBoardType; /* cpu board type */
DMS_UINT32 ulConnFlag; /* ConnectionFlag */

} DMS_REC_CONN_DATA;

222 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

typedef enum {
DMS_RESTART_WARM,
DMS_RESTART_COLD,
DMS_RESTART_FATAL,
DMS_RESTART_TOGGLE

} DMS_RESTART_REASON;

[*

Variable mangement

*/
#define DMSAPI_VL_SINGLE_READ 1
#define DMSAPI_VL_CYCLE_READ 2
#define DMSAPI_VL_SINGLE_WRITE 3

#define DMSAPI._NOACCESS 0x00

#define DMSAPI_READONLY 0x01
#define DMSAPI_WRITEONLY 0x02
#define DMSAPI_READWRITE 0x03

typedef enum {

DMS_VAR_NOT_VALID,
DMS_VAR_NOT_CHANGED,
DMS_VAR_CHANGED,
DMS_VAR_DELETED

Referenz-Handbuch — DMS / API 223

Anhang C DMS-API-Dateien

} DMS_VAR_STATUS;

typedef struct DMS_REC_VAR {

DMS_VAR_STATUS VarStatus;

DMS_VAR_RC VarRc;

DMS_OBJ_PATH ObjPath;

DMS_CHAR * VarName;

DMS_UINT32 ValueSize; /* Size of ValueBuffer */
DMS_VAR_TYPE VarType;

DMS_VALUE *VarValue;

} DMS_REC_VAR;

typedef struct DMS_REC_VARLIST_DATA {
DMS _HANDLE DmsHandle;
DMS_INT16 ActVarNo; /* actual amount of variables */
DMS_INT16 MaxVarNo; /* max. amount of variables */
DMS_INT16 FreeBytes; /* amount of free bytes in the VL */
DMS_REC_VAR * IpVar;

} DMS_REC_VARLIST_DATA;

/¥

Version data
*/

224 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

typedef struct DMS_VERSION_DATA {

DMS_CHAR *ProjName; /* Projectname */

DMS_WORDI16 wMajorVersion;
DMS_WORDI16 wMinorVersion;
DMS_WORDI16 wPatchVersion;

} DMS_VERSION_DATA;

typedef struct DMS_REC_VERSION_DATA {

DMS_CHAR *ProjName; /* Projectname */

DMS_WORD16 wMajorVersion;
DMS_WORDI16 wMinorVersion;
DMS_WORDI16 wPatchVersion;
DMS_OBJNO ObjClass;
DMS_OBJNO ObjNo;

} DMS_REC_VERSION_DATA;

/¥

Alarmmanagement

*/

Referenz-Handbuch — DMS / API

225

Anhang C DMS-API-Dateien

typedef DMS_WORD16 DMS_ALARM_TYPE;

typedef enum {
DMS_ALARM_PRIO_0,
DMS_ALARM_PRIO_1,
DMS_ALARM_PRIO_2,
DMS_ALARM_PRIO_3,
DMS_ALARM_PRIO_4,
DMS_ALARM_PRIO_5,

} DMS_ALARM_PRIO;

typedef enum {

DMS_ALARM_INACT_ACTNACKED, /* inactive/active_not_acknowled-
ged */

DMS_ALARM_ACT_ACTNACKED, /* active/active_not_acknowledged */
DMS_ALARM_INACT_INACTNACKED, /* inactive/ not_acknowledged */
DMS_ALARM_ACT_ACTACKED, /* active/ acknowledged */
DMS_ALARM_NOT_VALID_4,

DMS_ALARM_NOT_VALID_S,

DMS_ALARM_INACT_INACTACKED, /* inactive/inactive_acknowledged
*/

DMS_ALARM_NOT_VALID_7,
DMS_ALARM_AP_DELETED /* message object was deleted */

226 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

} DMS_ALARM_STATUS;

typedef enum {

DMS_ALARM_GAS,
DMS_ALARM_LAST_GAS,
DMS_ALARM_EVENTS,

} DMS_ALARM_LIST_TYPE,;

typedef struct DMS_REC_ALARM {
DMS_DT TransitionTime;
DMS_OBJNO Objectld;
DMS_WORDI16 AlarmlIndex;
DMS_ALARM_TYPE AlarmType;
DMS_OBJNO ObjectClass;
DMS_ALARM_STATUS CurrAlarmStatus;
DMS_ALARM_STATUS PrevAlarmStatus;
DMS_ALARM_PRIO Priority;
DMS_BOOLEAN NotificationLost;
DMS_RC IC;
DMS_UINT32 ValueSize;
DMS_VAR_TYPE AlarmValType;
DMS_VALUE *AlarmValue;

} DMS_REC_ALARM,;

#define DMSAPI_MAX_ALARM_IN_AL 43

Referenz-Handbuch — DMS / API 227

Anhang C DMS-API-Dateien

typedef struct DMS_REC_ALARMLIST_DATA {

DMS_ALARM_LIST_TYPE ListType;
DMS_INT16 ActAlarmNo; /* actual amount of messages */
DMS_REC_ALARM *IpAlarm; /* message list */

} DMS_REC_ALARMLIST_DATA;

typedef struct DMS_REC_ACKALARM {
DMS_OBJNO Objectld;
DMS_WORDI16 AlarmIndex;
DMS_ALARM_STATUS AlarmStatus;
DMS_RC IC;

} DMS_REC_ACKALARM;

#define DMSAPI._ MAX_ALARM_IN_ACKAL 157

typedef struct DMS_REC_ACKALARMLIST_DATA {

DMS_HANDLE DmsHandle;

DMS_INT16 ActAckAlarmNo; /* actual amount of acknowledged messa-
ges */

DMS_REC_ACKALARM *IpAckAlarm; /* acknowledged message list */

} DMS_REC_ACKALARMLIST_DATA;

228

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

/¥

Receivedata Union

*/
typedef union {

DMS_REC_CONN_DATA *IpConn;
DMS_REC_VARLIST_DATA *IpVarList;
DMS_REC_ALARMLIST_DATA *IpAlarmList;
DMS_REC_ACKALARMLIST_DATA *IpAckAlarmList;
DMS_REC_VERSION_DATA *|pVersion;

} DMS_REC_SERVICE_DATA;

typedef struct DMS_REC_DATA {
DMS_CONN_HANDLE ConnHandle; /* StationsConnHandle */
DMS_RC DmsRc; /* ErrorCode */
DMS_UINT32 BuffSize; /* Size of DataBuffer */
DMS_REC_SERVICE_TYPE SrvType; /* ServiceTyp */
DMS_REC_SERVICE_DATA SrvBuff; /* Pointer to DmsData */

} DMS_REC_DATA;

typedef DMS_RC (* DMS_REC_DATA_PROC) (DMS_REC_DATA *DmsRec);

Referenz-Handbuch — DMS / API 229

Anhang C DMS-API-Dateien

#define DMSAPI_MAX_CB 10
#define DMSAPI_NO_CALLBACK 0

/*

Server management

*/

typedef enum {

DMS_WRITE_SERVICE_TYP,
DMS_READ_SERVICE_TYP,
DMS_GETDATA_ADDR_SERVICE_TYP

} DMS_VAR_SERVICE_TYP;

typedef struct {

DMS_OBJ_PATH ObjPath;
int VarLen;
DMS_VAR_TYPE VarType;
DMS_VALUE *VarValue;
DMS_VAR_RC VarRc;

} DMS_VAR_ELEM,;

typedef DMS_RC (* DMS_VAR_SERVER_PROC)

(
DMS_CONN_HANDLE ConnHandle,

230 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

DMS_VAR_SERVICE_TYP VarServiceTyp,
int VarElemNo,
DMS_VAR_ELEM *VarElem
);

typedef enum {

DMS_DLINIT_SERVICE_TYP,
DMS_DLEXIT_SERVICE_TYP,
DMS_ULINIT_SERVICE_TYP,
DMS_ULEXIT_SERVICE_TYP,
DMS_DELDOM_SERVICE_TYP

} DMS_DOM_SERVICE_TYP;

typedef enum {
DMS_DOM_RAM_TYP,
DMS_DOM_PRAM_TYP,
DMS_DOM_FILE_TYP,
DMS_DOM_PROC_TYP

} DMS_DOMAIN_TYP;

typedef DMS_RC (* DMS_DOM_SERVER_PROC)

(
DMS_CONN_HANDLE ConnHandle,

Referenz-Handbuch — DMS / API 231

Anhang C DMS-API-Dateien

DMS_OBJNO
DMS_RC

ObjNo,

rc,

DMS_DOMAIN_TYP DomainType,

DMS_INT32 *DomainLen,
DMS_CHAR *DomainContent,
DMS_CHAR **OQwnDomainContent

);

/>{<
DMS Name management

*/

typedef struct DMS_NAME_RESOURCE_DATA {

DMS_WORD32 dwIPAddrl;
DMS_WORD32 dwIPAddr2;
DMS_RES_NO ResNo;
DMS_RES_TYPE ResType;
DMS_UINT16 wTimeOut; /* in Sek */
DMS_UINT16 wMajorVersionNo;
DMS_UINT16 wMinorVersionNo;
DMS_UINTI16 wPatchVersionNo;

} DMS_NAME_RESOURCE_DATA;

typedef struct DMS_NAME_VAR_DATA {

232 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

DMS_WORD32 dwAccessRights;
DMS_VAR_TYPE VarType;
DMS_RES_NO ResNo;
DMS_OBJ_PATH OPath;

} DMS_NAME_VAR_DATA;

typedef struct DMS_NAME_TAG_DATA {
DMS_WORD32 dwAccessRights;
DMS_RES_NO ResNo;
DMS_OBJNO ObjClass;
DMS_OBJNO ObjNo;
DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA,;

typedef struct DMS_NAME_OBJ_DATA {
DMS_WORD16 nRWFlag;
DMS_CMPNO CmpNo;
DMS_VAR_TYPE VarType;

DMS_WORDI16 Reserved;

/* component name as string null terminated and 4 byte alignment */

Referenz-Handbuch — DMS / API 233

dmsapi.h Anhang C DMS-API-Dateien

} DMS_NAME_OBJ_DATA;

/*
DMS-Utilities
*/
typedef struct DMS_VAR_CODE {
char szDateStringSyntax[5];
char szDecimal[10];
char sz1000Decimal[10];
char szDate[10];
char szTimeSeparation[10];

BOOLEAN fDigiTimeAsLong;

} DMS_VAR_CODE;
#endif /* _DMSAPI_TYP_H defined */

#if __cplusplus

}
#endif

C.2 dmsapi.h

#ifdef CGEN
COMMENT

234 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

e sfe sfe sfe sfe she she she sie st sie st sfe sfe sfe sfe she sfe she sk she sk sk sie sie st sfe sfe sfe sfe she she she she sk st e sie sfe sfe sfe sfe sfe she she she sk siese e ste ste sfe sfe sfe sfe sl skttt ek
*

DMS-API
Digimatik Message Specification ApplicationInterface
Kommunication Protocol for Digimatik Process Level

Functions

st sfe sfe sfe sfe she she ske sie st sie st sfe sfe sfe sfe sfe sfe she sk sfe sie sk sie sie sfe sfe sfe sfe sfe she she sfe she sk st e sie sfe sfe sfe sfe sfe she she she sie st se e ste sfe sfe sfe sfe sfe sl skttt ook
*

COMMENT_END

FILENAME $Workfile: DMSAPLH $
VERSION $Revision: 1.13.1.0 $ (0)
HISTORY

HISTORY_END

/* $Log: DMSAPLH_v $
*/

#endif

#if __cplusplus

extern "C" {

#endif

#ifndef _DMSAPI_FNC_H
#define _DMSAPI_FNC_H

#ifdef _ DMS_API_INIT_FKT__

Referenz-Handbuch — DMS / API 235

dmsapi.h

Anhang C DMS-API-Dateien

ifdef WIN32

define CGEXPORT _declspec(dllexport)
else

define CGEXPORT

endif

#else

ifdef WIN32

define CGEXPORT _declspec(dllimport)
else

define CGEXPORT

endif

#endif /* __ DMS_API_INIT_FKT__*/

[*

Environment and General Management Services

*/

/* Initialisation of Dms on a Gateway */

CGEXPORT DMS_RC DMSAPI_Init (
DMS_RES_NO OwnResNo /* Own Resource Id */,
DMS_RES_TYPE OwnResType /* Own Resource Typ */,
DMS_INT16 NoOfSrvConn /* Number of ServerConnection */,
DMS_BOOLEAN bStandardServer /* TRUE or FALSE */);

/* Shutdown Dms */

236

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_Exit (
DMS_RES_NO OwnResNo /* Own Resource No #/);

/* StationConnect */

CGEXPORT DMS_RC DMSAPI_ConnectByAddr(
DMS_RES_NO OwnResNo /* Own Resource Id */,

DMS_INT16 nBTRLnk /* take DMS_BTR_TCPIP from DMS-
TYP.h */,

DMS_UINT32 ullPAddr1 /* first ipaddress of remote station */,
DMS_UINT32 ullPAddr2 /* second ipaddress of remote station */,
DMS_RES_NO ResNo /* resource no */,

DMS_RES_TYPE ResType /* resource type */,

DMS_UINTI16 ulKeepAliveT /* KeepAliveTimeout */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /* synchrone flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecConnlLen /* size of RecConn */,

DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*/);

CGEXPORT DMS_RC DMSAPI_ConnectByName(

DMS_RES_NO OwnResNo /* Own Resource No */,
DMS_CHAR *ResName /* name of resource */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,

Referenz-Handbuch — DMS / API 237

dmsapi.h Anhang C DMS-API-Dateien

DMS_INTI16 nSyncFlag /* synchrone flag */,
DMS_UINT32 ulProcT /* prozedure Timeout */,
DMS_UINT32 ulRecConnLen /* size of RecConn */,

DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*);

CGEXPORT DMS_RC DMSAPI_ConnectByNo(
DMS_RES_NO OwnResNo /* Own Resource No */,

DMS_RES_NO ResNo /* name of resource */,
DMS_CONN_HANDLE *IpConnHandle /* ConnectionHandle */,
DMS_INT16 nSyncFlag /¥ synchrone flag */,

DMS_UINT32 ulProcT /* prozedure Timeout */,
DMS_UINT32 ulRecConnLen /* size of RecConn */,

DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*/);

/* StationDisConnect */

CGEXPORT DMS_RC DMSAPI_Disconnect(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */);

/* ConnectionData */

CGEXPORT DMS_RC DMSAPI_GetConnectionData(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_REC_CONN_DATA *Data /* Out -> ReceiveStruct of Conn. */);

238 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

/* Set RemoteTime */

#ifdef WIN32

CGEXPORT DMS_RC DMSAPI_SetSystemTime (
SYSTEMTIME *NTDT /* Win32 date and time format */);
#endif

CGEXPORT DMS_RC DMSAPI_SetSystemTimeByDmsType (
DMS_DT *DateTime /* DMS date and time */);

CGEXPORT DMS_RC DMSAPI_SetSystemTimeByString (
DMS_CHAR * IpszDateTime /* date and time string */);

CGEXPORT DMS_RC DMSAPI_RestartResource(
IN DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
IN DMS_RESTART_REASON RestartReason /* RestartReason */);

CGEXPORT DMS_RC DMSAPI_RegisterCItCB(
DMS_INT16 nCBId /* CallbackId */,

DMS_REC_DATA_PROC CallBackProc /* Callbackfunction */);

/¥

Variablemangement

*/

Referenz-Handbuch — DMS / API 239

dmsapi.h

Anhang C DMS-API-Dateien

CGEXPORT DMS_RC DMSAPI_VLCreate(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_INT16 nVLService /* Service:
DMSAPI_VL_SINGLE_READ
DMSAPI_VL_CYCLE_READ
DMSAPI_VL_SINGLE_WRITE #/,

DMS_HANDLE *lpDmsHandle /* Identifier for Varlist */);

CGEXPORT DMS_RC DMSAPI_VLAddWriteVarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_CHAR *lpszVarname /* Variable name */,
DMS_VAR_TYPE VarType /* Variable type */,

DMS_VALUE *IpvVarValue /* Variable value */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INT16 *]pnIndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLAddWriteVarBy Addr(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH *IpOpath /* Objectpath */,

DMS_VAR_TYPE VarType /* Variable type */,

DMS_VALUE *IpvVarValue /* Variable value */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INT16 *lpnlndex /* Index in RecVarStruct */);

240

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_VLAddReadVarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_CHAR *lpszVarname /* Variable name */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INT16 *IpnIndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLAddReadVarBy Addr(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_OBJ_PATH *pOpath /* Objectpath */,

DMS_VAR_TYPE VarType /* Variable type */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */,
DMS_INT16 *lpnlndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLChangeValue(

DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INT16 nlndex /* Index in RecVarStruct */,
DMS_VAR_TYPE VarType /* Variable type */,
DMS_VALUE *lpvVarValue /* Variable value */,

DMS_REC_VARLIST_DATA **]plpRecVar /* Pointer to RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLDelVar(
DMS_HANDLE DmsHandle /* VarListHandle */,
DMS_INT16 nlndex /* Index in RecVarStruct */,
DMS_REC_VARLIST_DATA **IplpRecVar /* Pointer to RecVarStruct */);

Referenz-Handbuch — DMS / API 241

dmsapi.h Anhang C DMS-API-Dateien

CGEXPORT DMS_RC DMSAPI_VLClear(
DMS_HANDLE DmsHandle /* VarListHandle */);

CGEXPORT DMS_RC DMSAPI_VLRead(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nCBId /* Callbackld */,

DMS_INT16 nSyncFlag /* synchron flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecVarLen /* size of RecVarStruct */,

DMS_REC_VARLIST_DATA *IpRecVar /* Out -> Pointer to RecVarStruct
*);

CGEXPORT DMS_RC DMSAPI_VLReadCycle(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_UINT32 ulCycleTime /* cycletime in ms */,

DMS_INT16 nCBId /* Callbackld */,

DMS_INTI16 nSyncFlag /* synchrone flag */,

DMS_UINT32 ulProcT /* prozedur timeout */,

DMS_UINT32 ulRecVarLen /* Size of RecVarStruct */,

DMS_REC_VARLIST_DATA *IpRecVar /* Out-> Pointer to RecVarStruct
*1);

CGEXPORT DMS_RC DMSAPI_VLStopCycle(
DMS_HANDLE DmsHandle /* VarListHandle */);

242 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_VLWrite(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nCBId /* Callbackld */,

DMS_INT16 nSyncFlag /¥ synchrone flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecVarLen /* Size of RecVarStruct */,

DMS_REC_VARLIST_DATA *lpRecVar /* Out -> Pointer to RecVarStruct
*1);

CGEXPORT DMS_RC DMSAPI_VLDelete(
DMS_HANDLE DmsHandle /* VarListHandle */);

[*

Alarmmangement

*/

CGEXPORT DMS_RC DMSAPI_GetAlarmSummary(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_INT16 nCBId /* Callbackld */,
DMS_INT16 nSyncFlag /* synchrone flag */,
DMS_UINT32 ulProcT /* prozedure timeout */,
DMS_UINT32 ulRecVarLen /* size of AlarmRec */,

DMS_REC_ALARMLIST_DATA *IpAlarmRec /* Out -> Pointer to Alarm-
ListStruct */);

CGEXPORT DMS_RC DMSAPI_AckAlarmByList(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

Referenz-Handbuch — DMS / API 243

dmsapi.h

Anhang C DMS-API-Dateien

DMS_HANDLE *lpDmsHandle /* Identifier for Acklist */,

DMS_INT16 nCBId /* Callbackld */,

DMS_INT16 ActAlarmNo /* actual amount of messages */,

DMS_REC_ACKALARM *IpAlarmAck /* Pointer to AlarmAckStruct
%/

DMS_INTI16 nSyncFlag /* synchrone flag */,

DMS_UINT32 ulProcT /* prozedure timeout */,

DMS_UINT32 ulRecVarLen /* size of AckAlarmRec */,

DMS_REC_ACKALARMLIST_DATA *IpAckAlarmRec /* Out -> Pointer to
AlarmAckListStruct */);

[*

DMS Name management

*/

CGEXPORT DMS_RC DMSAPI_LockOV (
DMS_RES_NO OwnResNo /* */);

CGEXPORT DMS_RC DMSAPI_UnlockOV (DMS_RES_NO OwnResNo /*
GWY Resource 1d*/);

CGEXPORT DMS_RC DMSAPI_SetProjectDir(DMS_CHAR * szProjectDir /*
path to new Directory */);

CGEXPORT DMS_RC DMSAPI_ChangeProject(
DMS_RES_NO OwnResNo /* GWY Resource Id */,

244

Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien

DMS_CHAR * ProjName /* new project name*/);

CGEXPORT DMS_RC DMSAPI_GetProjectInfo(
DMS_RES_NO OwnResNo /* GWY Resource Id *#/,

dmsapi.h

DMS_VERSION_DATA * VersionData /* OUT -> pointer to VersionData */);

CGEXPORT DMS_RC DMSAPI_GetVarInfoByName(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_CHAR * [pVarName /* variable name */,
DMS_RES_NO *]pResNo /* Out -> remote resource Id */,
DMS_OBJ_PATH * lpPath /* Out -> object path */,
DMS_VAR_TYPE *lpVarType /* Out -> variable type */,
DMS_WORD32 * IpAccessRights /* Out -> Access Rights */);

CGEXPORT DMS_RC DMSAPI_GetVarnameByOPath (
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_RES_NO ResNo /* remote resource Id */,
DMS_OBJ_PATH *lpPath /* Out -> ObjectPath */,
DMS_UINT32 VarNameLen /* max. size of Varname */,

DMS_CHAR *IpVarName /* Out -> variable name */);
CGEXPORT DMS_RC DMSAPI_GetTagByAddr (

DMS_RES_NO OwnResNo /* GWY Resource Id */,

DMS_RES_NO ResNo /* remote resource Id */,

DMS_OBJNO ObjNo /* ObjectPath */,

DMS_UINT32 TagNameLen /* max. Size of tagname */,

DMS_CHAR *lpTagName /* Out -> tagname */,

Referenz-Handbuch — DMS / API

dmsapi.h Anhang C DMS-API-Dateien

DMS_NAME_TAG_DATA *IpTaglnfo /* Out -> taglnfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstResourceInfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 *lpulNoOfRess /* Out -> amount of resources */,
DMS_UINT32 ResNamelLen /* max. size of resname */,
DMS_CHAR *]pResName /* Out -> name of resource */,

DMS_NAME_RESOURCE_DATA *IpResInfo /* Out -> ResInfo */);

CGEXPORT DMS_RC DMSAPI_GetNextResourcelnfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 ResNameLen /* max. size of resname */,
DMS_CHAR *|pResName /* Out -> name of resource */,

DMS_NAME_RESOURCE_DATA *IpResInfo /* Out -> ReslInfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstVarInfo(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 *pulNoOfVar /* amount of variables in config */,
DMS_UINT32 VarNameLen /* max. size of variable name */,
DMS_CHAR *|pVarName /* Out -> variable name */,
DMS_NAME_VAR_DATA *IpVarlnfo /* Out -> variable info */);

CGEXPORT DMS_RC DMSAPI_GetNextVarlnfo(

DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_UINT32 VarNameLen /* max. size of variable name */,
DMS_CHAR *|pVarName /* Out -> variable name */,

246 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

DMS_NAME_VAR_DATA *IpVarlnfo /* Out -> variable info */);

CGEXPORT DMS_RC DMSAPI_GetFirstTagInfo(
DMS_RES_NO OwnResNo /* GWY Resource Id *#/,
DMS_UINT32 *1pulNoOfTag /* amount of tags in config. */,
DMS_UINT32 TagNamelLen /* max. size of tagname */,
DMS_CHAR *]pTagName /* Out -> tagname */,
DMS_NAME_TAG_DATA *IpTaglnfo /* Out -> taginfo */);

CGEXPORT DMS_RC DMSAPI_GetNextTagInfo(

DMS_RES_NO OwnResNo /* GWY Resource Id *#/,
DMS_UINT32 TagNamelLen /* max. size of tagname */,
DMS_CHAR *|pTagName /* Out -> tagname */,

DMS_NAME_TAG_DATA *IpTaglnfo /* Out -> taginfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstCmpOfObjClass(

DMS_RES_NO OwnResNo /* GWY Resource Id *#/,
DMS_OBJNO ObjClass /* Object class */,

DMS_UINT32 *IpulNoOfCmp /* amount of components */,
DMS_UINT32 CmpNameLen /* max. size of component name */,
DMS_CHAR *pCmpName /* component name */,

DMS_NAME_OBJ_DATA *lpObjlnfo /* ObjectInfo */);

CGEXPORT DMS_RC DMSAPI_GetNextCmpOfObjClass(
DMS_RES_NO OwnResNo /* GWY Resource Id */,
DMS_OBJNO ObjClass /* Object class */,

Referenz-Handbuch — DMS / API 247

dmsapi.h Anhang C DMS-API-Dateien

DMS_UINT32 CmpNameLen /* max. size of component name */,
DMS_CHAR *pCmpName /* component name */,
DMS_NAME_OBJ_DATA *IpObjlnfo /* ObjectInfo */);

/*
DMS-ServerManagement (Not yet implemented !)
*/

CGEXPORT DMS_RC DMSAPI_ActivateServer(
DMS_RES_NO OwnResNo /* GWY Resource Id */);

CGEXPORT DMS_RC DMSAPI_DeactivateServer(
DMS_RES_NO OwnResNo /* GWY Resource Id */);

CGEXPORT DMS_RC DMSAPI_OpenVarServer(
DMS_RES_NO OwnResNo /* GWY Resource Id *#/,
DMS_VAR_SERVER_PROC DMSReadVarServerProc 1% */,
DMS_VAR_SERVER_PROC DMSWriteVarServerProc ~ /* */,

int MaxServer /* */),

CGEXPORT DMS_RC DMSAPI_CreateInfoReport(
DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
DMS_INT16 OwnlIRId /* Inforeportld for Client */,
DMS_HANDLE *lpDmsHandle /* Identifier for Informationreport */);

CGEXPORT DMS_RC DMSAPI_DeleteInfoReport(
DMS_HANDLE DmsHandle /* Identifier for Informationreport */);

248 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_GetInfoReportBuffer(
DMS_HANDLE DmsHandle /* Identifier for Informationreport */,
DMS_UINT32 ulProcT /* prozedure timeout */,
DMS_UINT32 ulRecVarLen /* size of RecVar */,
DMS_CHAR **]plpRecVar /* Out -> Pointer to InfoReport */);

CGEXPORT DMS_RC DMSAPI_SendInfoReportBuffer(
DMS_HANDLE DmsHandle /* Identifier for Informationreport */,
DMS_UINT32 ulProcT /* prozedure timeout */,
DMS_UINT32 ulRecVarLen /* size of RecVar */,
DMS_CHAR *]pRecVar ~ /* Out -> Pointer to InfoReport */);

/*
DMS-Utilities
*/
CGEXPORT void DMSAPI_DumpRecData(DMS_REC_DATA * DmsRecData /*
*) 5

CGEXPORT int DMSAPI_GetVarLen(DMS_VAR_TYPE VarType /* variable type
*);

CGEXPORT DMS_RC DMSAPI_SetVarCode(DMS_VAR_CODE * VarCode);
CGEXPORT DMS_RC DMSAPI_GetStringBy Value(

DMS_UINT32 ulStrLen /* size of String */,

DMS_CHAR *lpszString /* Out -> String */,

DMS_VAR_TYPE VarType /* variable type */,

Referenz-Handbuch — DMS / API 249

dmserr.h Anhang C DMS-API-Dateien

DMS_VALUE *lpvVarValue /* Out -> variable value */);

CGEXPORT DMS_RC DMSAPI_GetValueByString(
DMS_UINT32 ulValLen /* size of VarValue */,
DMS_VALUE *lpvVarValue /* QOut -> Value #/,
DMS_VAR_TYPE VarType /* variable type */,
DMS_CHAR *lpszString /* Out -> String */);

/*
(Not yet implemented !)

*/

CGEXPORT DMS_RC DMSAPI_GetErrStrByErr(
DMS_UINT32 ulStrLen /* size of String */,
DMS_CHAR *lpszString /* Out -> String */,
DMS_RC Rc /* ErrorCode */);

#endif /* _DMSAPI_TYP_H defined */

#if __cplusplus

}

#endif

C.3 dmserr.h
/*
COMMENT

st sfe sfe sfe sfe she sk ske sk sk sk sie st sfe sfe sfe sfe sfe she sk sk ske sk sk sie sfe st sfe sfe sfe sfe she she sk sk sk st sie st sfe sfe sfe sfe sfe she sk sk skeske ke sie sfe sfe sfe sfe sfe she s skeoskoskeskeoskeoteke ok
*

250 Referenz-Handbuch — DMS / API

Anhang C DMS-API-Dateien dmserr.h

DMS-API
Digimatik Message Specification ApplicationInterface

Kommunication Protocol for Digimatik Process Level

ErrorCodes

st sfe sfe sfe sfe she she ske sie st sie sie sfe sfe sfe sfe she sfe she sk she sk sk sie sie sfe sfe sfe sfe sfe she she she she sk st e sie st sfe sfe sfe sfe she she she sk st se e sfe sfe sfe sfe sfe sfe she skttt otk
*

COMMENT_END

FILENAME $Workfile: DMSERR.H $

VERSION $Revision: 1.5.1.0 $ (0)

HISTORY
HISTORY_END
$Log: DMSERR.H_v $

st sfe s sfe sfe she sk sk ske sk st sie sfe sfe sfe sfe sfe sfe she sk sk sk sk sk sie sfe sfe sfe sfe sfe she she she ske sk sk e sfe st sfe sfe sfe sfe sfe she sk sk sk s sk sie sfe sfe sfe sfe sfe sfe sk sk skoskeskeskeoke etk

#include "errbase.hg"

#define E_ DMSAPI_OK 0x00

#define E. DMSAPI_NOT_INIT (E_DMSAPI_BASE + 0x01)
#define E_DMSAPI_INVALID_CONF (E_DMSAPI_BASE + 0x02)
#define E_DMSAPI_INVALID_ARG (E_DMSAPI_BASE + 0x03)
#define E_DMSAPI_SMALL_RCV_BUFF (E_DMSAPI_BASE + 0x04)

Referenz-Handbuch — DMS / API 251

dmserr.h Anhang C DMS-API-Dateien

#define E_DMSAPI_EMPTY_CONF (E_DMSAPI_BASE + 0x05)

#define E_DMSAPI_INTERNAL_ERROR (E_DMSAPI_BASE + 0x06)
#define E_DMSAPI_ACCESS_ERROR (E_DMSAPI_BASE + 0x07)
#define E. DMSAPI_NO_CONF (E_LDMSAPI_BASE + 0x08)

#define E DMSAPI_INVALID_DMS_HANDLE (E_DMSAPI_BASE + 0x09)
#define E_DMSAPI_INVALID_CONN_HANDLE (E_DMSAPI_BASE + 0x0A)

#define E_DMSAPI_NO_RESOURCE (E_DMSAPI_BASE + 0x0B)
#define E_DMSAPI_VARLIST_IN_USE (E_DMSAPI_BASE + 0x0C)
#define E_DMSAPI_NO_CALLBACK (E_DMSAPI_BASE + 0x0D)

#define E. DMSAPI_DUPLICATE_CALLBACK (E_DMSAPI_BASE + 0x0E)
#define E DMSAPI_INVALID_INDEX (E_DMSAPI_BASE + 0x0F)
#define E_DMSAPI_INVALID_VARTYPE (E_DMSAPI_BASE + 0x10)
#define E_DMSAPI_INVALID_VARMODE (E_DMSAPI_BASE + 0x11)
#define E_DMSAPI_NO_CONNECTION (E_DMSAPI_BASE + 0x12)
#define E_DMSAPI_ALREADY_INIT (E_DMSAPI_BASE + 0x13)
#define E. DMSAPI_MAX_ APPLICATION (E_DMSAPI_BASE + 0x14)
#define E. DMSAPI_MAX CONNECTION (E_DMSAPI_BASE + 0x15)
#define E_DMSAPI_TIMEOUT (E_DMSAPI_BASE + 0x16)

#define E_DMSAPI_INVALID_DIR (E_DMSAPI_BASE + 0x17)

252 Referenz-Handbuch — DMS / API

A
Alle DIienstec..coceeevceeneeienieienieeeneeeeenes 33
ADNIWOTTEN .ot 33
APPLICALION ..c.eeeniiiiiiieiiciceeceee e 13
B
BasiC oo 31
Basic Transportc..ceceeeevveneesieneenieneenennces 31
BTR_OpenServerc.ccceecveveeveneenicneenennnes 32
D
DMS ClientManagementccceeeeeeenuennee. 33
DMS-Variablentypenccccoeeeveneenienncnne. 147
E

Environment and General Management Services
34

Ethernetcoocevvveeiieeiienieciieceee e 33
F

Funktionsweise fiir (TCPIP)cccoeenneee. 32
|

Initialisierung und Beendigung einer DMS-Sitzung
34

M

MMS (Manufacturing Message Specification 15
P

protokollunabhingigcccceceeveveercneenennen. 31

Stichwortverzeichnis

Referenz-Handbuch — DMS / API

253

Stichwortverzeichnis

254 Referenz-Handbuch — DMS / API

www.abb.com/freelance
www.abb.com/controlsystems

Technische Anderungen der Produkte
sowie Anderungen im Inhalt dieses Doku-
ments behalten wir uns jederzeit ohne Vor-
ankiindigung vor. Bei Bestellungen sind die
jeweils vereinbarten Beschaffenheiten
maBgebend. ABB Gbernimmt keinerlei Ver-
antwortung fiir eventuelle Fehler oder
Unvollstandigkeiten in diesem Dokument.

Wir behalten uns alle Rechte an diesem
Dokument und den darin enthaltenen
Gegenstanden und Abbildungen vor. Ver-
vielfdltigung, Bekanntgabe an Dritte oder
Verwertung seines Inhaltes - auch von Tei-
len - ist ohne vorherige schriftliche
Zustimmung durch ABB verboten.

Die Rechte an allen anderen Warenzeichen
oder Marken liegen beim jeweiligen Inha-
ber.

Copyright © 2019 ABB.

3BDD012508-111 A

	Inhaltsverzeichnis
	Hinweise zu diesem Handbuch
	1 Applikationsschnittstelle Freelance für Windows
	1.1 Allgemeine Beschreibung - Applikationsschnittstelle
	1.2 MMS (Manufacturing Message Specification ISO 9506)
	1.3 DMS (Digimatik Message Specification)
	1.4 DMS / MMS -Funktionsbereiche
	1.5 Adressierbare Freelance Objekte
	1.5.1 Variablen
	1.5.2 MSR-Stellen
	1.5.3 Systemobjekte

	1.6 Freelance -Kommunikationschichtenmodell
	1.7 Installation von DMS / API
	1.8 Konfiguration des DMS / API-Gateway im Freelance Engineering
	1.9 Laden des DMS/API-Gateways
	1.9.1 Erstkonfiguration
	1.9.2 Umkonfiguration

	1.10 DMS / API-Funktionsübersicht

	2 Basic Transport Application Interface (BTR)
	2.1 Funktionsweise für (TCPIP)

	3 DMS ClientManagement
	3.1 Environment and General Management Services
	3.1.1 Initialisierung und Beendigung einer DMS-Sitzung
	DMSAPI_Init
	DMSAPI_Exit

	3.1.2 Verbindungsmanagement
	DMSAPI_ConnectByAddr
	DMSAPI_ConnectByName
	DMSAPI_ConnectByNo
	DMSAPI_Disconnect
	DMSAPI_GetConnectionData
	DMSAPI_SetSystemTime
	DMSAPI_RestartResource

	3.2 Variable Access Services
	3.3 Achtung !!!
	3.3.1 DMSAPI_VLCreate
	DMSAPI_VLAddReadVarByName
	DMSAPI_VLAddWriteVarByName
	DMSAPI_VLAddReadVarByAddr
	DMSAPI_AddWriteVarByAddr
	DMSAPI_VLChangeValue

	3.3.2 DMSAPI_VLDelVar
	3.3.3 DMSAPI_VLClear
	3.3.4 DMSAPI_VLRead
	3.3.5 DMSAPI_VLReadCycle
	3.3.6 DMSAPI_StopCycle
	3.3.7 DMSAPI_VLWrite
	3.3.8 DMSAPI_VLDelete

	3.4 Alarmmanagement
	3.4.1 DMSAPI_GetAlarmSummary
	3.4.2 DMSAPI_CreateAckAlarmList
	3.4.3 DMSAPI_AddAckAlarmByAddr
	3.4.4 DMSAPI_ClearAckAlarmList
	3.4.5 DMSAPI_AckAlarmList
	3.4.6 DMSAPI_DeleteAckAlarmList
	3.4.7 DMSAPI_AckAlarmByList

	3.5 Domainmanagement
	3.6 ProgramInvokation Management
	DMSAPI_StartPI
	DMSAPI_StopPI
	DMSAPI_ResetPI

	3.7 Empfangen/Dekodieren von Daten
	3.7.1 Strukturdefinitionen
	Verbindungsstruktur
	Infomationreportstruktur
	Alarmstruktur
	Alarmquittierungsstruktur
	Downloadstruktur
	ProgrammInvokationstruktur
	Versionsstruktur

	3.7.2 Synchrone Dienste
	DMSAPI_Receive (ReceiveTimeOut,&RecStruct);

	3.7.3 DMSAPI_RegisterCltCB
	DMSAPI_RegisterFreeCltCB (&CBID, (*DMSRC) (Fnc(&RecStruct)))

	3.7.4 Callback function (&RecStruct)

	4 Namensverwaltung
	4.1 Dateiverzeichnis
	4.1.1 DMSAPI_SetProjectDir
	4.1.2 DMSAPI_ChangeProject

	4.2 Projektinformation
	4.2.1 DMSAPI_GetProjectInfo

	4.3 Sperren des "Namemanagement"
	4.3.1 DMSAPI_LockOV
	4.3.2 DMSAPI_UnlockOV

	4.4 Stationsinformation
	!!!
	!!!
	4.4.1 DMSAPI_GetFirstResourceInfo
	4.4.2 DMSAPI_GetNextResourceInfo

	4.5 Variableninformation
	!!!
	!!!
	4.5.1 DMSAPI_GetFirstVarInfo
	4.5.2 DMSAPI_GetNextVarInfo

	4.6 MSR-Stelleninformation
	!!!
	!!!
	DMSAPI_GetFirstTagInfo
	DMSAPI_GetNextTagInfo
	DMSAPI_GetTagByAddr

	4.7 Objektklassen-Stelleninformation
	!!!
	!!!
	4.7.1 DMSAPI_GetFirstCmpOfObjClass
	4.7.2 DMSAPI_GetNextCmpOfObjClass

	4.8 Adressen-Konvertierung
	4.8.1 DMSAPI_GetVarNameByOPath
	4.8.2 DMSAPI_GetVarInfoByName

	5 Server Management
	6 DMS utilities
	6.1 DMSAPI_GetStringByValue
	6.2 DMSAPI_GetValueByString
	6.3 DMSAPI_GetVarLen
	6.4 DMSAPI_DumpRecData

	Anhang A Variablen Typen und Fehler Codes
	A.1 DMS-Variablentypen
	A.2 DMS-FehlerCodes

	Anhang B Applikationsschnittstelle Freelance Beispiele
	B.1 DMSAPI-Beispiele
	B.2 Variablendienste
	B.2.1 Einfaches Lesen "read.c"
	B.2.2 Zyklisches Lesen "acycle.c"
	B.2.3 Einfaches Schreiben "awrite.c"

	B.3 Alarmdienste "aalarm.c"
	B.4 Namensverwaltung "name.c"
	B.5 Setzen der Zeit "settime.c"
	B.6 Redundanzwechsel Primary - Secondary "toggle.c"

	Anhang C DMS-API-Dateien
	C.1 dmstyp.h
	C.2 dmsapi.h
	C.3 dmserr.h

	Stichwortverzeichnis

