
—
PROCESS AUTOMATION

Freelance 2019
Referenz-Handbuch
DMS / API

Dokumentennummer: 3BDD012508-111
Revision: A

Veröffentlichung: Februar 2019

—
PROCESS AUTOMATION

Freelance 2019
Referenz-Handbuch
DMS / API

—
Hinweis
Dieses Dokument enthält Informationen über ABB Produkte und kann außerdem Beschreibungen von Normen bzw.
Verweise auf Normen enthalten, die allgemein für ABB Produkte relevant sind. Das Vorliegen solcher Beschreibungen
von Normen bzw. von Verweisen auf Normen bedeutet nicht, dass alle in diesem Dokument genannten ABB Produkte
sämtliche Merkmale der jeweils beschriebenen oder genannten Norm unterstützen. Informationen zu den einzelnen
Merkmalen, die ein bestimmtes ABB Produkt unterstützt, finden Sie in der jeweiligen Produktspezifikation des be-
treffenden ABB Produkts.

ABB verfügt u. U. über Patente oder anhängige Patentanmeldungen zum Schutz der Rechte des geistigen Eigentums
an den in diesem Dokument genannten ABB Produkten.

Die in diesem Dokument enthaltenen Informationen können ohne Vorankündigung geändert werden und sollten
nicht als eine Verpflichtung von ABB gesehen werden. ABB übernimmt keine Verantwortung für irgendwelche Fehler,
die in diesem Dokument auftreten können.

Die in diesem Dokument beschriebenen oder genannten Produkte sind so realisiert, dass sie zuschaltbar sind und In-
formationen und Daten über ein sicheres Netzwerk übermitteln. Es liegt in der alleinigen Verantwortung des System-
/Produkteigentümers, eine sichere Verbindung zwischen dem Produkt und dem Systemnetzwerk und/oder anderen
ggf. angebundenen Netzwerken bereitzustellen und dauerhaft aufrechtzuerhalten.

Die System-/Produkteigentümer sind verpflichtet, angemessene Vorkehrungen (u. a. Installation von Firewalls, An-
wendung von Maßnahmen zur Authentifizierung, Verschlüsselung von Daten, Installation von Virenschutzprogram-
men) zu treffen, um das System sowie die zugehörigen Produkte und Netzwerke vor Sicherheitslücken,
unberechtigtem Zugriff, Störungen, Eingriffen, Verlusten und/oder Diebstahl von Daten oder Informationen zu
schützen.

ABB überprüft das ordnungsgemäße Funktionieren der freigegebenen Produkte und Aktualisierungen. Dennoch sind
letztendlich die System-/Produkteigentümer dafür verantwortlich, dass Systemaktualisierungen (u. a. Code-Ände-
rungen, Änderungen an Konfigurationsdateien, Updates oder Patches der Software von Drittanbietern, Austausch
von Hardware) mit den eingeführten Sicherheitsmaßnahmen kompatibel sind. Die System-/Produkteigentümer
müssen verifizieren, dass das System und die zugehörigen Produkte in der Umgebung, in der sie implementiert sind,
erwartungsgemäß funktionieren.

ABB haftet nicht für unmittelbare, mittelbare, konkrete, beiläufig entstandene oder Folgeschäden irgendeiner Art,
die durch die Verwendung dieses Dokuments entstanden sind. Ebenso wenig haftet ABB für beiläufig entstandene
oder Folgeschäden, die durch die Verwendung von in diesem Dokument beschriebener Software oder Hardware ent-
standen sind.

Weder dieses Dokument noch Teile davon dürfen ohne schriftliche Zustimmung von ABB reproduziert oder kopiert
werden, der Inhalt darf nicht an eine dritte Partei weitergegeben werden, ebenfalls darf er nicht für unzulässige
Zwecke genutzt werden.

Die in diesem Dokument beschriebene Software und Hardware unterliegt einer Lizenz und darf nur in Übereinstim-
mung mit den Lizenzbestimmungen genutzt, vervielfältigt oder weitergegeben werden. Dieses Produkt entspricht
den Anforderungen der EMV-Richtlinie 2014/30/EU und der Niederspannungsrichtlinie 2014/35/EU.

—
Marken
Alle Urheberrechte sowie Rechte an eingetragenen Marken und Warenzeichen liegen bei ihren jeweiligen 
Eigentümern.

Copyright © 2019 by ABB. 
Alle Rechte vorbehalten.

Inhaltsverzeichnis

Hinweise zu diesem Handbuch
Vorsicht-, Achtung-, Information- und Tipp-Symbole .. 9

Terminologie .. 10

Typographische Konventionen .. 10

1 Applikationsschnittstelle Freelance für Windows
1.1 Allgemeine Beschreibung - Applikationsschnittstelle .. 13

1.2 MMS (Manufacturing Message Specification ISO 9506) ... 15

1.3 DMS (Digimatik Message Specification) .. 16

1.4 DMS / MMS -Funktionsbereiche .. 16

1.5 Adressierbare Freelance Objekte ... 18

1.5.1 Variablen ... 18

1.5.2 MSR-Stellen .. 18

1.5.3 Systemobjekte ... 19

1.6 Freelance -Kommunikationschichtenmodell ... 19

1.7 Installation von DMS / API ... 20

1.8 Konfiguration des DMS / API-Gateway im Freelance Engineering 21

1.9 Laden des DMS/API-Gateways ... 24

1.9.1 Erstkonfiguration ... 24

1.9.2 Umkonfiguration ... 24

1.10 DMS / API-Funktionsübersicht ... 26

2 Basic Transport Application Interface (BTR)
2.1 Funktionsweise für (TCPIP) .. 32

3 DMS ClientManagement
3.1 Environment and General Management Services .. 34

3.1.1 Initialisierung und Beendigung einer DMS-Sitzung 34
Referenz-Handbuch – DMS / API 5

Inhaltsverzeichnis
3.1.2 Verbindungsmanagement ...38

3.2 Variable Access Services ..57

3.3 Achtung !!! ...58

3.3.1 DMSAPI_VLCreate ...61

3.3.2 DMSAPI_VLDelVar ..72

3.3.3 DMSAPI_VLClear ..73

3.3.4 DMSAPI_VLRead ...74

3.3.5 DMSAPI_VLReadCycle ...76

3.3.6 DMSAPI_StopCycle ..78

3.3.7 DMSAPI_VLWrite ..80

3.3.8 DMSAPI_VLDelete ...82

3.4 Alarmmanagement ...83

3.4.1 DMSAPI_GetAlarmSummary ...84

3.4.2 DMSAPI_CreateAckAlarmList ...87

3.4.3 DMSAPI_AddAckAlarmByAddr ..88

3.4.4 DMSAPI_ClearAckAlarmList ...89

3.4.5 DMSAPI_AckAlarmList ...89

3.4.6 DMSAPI_DeleteAckAlarmList ...91

3.4.7 DMSAPI_AckAlarmByList ...92

3.5 Domainmanagement ..95

3.6 ProgramInvokation Management ...95

3.7 Empfangen/Dekodieren von Daten ..98

3.7.1 Strukturdefinitionen ...98

3.7.2 Synchrone Dienste ...106

3.7.3 DMSAPI_RegisterCltCB ...107

3.7.4 Callback function (&RecStruct) ..109

4 Namensverwaltung
4.1 Dateiverzeichnis ...112

4.1.1 DMSAPI_SetProjectDir ...113

4.1.2 DMSAPI_ChangeProject ...114

4.2 Projektinformation ...115

4.2.1 DMSAPI_GetProjectInfo ...115
6 Referenz-Handbuch – DMS / API

 Inhaltsverzeichnis
4.3 Sperren des "Namemanagement" .. 117

4.3.1 DMSAPI_LockOV .. 117

4.3.2 DMSAPI_UnlockOV .. 117

4.4 Stationsinformation ... 118

4.4.1 DMSAPI_GetFirstResourceInfo ... 119

4.4.2 DMSAPI_GetNextResourceInfo ... 121

4.5 Variableninformation ... 123

4.5.1 DMSAPI_GetFirstVarInfo .. 124

4.5.2 DMSAPI_GetNextVarInfo .. 125

4.6 MSR-Stelleninformation ... 127

4.7 Objektklassen-Stelleninformation ... 132

4.7.1 DMSAPI_GetFirstCmpOfObjClass .. 134

4.7.2 DMSAPI_GetNextCmpOfObjClass .. 136

4.8 Adressen-Konvertierung .. 137

4.8.1 DMSAPI_GetVarNameByOPath .. 138

4.8.2 DMSAPI_GetVarInfoByName ... 139

5 Server Management

6 DMS utilities
6.1 DMSAPI_GetStringByValue ... 143

6.2 DMSAPI_GetValueByString ... 144

6.3 DMSAPI_GetVarLen .. 145

6.4 DMSAPI_DumpRecData .. 145

Anhang A Variablen Typen und Fehler Codes
A.1 DMS-Variablentypen .. 147

A.2 DMS-FehlerCodes .. 150

Anhang B Applikationsschnittstelle Freelance Beispiele
B.1 DMSAPI-Beispiele ... 153

B.2 Variablendienste .. 153

B.2.1 Einfaches Lesen "read.c" .. 153
Referenz-Handbuch – DMS / API 7

Inhaltsverzeichnis
B.2.2 Zyklisches Lesen "acycle.c" ..163

B.2.3 Einfaches Schreiben "awrite.c" ...172

B.3 Alarmdienste "aalarm.c" ..187

B.4 Namensverwaltung "name.c" ...194

B.5 Setzen der Zeit "settime.c" ...203

B.6 Redundanzwechsel Primary - Secondary "toggle.c" ..205

Anhang C DMS-API-Dateien
C.1 dmstyp.h ..211

C.2 dmsapi.h ...234

C.3 dmserr.h ...250

Stichwortverzeichnis
8 Referenz-Handbuch – DMS / API

Hinweise zu diesem Handbuch

Stromschlag-Symbol: Weist auf Gefahren durch Stromschlag hin.

Vorsicht-Symbol: Weist auf Gefahren hin, die zu Personenschäden führen
können.

Achtung-Symbol: Weist auf wichtige Informationen oder Warnungen in
Zusammenhang mit dem im Text erläuterten Thema hin. Kann auf Gefahren
hinweisen, die zu Software-Datenverfälschungen oder Sachschäden führen
können.

Informations-Symbol: Weist den Leser auf wichtige Fakten und Voraussetzungen
hin.

Tipp-Symbol: Weist auf Ratschläge hin, z.B. zum Projektentwurf oder zur
Nutzung einer bestimmten Funktion.

Vorsicht-, Achtung-, Information- und Tipp-Symbole
In diesem Dokument werden die folgenden Hinweise verwendet, um für die Sicher-
heit relevante und andere wichtige Informationen hervorzuheben: Vorsicht, Ach-
tung und Information. Daneben existieren Tipps, um auf dem Leser nützliche
Hinweise zu geben. Die zugehörigen Symbole haben folgende Bedeutung:

Obwohl die mit Vorsicht bezeichneten Gefahren auf mögliche Personenschäden
hinweisen und die mit Achtung bezeichneten Gefahren auf mögliche Sachschäden
hinweisen, beachten Sie, dass die Benutzung beschädigter Ausrüstung zu Personen-
schäden, d.h. zu Verletzungen und auch zum Tode führen kann. Beachten Sie daher
unbedingt die mit Vorsicht und Achtung gekennzeichneten Hinweise.
Referenz-Handbuch – DMS / API 9

 Hinweise zu diesem Handbuch

Terminologie
Das Glossar enthält Bezeichnungen und Abkürzungen, die ABB-spezifisch sind
oder deren Gebrauch bzw. Definition von den in der Industrie üblichen Gepflogen-
heiten abweicht. Bitte machen Sie sich damit vertraut. Das Glossar finden Sie am
Ende des Engineering-Handbuchs Systemkonfiguration.

Typographische Konventionen
Zur Unterscheidung der verschiedenen Textelemente dienen in diesem Dokument
die folgenden Konventionen:

• Für die Bezeichnung von Tasten werden Großbuchstaben verwendet, wenn
diese auf der Tastatur benannt sind. Beispiel: Drücken Sie die ENTER-Taste.

• Drücken Sie STRG+C bedeutet, dass Sie die STRG-Taste gedrückt halten
müssen, während Sie die Taste C drücken (in diesem Fall heißt das z.B., dass
ein angewähltes Objekt kopiert wird).

• Drücken Sie ESC, E, C bedeutet, dass Sie die angegebenen Tasten
nacheinander in der angegebenen Reihenfolge drücken müssen.

• Die Bezeichnungen von Schaltflächen bzw. Buttons werden fett
hervorgehoben. Beispiel: Drücken Sie OK.

• Die Bezeichnungen von Menüs und Menüeinträgen werden fett dargestellt.
Beispiel: das Datei-Menü.

– Die folgende Darstellung wird für Menüaktionen verwendet: 
MenüName > MenüEintrag > UnterMenüEintrag
Beispiel: Wählen Sie Datei > Neu > Typ

– Das Start-Menü bezeichnet immer das Start-Menü auf der Windows-
Taskleiste.
10 Referenz-Handbuch – DMS / API

 Hinweise zu diesem Handbuch

• Eingabeaufforderungen und Systemmeldungen werden in der Schriftart
Courier dargestellt; Eingabe und Antworten des Anwenders werden in der
Schriftart Courier fett dargestellt.

Wenn Sie z. B. eine Eingabe machen, die außerhalb des zulässigen
Wertebereichs liegt, wird die folgende Meldung angezeigt:

Der eingegebene Wert ist ungültig. Der Wert muss
zwischen 0 und 300 liegen.

Oder Sie werden aufgefordert, die Zeichenfolge TIC132 in ein Feld
einzugeben. Die Zeichenfolge wird wie folgt in der Prozedur dargestellt:

TIC132

Variablennamen werden mit Kleinbuchstaben dargestellt.

sequence name
Referenz-Handbuch – DMS / API 11

 Hinweise zu diesem Handbuch

12 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows

1 Applikationsschnittstelle Freelance für
Windows

1.1 Allgemeine Beschreibung - Applikationsschnittstelle
DMS / API

steht für Digimatik Message Specification und Application programable Interface.

DMS ist ein Subset von MMS - Manufacturing Message Specification nach ISO
9506.

Der Applikationsrechner wird am Freelance -Systembus (Ethernet) betrieben und
nutzt mit DMS / API die Kommunikation in gleicher Weise wie Freelance intern
und damit alle zur Verfügung stehenden Möglichkeiten von Freelance.

DMS / API

• ist die Applikationsschnittstelle um in Anwendungsprogrammen auf einem
externen Rechner (Host) direkt mit Freelance zu kommunizieren.

• ist eine in "C" programmierte Funktionsbibliothek, die unter Windows läuft.

• wird zu einer programmierten Anwendung hinzugebunden und enthält alle
nötigen Hochsprachenkommandos um in einfacher Weise schnellen
Datenaustausch zwischen der Applikation und dem Freelance System zu
führen.

• ist im Client - Server Konzept realisiert. Der Applikationsrechner wird als
Gateway im Freelance Engineering aufgenommen und versorgt per Download
den Applikationsrechner mit den freigegebenen Messstellen auf welche die
Applikation zugreifen will.

• Das Setup von DMS / API wird auf Datenträger ausgeliefert und menügeführt
installiert in gleicher Weise wie alle Freelance Produkte.

Das DMS kommt in folgenden Freelance Applikationen zum Einsatz:

• Freelance Engineering
Referenz-Handbuch – DMS / API 13

1 Applikationsschnittstelle Freelance für Windows

• Freelance Operations

• Freelance - Prozessstationen

• Freelance - CSO Gateway

• Freelance - OPC Gateway

Die externen API-Anbindungen werden im Freelance Engineering als Gateway kon-
figuriert und geladen. Danach stehen auf allen Gatewaystationen die Freelance
Messstellen-Adressen zur Verfügung.
Das implementierte DMS-API gliedert sich in folgende Funktionsbereiche:

Flow chart._gr.bmp
14 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows MMS (Manufacturing Message Specification ISO

1.2 MMS (Manufacturing Message Specification ISO 9506)
MMS ist eine Norm um "Verständigungsschwierigkeiten" bei der Kommunikation
zwischen Rechnern in der industriellen Automatisierung zu vermeiden. Diese Norm
wurde 1988 als Internationaler Standard verabschiedet. Sie ging aus einer Initiative,
die General Motors zu Beginn der 80er Jahre als MAP (Manufacturing Automation
Protocol) startete, hervor.

Sie ist im OSI 7-Schichten Modell in der obersten Schicht, der Anwendungsschicht
(ApplicationLayer) angesiedelt.

Anwendungen sind:

- Prozessleittechnik

- Speicherprogrammierbare Steuerungen

- numerische Steuerungen

- Roboter

MMS versucht Nachrichten und Anweisungen, die zwischen den einzelnen System-
komponenten in einem heterogenen Rechnernetz ausgetauscht werden müssen, in
eine Sprache zu fassen.

Dabei liegt den Diensten des MMS ein Client-Server Modell zugrunde. Ein Client
stellt eine Dienstanforderung an einen Server. (Request). Der Server bearbeitet die-
sen Auftrag und gibt die Antwort (Response) an den Client zurück.

Anwendungsschicht (MMS)

Darstellungsschicht

Sitzungsschicht

Transportschicht

Netzwerkschicht

Sicherungsschicht

Physikalische Schicht
Referenz-Handbuch – DMS / API 15

DMS (Digimatik Message Specification) 1 Applikationsschnittstelle Freelance für Windows

MMS beschreibt alles, was ein Server zu verstehen und auszuführen hat. Dazu wer-
den Objekte definiert, mit denen etwas geschehen soll und Operationen auf diese
Objekte, die beschreiben, was mit diesen Objekten geschehen soll. Es gibt insge-
samt 16 verschieden Objekte und 79 Operationen für MMS.

1.3 DMS (Digimatik Message Specification)
DMS realisiert nur Teile des MMS. Bei der Erstellung des DMS wurde pragmatisch
vorgegangen:

– welche Kommunikations-Anforderungen gibt es

– welche MMS-Dienste gibt es, die diese Anforderungen erfüllen

Freelance ist ein klassisches Client/Server-Modell. Der PC (als Engineeringstation
bzw. Leitstation) regiert als Client und lässt von den MSR-Baugruppen Dienste
(Messen/Steuern/Regeln) ausführen.

Zwischen Client und Server besteht eine logische Verbindung. Beide Seiten erken-
nen, wann eine Verbindung abgebrochen wird bzw. wann nach einem Abbruch neu
aufgebaut wird.

Auf dem Engineering-PC werden Programme geschrieben, die in ausführbare Code
übersetzt werden und deren Inhalt auf die MSR-Karte geladen werden soll.

Diese hinuntergeladenen Programmen werden von der MSR-Baugruppe ausge-
führt, d.h. sie sind vom PC aus start- und stoppbar.

Die hinuntergeladenen Programme messen /steuern /regeln. Die Werte, die bei die-
sem Prozess entstehen, werden auf dem PC dargestellt bzw. archiviert.

Der Benutzer kann Werte des Prozesses lesen und aktiv verändern.

Grenzwerte, die während des Prozesses überschritten werden, werden auf dem PC
sofort als Adresse dargestellt.

1.4 DMS / MMS -Funktionsbereiche
Environment and General Management Services bieten Dienste zur Verwaltung
und Verbindungsbehandlung. Das Verbindungsmangement wurde im Freelance Sys-
tem nach den Bedürfnissen eines Prozessleitsystems optimiert.
16 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows DMS / MMS -Funktionsbereiche

Domain Management Services sind Dienste zum Laden und Verwalten von Pro-
gramm und Datenbereichen. Im DMS wurden folgende Dienste implementiert:

• Download (InitiateDL, DownloadSegment, TerminateDL)

• Upload (InitiateUL, UpLoadSegment, TerminateUpLoad)

• DeleteDomain

Dienste des Domain Managements sind nicht im DMS / API enthalten.

Program Invocation Management Services bietet Dienste zum kreieren, starten,
stoppen, zurücksetzen und löschen von Programmen.

Dabei wurde bei der Implementierung im DMS die Dienste CreatePI und DeletePI
"gespart". Sie werden automatisch durch Download bzw. Löschen der Domain
(TaskDomains) gelöscht bzw. kreiert.

• StartPI

• StopPI

• ResetPI

Variable Access Services dienen dem Lesen und Schreiben von Variablen aus dem
laufenden Prozess. DMS hat dazu folgende Dienste implementiert.

• Read

• Write

• Define Named Variable List

• Information Report; der Server sendet "unaufgefordert" diesen Report ohne
dass hierfür auf der DMS-Schicht eine Quittung verlangt wird. In Freelance
werden die Reports für Langzeitarchive von Kurvendaten, Störablaufprotokolle
und zum kurzfristigen Updaten von Wertefenstern/Trendkurven bzw. allen
Grafiken im Freelance Operations verwendet.

Event Management Services bieten ereignisgesteuerte Dienste wie Alarmierung und
Quittierung:

• GetAlarmSummary

• EventNotification

• Acknowledge EventNotification
Referenz-Handbuch – DMS / API 17

Adressierbare Freelance Objekte 1 Applikationsschnittstelle Freelance für Windows

Journal Management befasst sich mit dem Abspeichern und Abrufen von Informati-
onen. In Freelance gibt es hierfür die konfigurierbaren Bausteine:

• Trendbaustein

• Signalfolgeprotokol

Die Information in diesen Bausteinen kann über die Dienste des Variable Access
ausgelesen werden.

Freelance Name Management dient zum koordinierten Zugriff auf gültige Variab-
len- und MSR-Stellennamen in Freelance und Wandlung auf Freelance Adressen.

1.5 Adressierbare Freelance Objekte

1.5.1 Variablen

• vordefinierte Variablen (projektunabhängig)

• benutzerdefinierte Variablen

• benutzerdefinierte strukturierte Variablen

• Kurven und Störablaufprotokolle

• Variablen der MSR-Stellen

Alle Variablen werden über folgende Adressierung gelesen:

• Stationsnummer

• ObjektNummer

• KomponentNummer

• Typ der Variablen

Die Umwandlung von VariablenNamen -> Freelance Adressierung geschieht über
die Funktionen des Namensmanagement.

1.5.2 MSR-Stellen

• Funktionsbausteine

• Ablaufsteuerung
18 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows Systemobjekte

• MSR-Tasks

• MSR-Programmlisten

• MSR-IPC-Programme

MSR-Stellen werden folgendermaßen adressiert:

– Stationsnummer

– ObjektNummer

– KlassenNummer

1.5.3 Systemobjekte

• MSR-Ressource

1.6

Anwendungsschicht (DMS)

Schicht 6 (fehlt)

BasisTransport

TCP / UDP

IP-Protocol

CSMA/CD -Verfahren

Physikalische Schicht

Freelance -Kommunikationschichtenmodell

Auf Freelance wurde die Kommunikationsschicht aufgeteilt in eine DMS (Freelance
Message Specification)-Schicht und eine BTR(Basis-Transport)-Schicht. Die Kom-
munikation von einer Clientapplikation über das Netz zu einer Serverapplikation
läuft nach folgendem Schema:

ClientApplikationen-> DMS-> BTR-> TCP/IP-> Kabel-> TCP/IP-> BTR-> DMS
Server

Während die DMS-Schicht betriebssystemunabhängig in C implementiert wurde,
gibt es die BTR-Schicht betriebssystemabhängig für folgende Plattformen:
Referenz-Handbuch – DMS / API 19

Installation von DMS / API 1 Applikationsschnittstelle Freelance für Windows

• PSOS

• WINDOWS

Im betriebsystemabhängigen Kommunikationsteil werden die verschiedenen Kom-
munikations-Tasks verwaltet:

Unter PSOS / NT gibt es z.B. folgende verschiedene Tasks:

• ListenTask (wird nur gebraucht, falls Station serverfähig ist)

• SendeTasks (wartet an MailBox auf Sendeaufträge)

• ReceiveTasks (wartet an Socket auf eintreffende Daten)

• UDP-Tasks :

– Senden / Empfangen von zyklischen Variablen Listen

– Zeitsynchronisation

– Verbindungsaufbau

Die betriebssystemabhängige Kommunikationsschicht kennt weder die Struktur der
Kommunikations Pakete, noch die Stationsnummern der Stationen oder sonstige
Informationen.

Für eine Portierung auf ein anderes Betriebssystem müssen nur diese Schicht, sowie
Funktionen zur Speicher- und Semaphoren-Verwaltung neu implementiert werden.

1.7 Installation von DMS / API
Das DMS / API wird als Setup auf Datenträger ausgeliefert und ist wie alle Free-
lance-Produkte menügeführt auf dem Applikationsrechner zu installieren.

Soll DMS / API auf dem gleichen Rechner wie Freelance Engineering installiert
werden, muss das DMS / API ins Standard Verzeichnis von Freelance geladen wer-
den.

Die DLL von DMS / API müssen im gleichen Verzeichnis wie die von Freelance
sein.
20 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows Konfiguration des DMS / API-Gateway im

1.8 Konfiguration des DMS / API-Gateway im Freelance
Engineering

Damit Adressinformationen verfügbar sind, muss im Freelance Engineering jedes
Gateway im Projektbaum angelegt und konfiguriert werden.

Siehe auch Engineering-Handbuch Systemkonfiguration.

project_tree_gr.png

Soll unter der Konfiguration eine neue API/DMS-Ressource konfiguriert werden,
wird in der Konfiguration der Stationstyp Gateway-Station ausgewählt.

object_selection_gr.png
Referenz-Handbuch – DMS / API 21

Konfiguration des DMS / API-Gateway im Freelance Engineering 1 Applikationsschnittstelle

Beim Editieren des Gateway Kopf Dialoges kann der Gateway Typ festgelegt wer-
den:

• DCP-Gateway

• UNI-Gateway (für eigene API-Applikationen)

• OPC-Gateway

• TRN-Gateway

gateway_type_gr.png

Das Gateway stellt sich im Hardware-Editor als PC dar, da es aus Sicht der Prozess-
station wie eine Leitstation wirkt.

hw_struc_gr.png

Nach dem Einfügen des Gateways wird konfiguriert zu welchen Prozessstationen
das Gateway Lese- und Schreibdienste durchführen soll.

Zusätzlich muss konfiguriert werden, für welche Variablen und MSR-Stellen das
Gateway die Adressinformation bekommen soll. Neben einer Normalansicht gibt es
22 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows Konfiguration des DMS / API-Gateway im

in den Variablen und MSR-Stellen eine Stationsansicht in der für jede Variable und
jeden MSR-Stelle ein Lese- und/oder Schreibflag gesetzt werden kann.

conf_gateway_gr.png

Variablenliste

var_list_gr.png

MSR-Stellenliste
Referenz-Handbuch – DMS / API 23

Laden des DMS/API-Gateways 1 Applikationsschnittstelle Freelance für Windows

msr_list_gr.png

1.9 Laden des DMS/API-Gateways

1.9.1 Erstkonfiguration

Die Prozessstationen sind immer vor den Gateways zu laden. Nach dem Laden kön-
nen die Gateways auf die Freelance Adressinformation zugreifen.

1.9.2 Umkonfiguration

Bei Umkonfiguration der Prozessstationen müssen auf Prozessstationen und Gate-
ways die geänderten Objekte geladen werden. Die Prozessstation kennt weder Vari-
ablennamen noch MSR-Stellennamen sondern nur die DMS-Adressierung mit
Objektnummer und Komponentennummer.

Durch "ungeschicktes" Umkonfigurieren ist es möglich, dass 2 Objekte die Objekt-
nummer wechseln (Löschen und Neueinfügen von Objekten). In solchen Fällen
können Schreibzugriffe durch das Gateway auf die Prozessstation (nach dem Laden
der Prozessstation und vor dem Laden des Gateways) zu einem ungewollten Verhal-
ten führen.

Werden nur Objekte zu einer Prozessstation dazugefügt bzw. geändert und keine
Objekte gelöscht oder verschoben ändert sich die Adressierung der alten Objekte
24 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows Umkonfiguration

nicht. In diesem Fall erhält das Gateway nur Information über neue Objekte. Es
kann zu keiner Fehlbedienung durch das Gateway kommen.

Dies sollte bei der Erstellung einer eigenen DMS/API-Applikation berücksichtigt
werden.

Es gibt z.B. folgende Lösungsmöglichkeiten:

• "vor dem Laden der Prozessstationen durch Benutzereingriff das DMS/API-
Gateway in einen Konfigurationszustand bringen

• "wird aus Freelance Engineering heraus auf das DMS/API-Gateway vor dem
Laden der Prozessstation neu initialisiert, kann die zu schreibende Applikation
darauf reagieren.

• "die Versionskontrolle aktivieren:

– Lesezugriffe werden immer zugelassen

– Schreibzugriffe werden nur bei Versionsgleichheit zugelassen.

• "nach einer Umkonfiguration des Gateways eigene "Datenbank" überprüfen
und Lesezugriffe und AlarmSummary evtl. neu aufsetzen.

• "Die DMS/API-Applikation wird von jeder Umkonfigurierung des Gateways
durch Freelance Engineering über Callbackfunktionen benachrichtigt.
Referenz-Handbuch – DMS / API 25

DMS / API-Funktionsübersicht 1 Applikationsschnittstelle Freelance für Windows

1.10

Clientmanagement, Evironment and General Management Services

DMSAPI_Init Initialisieren einer DMS-Sitzung

DMSAPI_Exit Beenden einer DMS-Sitzung

DMSAPI_ConnectByName Verbindung zu einem DMS-Server aufbauen

DMSAPI_ConnectByAddr Verbindung zu einem DMS-Server aufbauen

DMSAPI_ConnectByNo Verbindung zu einem DMS-Server aufbauen

DMSAPI_Disconnect Verbindung zu einem DMS-Server aufbauen

DMSAPI_GetConnectionData Verbindung zu einem DMS-Server überprüfen

DMSAPI_SetSystemTime Uhrzeit im Freelance System setzen

DMSAPI_SetSystemTimeBy-DmsType Uhrzeit im Freelance System setzen

DMSAPI+_SetSystemTimeBy-String Uhrzeit im Freelance System setzen

DMSAPI_RestartResource Warm-, Kaltstarten bzw. Toggeln einer Free-
lance Station

DMS / API-Funktionsübersicht

Variable Access Services

DMSAPI_VLCreate Erzeugen einer Variablenliste

DMSAPI_VLAddWriteVarByNa-
me

Hinzufügen einer Variablen zum Schreiben

DMSAPI_VLAddReadVarByNa-
me

Hinzufügen einer Variablen zum Lesen

DMSAPI_VLAddWriteVarByAddr Hinzufügen einer Variablen zum Schreiben

DMSAPI_VLAddReadVarByAddr Hinzufügen einer Variablen zum Lesen
26 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows DMS / API-Funktionsübersicht

DMSAPI_VLChangeValue Ändern des Wertes innerhalb der Variablenliste

DMSAPI_VLDelVar Löschen einer Variablen aus Variablenliste

DMSAPI_VLClear Löschen aller Variablen aus einer Variablenliste

DMSAPI_VLRead Einfaches Lesen einer Variablenliste

DMSAPI_VLReadCycle Zyklisches Lesen einer Variablenliste

DMSAPI_VLWrite Einfaches Schreiben einer Variablenliste

DMSAPI_VLStopCycleVar Stoppen einer zyklischen Variablenliste

DMSAPI_VLDelete Löschen einer Variablenliste

Event Management Services

DMSAPI_GetAlarmSum-
mary

Anfordern des AlarmSummary eines DMS-Server. Ab diesem
Zeitpunkt sendet der Server automatisch alle anfallenden Alarme

DMSAPI_AckAlarmBy-
List

Durchführung der Quittierung mit vollständig ausgefüllten Liste

Client Receive

DMSAPI_RegisterClientCB Registrieren einer anwenderprogrammierten Call-
backFunktion, die bei Empfangen von DMS-Nachrich-
ten für den Client aufgerufen werden.

API_CallbackReceive CallbackReceiveFunktion wird beim Empfangen von
DMS-Nachrichten asynchron aufgerufen

Variable Access Services

DMSAPI_VLCreate Erzeugen einer Variablenliste
Referenz-Handbuch – DMS / API 27

DMS / API-Funktionsübersicht 1 Applikationsschnittstelle Freelance für Windows

Freelance Names Management

DMSAPI_SetProjectDir Setzen eines Projektpfades zum Laden / Speichern von
Konfigurationsinformation

DMSAPI_ChangeProject Wechsel auf ein anderes Projekt

DMSAPI_LockOV Sperren des Namensmanagement gegen Umkonfigurati-
on durch Freelance Engineering

DMSAPI_UnlockOV Aufheben der Sperrung

DMSAPI_GetProjectInfo Holen der aktuellen Projektversion

DMSAPI_GetFirstResourceInfo Anfordern der Konfigurationsinformation für die erste Sta-
tion

DMSAPI_GetNextResourceInfo Anfordern der Konfigurationsinformation für die alle wei-
teren Stationen

DMSAPI_GetFirstVarInfo Anfordern der Konfigurationsinformation für die erste Va-
riable

DMSAPI_GetNextVarInfo Anfordern der Konfigurationsinformation für die alle wei-
teren Variablen

DMSAPI_GetFirstTagInfo Anfordern der Konfigurationsinformation für die erste
MSR-Stelle

DMSAPI_GetNextTagInfo Anfordern der Konfigurationsinformation für alle weiteren
MSR-Stellen

DMSAPI_GetTagByAddr Anfordern der Konfigurationsinformation für eine be-
stimmte MSR-Stelle

DMSAPI_GetFirstCmpOfObjCls Anfordern der Konfigurationsinformation für die erste
Komponente einer Objektklasse

DMSAPI_GetNextCmpOfObjCls Anfordern der Konfigurationsinformation für alle weiteren
Komponenten einer Objektklasse
28 Referenz-Handbuch – DMS / API

1 Applikationsschnittstelle Freelance für Windows DMS / API-Funktionsübersicht

DMSAPI_GetVarnameByOPath Umwandlung eines Variablennamens in Freelance Ad-
ressinformation

DMSAPI_GetVarInfoByName Umwandlung einer Freelance Adressinformation in einen
Variablennamen

DMS Utilities

DMSAPI_SetVarCode Setzen der Umwandelformate

DMSAPI_GetValueByString Umwandlung String -> DMS value

DMSAPI_GetStringByValue Umwandlung DMS-Value - > string

DMSAPI_GetVarLen Länge die eine Variable innerhalb einer Variablenliste be-
nötigt

DMSAPI_DumpRecData Gibt die Struktur der Receivedaten auf STDOUT aus

Freelance Names Management
Referenz-Handbuch – DMS / API 29

DMS / API-Funktionsübersicht 1 Applikationsschnittstelle Freelance für Windows

30 Referenz-Handbuch – DMS / API

2 Basic Transport Application Interface (BTR)

2 Basic Transport Application Interface (BTR)

Die BasisTransport-Schicht ist protokollunabhängig. Es ist möglich sowohl mit dem
P-Protkoll (das Protokoll für AC 870P / Melody) als auch mit dem Freelance Proto-
koll aufzusetzen.

Dieses Kapitel kann übersprungen werden, falls das DMS-API auf einem Betriebs-
system läuft, auf dem die BTR-Schicht Implementiertung vorhanden ist. Auf ande-
ren Betriebssystemen muss die BTR-Schicht neu implementiert werden.

Die BTR-Schicht muss von den aufrufenden Applikationen initialisiert werden. (In
diesem Fall ist das DMS-API die Applikation und nicht die Appliktation, die das
DMS-API benutzt.)

Die Initialisierungsroutine heißt:

BTR_Init

Vor dem Beenden sollte die Applikation die Routine

BTR_Exit aufrufen.

Die BTR-Schicht verbindet eine Clientapplikation mit einer Serverapplikation.
Innerhalb der BTR-Schicht wird jede Verbindung durch einen eindeutigen Connec-
tionHandle identifiziert.

Die Applikationen stellen der BTR-Schicht drei "Callback-Funktionen" zur Verfü-
gung:

AbortProc, wird aufgerufen, wenn eine Verbindung abbricht. Als Übergabepara-
meter wird der ConnectionHandle und der Grund des Verbindungsabbruchs mitge-
teilt.

KeepAliveProc, wird aufgerufen, wenn innerhalb eines TimeOuts kein Sendeauf-
trag vorliegt. Übergabeparameter ist neben dem ConnectionHandle ein Buffer, in
den das (protokollspezifische) Paket zur Verbindungsüberwachung kodiert werden
muss.
Referenz-Handbuch – DMS / API 31

Funktionsweise für (TCPIP) 2 Basic Transport Application Interface (BTR)

ReceiveProc, wird aufgerufen, wenn Daten auf einer Verbindung ankommen. Über-
gabeparameter ist neben dem ConnectionHandle ein Buffer, in dem die Daten ste-
hen.

2.1 Funktionsweise für (TCPIP)
Die Serverapplikation ruft eine Prozedur "BTR_OpenServer" auf.

Die Serverapplikation übergibt dabei die drei CallbackFunktionen an die BTR-
Schicht.

Durch Aufruf der OpenServerProzedur wird eine Task (PSOS) / Thread
(WindowsNT) gestartet, die darauf wartet, dass ein Client versucht eine Verbindung
aufzubauen.

Bei jedem Verbindungsaufbau werden automatisch zwei weitere Tasks/Threads
gestartet:

• Send

• Empfang (Receive)
32 Referenz-Handbuch – DMS / API

3 DMS ClientManagement

3 DMS ClientManagement

Alle Dienste, die eine Aktion auf dem Ethernet auslösen, bzw. auf ein Ereignis auf
dem Ethernet warten, besitzen ein SyncFlag und ein TimeOut. Spätestens nach
Ablauf dieses Timeouts kehrt die Prozedur zurück. Das SynchronFlag kann fol-
gende Werte annehmen:

• synchron mit Receive (kommt die Antwort nicht innerhalb des Zeitintervalls,
muss sie mit Receive abgeholt werden)

• synchron mit Callback (kommt die Antwort nicht innerhalb des Zeitintervalls,
wird die Callback-Funktion aufgerufen)

• asynchron mit Receive (das Timeout gilt nur für das Senden der Nachricht)

• asynchron mit Callback (das Timeout gilt nur für das Senden der Nachricht)

Alle Prozeduren mit Antwort sind gekennzeichnet mit:

Die Antworten werden im Kapitel "Empfangen/Dekodieren von Daten" beschrie-
ben.

In vielen Prozeduren existiert der Fehler:

E_DMSAPI_INTERNAL_ERROR

In diesem Fall ist das DMS auf einen nicht bekannten Fehler gelaufen, z.B.:

• Die Applikation hat mit einem uninitialisierten Pointer auf Daten des DMS
geschrieben

• Das TCPIP ist aus unerklärlichen Gründen nicht mehr lauffähig.

Die Applikation sollte möglichst "benutzerdatenschonend" verlassen und neu
gestartet werden
Referenz-Handbuch – DMS / API 33

Environment and General Management Services 3 DMS ClientManagement

3.1 Environment and General Management Services

3.1.1 Initialisierung und Beendigung einer DMS-Sitzung

Das DMSAPI ist "Multiprojekting" fähig, d.h. eine DMSAPI-Applikation kann in
mehrenen Freelance -Prokjekten als Gateway mit verschiedenen Ressourcenum-
mern eingetragen werden. Jedes Freelance Engineering kann für "sein" Gateway die
Konfiguration hinunterladen. Über die verschiedenen Projekte kann die DMSAPI-
Applikation gleichzeitig auf die verschiedenen Ressourcen und Objekte der einzel-
nen Projekte zugreifen.
34 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Environment and General Management Services

Referenz-Handbuch – DMS / API 35

Environment and General Management Services 3 DMS ClientManagement

DMSAPI_Init

SYNTAX

DMS_RC DMSAPI_Init (

 DMS_RES_NOOwnResNo/* Own Resource No */,

 DMS_RES_TYPEOwnResType/* Own Resource Type */,

 DMS_INT16 NoOfSrvConn/* Number of ServerConnection */,

 DMS_BOOLEAN bStandardServer/* use of StandardServer */

)

Initialisierung der DMS-Applikationsschicht. Übergeben wird die eigene Ressour-
cenummer und die Anzahl der gleichzeitig bestehenden Serververbindungen. Soll
die zu schreibende Applikation von Freelance Engineering mit der Adressinforma-
tion versorgt werden, ist als Ressourcennummer die gleiche zu wählen, die in Free-
lance Engineering für das Gateway vergeben wurde. Die Anzahl der
Serververbindungen ist auf 1 zu setzen.

Jede Ressource kann nur ein Projekt gleichzeitig verwalten. Soll über das DMS-API
auf das Namensmanagement mehrerer Projekte gleichzeitig zugegriffen werden, ist
die Initialisierungsroutine mit verschiedenen Ressourcennummern mehrmals aufzu-
rufen. In den verschiedenen Projekten muss dann auch das Gateway mit diesen ver-
schiedenen Ressourcenummern konfiguriert werden.

Soll eine eigene DMSAPI-Serverapplikation geschrieben werden, ist als Wert für
den Parameter bStandardServer auf FALSE einzusetzen. In diesem Fall müssen die
Prozeduren aus Kapitel 7 benutzt werden.

Wird keine Serverfunktionalität benötigt, wird die NoOfServerConn auf 0 gesetzt.

Im DMSDEF.H stehen in der Section:

– DMSAPI_MAX_APPLICATION

– DMSAPI_MAX_CONNECTION
36 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Environment and General Management Services

Parameter:

• OwnResNo RessourcenNummer der eigenen Station innerhalb des Freelance
Systems. Logische DMS-Verbindungen bestehen immer zwischen 2
Ressourcen (Wert liegt zwischen 1 und 255). Auf einem Rechner können
mehrere logische Ressourcen initialisiert werden. Diese müssen
unterschiedliche Ressourcennummern bekommen.

• OwnResType: eigener RessourceTyp

– DMS_OS_DIGIVIS

– DMS_OS_DIGITOOL

– DMS_OS_EPROM

– DMS_OS_MSR

– DMS_OS_DDE_GWY

– DMS_OS_P_GWY

– DMS_OS_GWY
(dieser Typ wird für DMSAPI-Applikationen üblicherweise benutzt)

• NoOfSrvConn Anzahl der möglichen Serververbindungen

• bStandardServer:
TRUE: Applikation kann als Server zu Freelance Engineering eingesetzt
werden => Freelance Engineering kann die Adressinformation auf den Server
hinunterladen. Das Namensmangement wird durch das Laden aktiviert.
FALSE: Applikation kann eigene Serverfunktionen implementieren Possible
return values:


Mögliche Returnwerte:

E_DMSAPI_ALREADY_INIT
Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer schon initia-
lisiert war.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INTERNAL_ERROR Fehler bei der Initialisierung der DMS-Schicht.
Referenz-Handbuch – DMS / API 37

Verbindungsmanagement 3 DMS ClientManagement

DMSAPI_Exit

SYNTAX

DMS_RC DMSAPI_Exit (

 DMS_RES_NO OwnResNo /* Own Resource No */

)

Beenden der DMS-Applikationsschicht für eine Ressource. Alle an dieser Res-
source hängenden DMS-Objekte (Verbindungen, Variablen, ...) werden aufgeräumt.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station innerhalb des Freelance
Systems. Logische DMS-Verbindungen bestehen immer zwischen 2
Ressourcen. (Wert liegt zwischen 1 und 255).

Mögliche Returnwerte:

3.1.2 Verbindungsmanagement

Skizzierung des Verbindungsaufbau zwischen Client und Serverstation

E_DMSAPI_MAX_CONNECTION Die Anzahl der Serververbindungen überschreitet
die Anzahl der möglichen Verbindungen.

E_DMSAPI_MAX_APPLICATION Die Funktion kann nur von einer maximalen An-
zahl von Applikationen aufgerufen werden.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initiali-
siert war.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INTERNAL_ERROR Fehler beim Beenden der DMS-Schicht.

E_DMSAPI_ALREADY_INIT
Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer schon initia-
lisiert war.
38 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

• Die Clientstation sendet über UDP einen DMSNameServerrequest an die
beiden übergebenen IPAdressen und einen festeingestellten UDP-Port.

• Beide Serverstationen senden eine DMSNameServerResponse zurück. In
dieser Response steht als Information:
– Station ist Primary oder Secondary
– Station hat eine ControlPortNummer, auf der die TCPIP-Verbindung

aufgebaut werden kann

• Clientstation führt zum (als ersten antwortenden) Primary einen Connect auf
den übertragenden ControlPort aus

• Serverstation, die auf diesem Controlport mit einem "Listen" gewartet hat, lässt
die Verbindung öffnen.

• Clientstation schickt auf der geöffneten Verbindung ein DmsInit-Kommando,
in der sie folgende Information überträgt:
– Portnummer des UDP-Ports, an den die zyklischen Variablenlisten

gesendet werden sollen
– Timeout , mit der die Verbindung überwacht werden soll
– Versionsnummer der aktuellen DMS-Version
– eigene Ressourcenummer

• Serverstation schickt auf dieses DMSInit-Kommando eine DMSInit-
ResponseOwn resource number
– eigene Ressourcenummer
– eigener Ressourcetyp
– Versionsnummer

• Clientstation überprüft die zurückgebenen Werte und gibt den Status an die
Callbackfunktionen der Applikationen

Sicht einer DMSAPI-Applikation auf die Prozessstation

Die Callbackfunktionen werden automatisch bei Verbindungsauf- und abbau von
der DMSAPI-Schicht aufgerufen.

Die Funktionsbereiche ProgramInv. und Domainmanagement werden nur von Free-
lance Engineering genutzt.
Referenz-Handbuch – DMS / API 39

Verbindungsmanagement 3 DMS ClientManagement

DMSAPI_ConnectByAddr

SYNTAX

DMS_RC DMSAPI_ConnectByAddr(

 DMS_RES_NO OwnResNo /* Own Res No */,

 DMS_INT16 nBTRLnk /* BasisTranspSchicht */,

 DMS_UINT32 ulIPAddr1 /* 1.IPAdr. Res */,
40 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

 DMS_UINT32 ulIPAddr2 /* 2.IPAddr. Res */,

 DMS_RES_NO ResNo /* Resource No */,

 DMS_RES_TYPE ResType /* Resource Typ */,

 DMS_UINT16 uKeepAliveT /* KeepAliveTimeout */,

 DMS_CONN_HANDLE*lpConnHandle /* ConnectionHandle */,

 DMS_INT16 nSyncFlag /* Synchron Flag */,

 DMS_UINT32 ulProcT /* ProzedurTimeout */,

 DMS_UINT32 ulRecConnLen /* Grösse des Speichers auf den
 Pointer referenziert */,

 DMS_REC_CONN_DATA *RecConn /* RecStruct der Conn */

)

Verbindungsaufbau zu einer DMS-ServerStation: Der Rückgabewert ist ein Verbin-
dungshandle, über den später die verbundene Ressource identifiziert wird. Dadurch
ist es möglich, zu einer Ressource mehrere Verbindungen aufzubauen. Dann kann
z.B. eine Verbindung für Alarmierung, eine weitere für Aktualisierung oder Bedie-
nung benutzt werden. Es können aber auch alle Dienste auf einer Verbindung ausge-
führt werden. Handelt es sich bei der Serverstation um eine redundant ausgelegte
Station wird automatisch die Verbindung zur aktiven Station geöffnet. Zwischen
Client und Serverstation findet eine Verbindungsüberwachung statt. Die Verbindung
wird mit dem Parameter "KeepAliveTimeout" überwacht. Ist das Synchronflag auf
DMSAPI_SNYC gesetzt und wird die Verbindung innerhalb des angegebenen Pro-
zedurtimeout aufgebaut wird die ConnectionStruktur mit Werten gefüllt.

Nach einem Verbindungsabbruch wird die Verbindung automatisch neu aufgebaut.
Benötigt die Applikation diese Verbindung nicht mehr, ist die Prozedur DMSAPI_-
Disconnect aufzuru-fen.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• nBTRLnk: Gibt an über welche BTR-Schicht die DMS-Dienste übertragen
werden.
Referenz-Handbuch – DMS / API 41

Verbindungsmanagement 3 DMS ClientManagement

DMS_BTR_TCPIP (

DMS_BTR_REDLNK (Redundancy link on process station)

• ulIPAddr1: IPAdresse der ServerStation

• ulIPAddr2: 2. IPAdresse der ServerStation, falls diese redundant ausgelegt ist.

• ResNo: RessourcenNummer der Serverstation. Sind auf der ServerStation
mehrere RessourcenNummern installiert, wird die Verbindung zum richtigen
Server hergestellt.

• ResType: RessourcenTyp der Serverstation. Gültige Werte sind:
– DMS_OS_DIGIVIS

– DMS_OS_DIGITOOL

– DMS_OS_EPROM

– DMS_OS_MSR (usually connected to this station type)

– DMS_OS_DDE_GWY

– DMS_OS_P_GWY

– DMS_OS_GWY

• uKeepAliveT: Verbindungsüberwachung in Sekunden/ Millisekunden
zwischen den beiden Ressourcen, d.h. ein Verbindungabbruch (z.B. bei
Kabelbruch, Ausfall der verbundenen Ressource, o.ä.) wird spätestens nach
Ablauf des Timeouts erkannt. Senden die beiden Ressourcen keine Daten,
tauschen sie innerhalb des halben Timeouts ein KeepAlivePaket aus.

• lpConnHandle: Nach dem Verbindungsaufbau wird der Datenaustausch auf
dieser Verbindung über diesen ConnectionHandle adressiert.

• nSyncFlag

DMSAPI_SYNCHRON: Die Prozedur wartet, solange wie das angegebene "Pro-
zedurTimeout", auf den Verbindungsaufbau. Wird die Verbindung aufgebaut liefert
die RecStruct gültige Werte zurück. Auch nach Ablauf des Timeouts läuft der Ver-
bindungsaufbau weiter.

DMSAPI_ASYNCHRON: Der Verbindungsaufbau wird über die Callback-Funk-
tion angezeigt bzw. kann über die Funktion DMSAPI_GetConnectionStatus gelesen
werden. Das Prozedurtimeout wird nicht ausgewertet.
42 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

• ulProcT:

DMSAPI_NO_TIMEOUT kein Timeout Wert in Millisekunden DMSAPI_WAIT_-
FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag ausgeführt ist, bzw. er
nicht ausgeführt wer-den kann.

ulRecConnLen: wird nur bei Benutzung des Synchronflags DMSAPI_SYNCHRON
benutzt. Dann hat es die Länge der Structur DMS_REC_CONN_DATA

• RecConn:

typedef struct DMS_REC_CONN_DATA

{DMS_RES_NO OwnResNo; /* Eigene RessourcenId */

 DMS_RES_NO ResNo; /* RessourcenId der Station */

 DMS_RES_TYPE ResType; /* RessourcenTyp der Serverstation */

DMS_CONN_STATUS ConnStatus; /* Verbindungsstatus der Station */

DMS_UINT32 ulIPAddr; /* IPAdresse der verb. Station */

DMS_UINT32 ulBoardType; /* BoardType*/

DMS_UINT32 ulConnFlag; /* */

} DMS_REC_CONN_DATA;

Der ConnStatus kann folgende Werte annehmen:

DMS_CONN_OK, /* alles in Ordnung */

DMS_CONN_ABORT, /* keine Verbindung */

DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */

DMS_CONN_INVALID_RES_NO,/* falsche Ressourcennummer */

DMS_CONN_NO_OS, /* kein Betriebssystem */

DMS_CONN_SECONDARY, /* Nur zum Secondary connected =>

falsche Konfiguration */

DMS_CONN_INVALID_VERSION /* falsche DMS_Version */
Referenz-Handbuch – DMS / API 43

Verbindungsmanagement 3 DMS ClientManagement

Der ulBoardType kann folgende Werte annehmen:

– DMS_CPU_UNKNOWN
– DMS_CPU_DCP02
– DMS_CPU_DCP10
– DMS_CPU_PC

Das ulConnFlag kann folgende Werte annehmen:

DMS_RES_PRIMARY /* Verbindung zu einem Primary Server */

DMS_RES_SECONDARY /* Verbindung zu einem Secondary Server */

DMS_RES_CLIENT /* Verbindung zu einem Client */

Mögliche Returnwerte:

DMSAPI_ConnectByName

SYNTAX

DMS_RC DMSAPI_ConnectByName (

DMS_RES_NO OwnResNo /* Own Resource No */,

DMS_CHAR *ResName /* Name der resource */,
DMS_CONN_HANDLE *lpConnHandle /* ConnectionHandle */,

DMS_INT16 nSyncFlag /* Synchron flag */,

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_TIMEOUT Verbindungsaufbau konnte innerhalb des angebenen
Timeouts nicht durchgeführt werden.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsaufbau

E_DMSAPI_MAX_CONNECTION Die DMS-Schicht erlaubt nur eine maximale Anzahl von
Verbindungen.
44 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_UINT32 ulProcT /* Prozedur timeout */,

DMS_UINT32 ulRecConnLen /*Größe des Speichers auf
 den Pointer referenziert */,

DMS_REC_CONN_DATA *RecConn /* RecStruct der Conn. */

)

Die Prozedur baut die Verbindung zu einer DMS-Ressource auf. Für die eigene Res-
source muss das von Freelance Engineering geladene Projekt greifbar sein. Der Res-
sourcennname wird über die Funktionen des Namensmanagemet umgewandelt zu:

• BTRLnk

• IPAddr1

• IPAddr2

• KeepAliveTimeout

• ResourceNo

• ResourceType

Verbindungsaufbau zu einer DMS-ServerStation: Der Rückgabewert ist ein Verbin-
dungshandle, über den später die verbundene Ressource identifiziert wird. Dadurch
ist es möglich, zu einer Ressource mehrere Verbindungen aufzubauen. Dann kann
z.B. eine Verbindung für Alarmierung, eine weitere für Aktualisierung oder Bedie-
nung benutzt werden. Es können aber auch alle Dienste auf einer Verbindung ausge-
führt werden. Handelt es sich bei der Serverstation um eine redundant ausgelegte
Station wird automatisch die Verbindung zur aktiven Station geöffnet. Zwischen
Client und Serverstation findet eine Verbindungsüberwachung statt. Die Verbindung
wird mit dem Parameter KeepAliveTimeout überwacht. Ist das Synchronflag auf
DMSAPI_SNYC gesetzt und wird die Verbindung innerhalb des angegebenen Pro-
zedurtimeout aufgebaut wird die ConnectionStruktur mit Werten gefüllt .

Nach einem Verbindungsabbruch wird die Verbindung automatisch neu aufgebaut.
Benötigt die Applikation diese Verbindung nicht mehr, ist die Prozedur DMSAPI_-
Disconnect aufzuru-fen.

Parameter
Referenz-Handbuch – DMS / API 45

Verbindungsmanagement 3 DMS ClientManagement

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ResName: Name der Ziel-Ressource, wie er in Freelance Engineering
konfiguriert wurde. .

• lpConnHandle: Nach dem Verbindungsaufbau wird der Datenaustausch auf
dieser Verbindung über diesen ConnectionHandle adressiert.

• nSyncFlag

DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene Proze-
durTimeout, auf den Verbindungsaufbau. Wird die Verbindung aufgebaut liefert die
RecStruct gültige Werte zurück. Auch nach Ablauf des Timeouts läuft der Verbin-
dungsaufbau

DMSAPI_ASYNCHRON: Der Verbindungsaufbau wird über die Callback-Funk-
tion angezeigt bzw. kann über die Funktion DMSAPI_GetConnectionStatus gelesen
werden. Das Prozedurtimeout hat keine Bedeutung.

• ulProcT: 
DMSAPI_NO_TIMEOUT kein Timeout Wert in Millisekunden

 DMSAPI_WAIT_FOREVER:

Prozedur kehrt erst zurück, wenn der Auftrag ausgeführt ist, bzw. er nicht ausge-
führt werden kann.

• ulRecConnLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt. Dann hat es die Länge der Structur
DMS_REC_CONN_DATA

• RecConn:

typedef struct DMS_REC_CONN_DATA {
 DMS_RES_NO OwnResNo; /*Eigene Stationsnummer */

 DMS_RES_NO ResNo; /* StationsNummer */

 DMS_RES_TYPE ResType; /* RessourcenTyp der
 Serverstation*/

46 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_CONN_STATUSConnStatus; /* Verbindungsstatus der Station*/
 DMS_UINT32 ulIPAddr; /*IPAdresse der verb. Station*/
 DMS_UINT32 ulBoardType; /* Board type

 DMS_UINT32 ulConnFlag; /* */

} DMS_REC_CONN_DATA;

Der ConnStatus kann folgende Werte annehmen:

DMS_CONN_OK, /* alles in Ordnung */

DMS_CONN_ABORT, /* keine Verbindung */

DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */

 DMS_CONN_INVALID_RES_NO, /* falsche
 Ressourcennummer */
 DMS_CONN_NO_OS, /* kein Betriebssystem */
 DMS_CONN_SECONDARY, /* Nur zum Secondary
 connected => falsche Konfiguration */
 DMS_CONN_INVALID_VERSION /* falsche DMS_Version */

Der ulBoardType kann folgende Werte annehmen:

DMS_CPU_UNKNOWN

DMS_CPU_DCP02

DMS_CPU_DCP10

DMS_CPU_PC

Das ulConnFlag kann folgende Werte annehmen:


DMS_RES_PRIMARY /* Verbindung zu einem Primary Server*/
DMS_RES_SECONDARY /* Verbindung zu einem Secondary Server*/
DMS_RES_CLIENT /* Verbindung zu einem Client */
Referenz-Handbuch – DMS / API 47

Verbindungsmanagement 3 DMS ClientManagement

Mögliche Returnwerte:

DMSAPI_ConnectByNo

SYNTAX

DMS_RC DMSAPI_ConnectByNo(

DMS_RES_NO OwnResNo /* Own Resource No */,
DMS_RES_NO ResNo /* Resource No */,DMS_-
CONN_HANDLE *lpConnHandle /* ConnectionHandle */,

DMS_INT16 nSyncFlag /* Synchron flag */,

DMS_UINT32 ulProcT /* Prozedurtimeout */,

DMS_UINT32 ulRecConnLen /* Größe des Speichers

 auf den Pointer referenziert */,

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initia-
lisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information über die angegebene Station
vorhanden

E_DMSAPI_NO_RESOURCE Die Station kann zur Zeit nicht connected wer-
den, da sich noch Stationen im Zustand dis-
connecting befinden.

E_DMSAPI_TIMEOUT Verbindungsaufbau konnte innerhalb des ange-
gebenen Timeouts nicht durchgeführt werden.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsaufbau

E_DMSAPI_MAX_CONNECTION Die DMS-Schicht erlaubt nur eine maximale An-
zahl von Verbindungen.
48 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

DMS_REC_CONN_DATA *RecConn /*RecStruct der Conn */

)

Die Prozedur baut die Verbindung zu einer DMS-Ressource auf. In der eigenen Res-
source muss das von Freelance Engineering geladene Projekt greifbar sein. Die Res-
sourcennnummer wird über die Funktionen des Namensmanagemet umgewandelt
zu:

• BTRLnk

• IPAddr1

• IPAddr2

• KeepAliveTimeout

• ResourceNo

• ResourceTyp

Verbindungsaufbau zu einer DMS-ServerStation: Der Rückgabewert ist ein Verbin-
dungshandle, über den später die verbundene Ressource identifiziert wird. Dadurch
ist es möglich, zu einer Ressource mehrere Verbindungen aufzubauen. Dann kann
z.B. eine Verbindung für Alarmierung, eine weitere für Aktualisierung oder Bedie-
nung benutzt werden. Es können aber auch alle Dienste auf einer Verbindung ausge-
führt werden. Handelt es sich bei der Serverstation um eine redundant ausgelegte
Station wird automatisch die Verbindung zur aktiven Station geöffnet. Zwischen
Client und Serverstation findet eine Verbindungsüberwachung statt. Die Verbindung
wird mit dem Parameter KeepAliveTimeout überwacht. Ist das Synchronflag auf
DMSAPI_SNYC gesetzt und wird die Verbindung innerhalb des angegebenen Pro-
zedurtimeout aufgebaut wird die ConnectionStruktur mit Werten gefüllt .

Nach einem Verbindungsabbruch wird die Verbindung automatisch neu aufgebaut.
Benötigt die Applikation diese Verbindung nicht mehr, ist die Prozedur DMSAPI_-
Disconnect aufzuru-fen.

Parameter

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ResNo: Nummer der Ziel-Ressource, wie sie in Freelance Engineering
konfiguriert wurde.
Referenz-Handbuch – DMS / API 49

Verbindungsmanagement 3 DMS ClientManagement

• lpConnHandle: Nach dem Verbindungsaufbau wird der Datenaustausch auf
dieser Verbindung über diesen ConnectionHandle adressiert.

• nSyncFlag

DMSAPI_SYNCHRON: Die Prozedur wartet, solange wie das
angegebene ProzedurTimeout, auf den Verbindungsaufbau. Wird die
Verbindung aufgebaut liefert die RecStruct gültige Werte zurück. Auch
nach Ablauf des Timeouts läuft der Verbindungsaufbau

DMSAPI_ASYNCHRON: Der Verbindungsaufbau wird über die
Callback-Funktion angezeigt bzw. kann über die Funktion
DMSAPI_GetConnectionStatus gelesen werden. Das Prozedurtimeout hat
keine Bedeutung.

• ulProcT:

DMSAPI_NO_TIMEOUT kein timeout

Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag ausge-
führt ist, bzw. er nicht ausgeführt werden kann.

• ulRecConnLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt. Dann hat es die Länge der Structur
DMS_REC_CONN_DATA

• RecConn:

typedef struct DMS_REC_CONN_DATA {

DMS_RES_NO OwnResNo; /* Eigene Stationsnummer */

DMS_RES_NO ResNo; /* StationsNummer der Station */

DMS_RES_TYPE ResType; /*RessourcenTyp der Serverstation */

DMS_CONN_STATUS ConnStatus; /*Verbindungsstatus der Station */

DMS_UINT32 ulIPAddr; /*IPAdresse der verb. Station */

DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT32 ulConnFlag; /* */

} DMS_REC_CONN_DATA;
50 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

Der ConnStatus kann folgende Werte annehmen:

DMS_CONN_OK, /* alles in Ordnung */

DMS_CONN_ABORT, /* keine Verbindung */

DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */

DMS_CONN_INVALID_RES_NO, /* falsche Ressourcennummer */

DMS_CONN_NO_OS, /* kein Betriebssystem */

DMS_CONN_SECONDARY, /* Nur zum Secondary connected =>

 falsche Konfiguration */

DMS_CONN_INVALID_VERSION /* falsche DMS_Version */

Der ulBoardType kann folgende Werte annehmen:
– DMS_CPU_UNKNOWN
– DMS_CPU_DCP02
– DMS_CPU_DCP10
– DMS_CPU_PC

Das ulConnFlag kann folgende Werte annhemen:

DMS_RES_PRIMARY /* Verbindung zu einem Primary Server r */

DMS_RES_SECONDARY /* Verbindung zu einem Secondary
 Server */

DMS_RES_CLIENT /* Verbindung zu einem Client */

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die
DMS-Schicht für diese Ressourcennummer
nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_NO_CONF kein Projekt vorhanden
Referenz-Handbuch – DMS / API 51

Verbindungsmanagement 3 DMS ClientManagement
 DMSAPI_Disconnect

SYNTAX

DMS_RC DMSAPI_Disconnect(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */

)

Die Funktion führt einen geregelten Verbindungsabbruch zur angegebenen Res-
source durch. Vor dem Beenden einer DMS-Sitzung sollten alle Ressourcen wieder
freigegeben werden. Das Connhandle wird nicht nach Abschluss der Prozedur frei-
gegeben, sondern erst nach dem geregelten Verbindungsabbau. Vorher werden noch
die angegebenen CallbackFunktionen aufgerufen, d.h erst nach Aufruf der Call-
backfunktionen werden die Handles freigegeben.

Parameter:

ConnHandle: ConnectionHandle, der beim Aufruf der Prozedur DMSAPI_Connect
zurückgegeben wurde .

E_DMSAPI_INVALID_CONF keine Information über die angegebene Sta-
tion vorhanden

E_DMSAPI_NO_RESOURCE Die Station kann zur Zeit nicht connected
werden, da sich noch Stationen im Zustand
disconnecting befinden

E_DMSAPI_TIMEOUT IVerbindungsaufbau konnte innerhalb des
angegebenen Timeouts nicht durchgeführt
werden.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsaufbau.

E_DMSAPI_MAX_CONNECTION Die DMS-Schicht erlaubt nur eine maximale
Anzahl von Verbindungen.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die
DMS-Schicht für diese Ressourcennummer
nicht initialisiert wurde.
52 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

Mögliche Returnwerte:

DMSAPI_GetConnectionData

SYNTAX

DMS_RC DMSAPI_GetConnectionData(

DMS_CONN_HANDLE ConnHandle/* ConnectionHandle */,

 DMS_UINT32 ulRecConnLen /* Größe des Speichers auf
 den Pointer referenziert*/

DMS_REC_CONN_DATA *RecConn /* ReceiveStructure of Conn. */

)

Die Funktion liefert zu einem gültigen Verbindungshandle die Verbindungsstruktur
zurück. Ist das DMS ohne Callback-Funktion installiert, muss über diese Funktion
der Verbindungsstatus der einzelnen Ressourcen kontrolliert werden.

Parameter:

• ConnHandle: ConnectionHandle, der beim Aufruf der Prozedur
DMSAPI_Connect zurückgegeben wurde .

• ulRecConnLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt. Dann hat es die Länge der Structur
DMS_REC_CONN_DATA

• RecConn:

typedef struct DMS_REC_CONN_DATA {

DMS_RES_NO OwnResNo; /*Eigene Stationsnummer */

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_CONN_HANDLE

Es wurde kein gültiger Connectionhand-
le übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsabbau
Referenz-Handbuch – DMS / API 53

Verbindungsmanagement 3 DMS ClientManagement

DMS_RES_NO ResNo; /*StationsNummer der Station */

DMS_RES_TYPE ResType; /* RessourcenTyp der Serverstation */

DMS_CONN_STATUSConn Status; /* Verbindungsstatus der Station */

DMS_UINT32 ulIPAddr; /*IPAdresse der verbundenen Station */

DMS_UINT32 ulBoardType; /* BoardType */

DMS_UINT32 ulConnFlag; /* */

} DMS_REC_CONN_DATA;

Der ConnStatus kann folgende Werte annehmen:

DMS_CONN_OK, /*alles in Ordnung */

DMS_CONN_ABORT, /* keine Verbindung */

DMS_CONN_INVALID_RES_TYPE, /* falscher RessourceTyp */

DMS_CONN_INVALID_RES_NO, /* falsche Ressourcennummer */

DMS_CONN_NO_OS, /* kein Betriebssystem */

DMS_CONN_SECONDARY, /* Nur zum Secondary connected =>

 falsche Konfiguration*/

DMS_CONN_INVALID_VERSION /* falsche DMS_Version */

Der ulBoardType kann folgende Werte annehmen:

– DMS_CPU_UNKNOWN
– DMS_CPU_DCP02
– DMS_CPU_DCP10
– DMS_CPU_PC

Das ulConnFlag kann folgende Werte annehmen:

DMS_RES_PRIMARY /* Verbindung zu einem Primary Server */

DMS_RES_SECONDARY /* Verbindung zu einem Secondary Server */

DMS_RES_CLIENT /* Verbindung zu einem Client */
54 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Verbindungsmanagement

Mögliche Returnwerte:

DMSAPI_SetSystemTime

SYNTAX

DMS_RC DMSAPI_SetSystemTime(

SYSTEMTIME Time /* Zeit */[Pointer to GMT]

)

Die Funktion sendet die angegebene Zeit als Broadcast auf dem Ethernet an alle
angeschlossenen Freelance-Stationen. Es gibt keine Quittung, ob dieses Zeitpaket
bei irgendeiner Station angekommen ist.

Unter Windows lässt sich die aktuelle Uhrzeit über die Funktion GetLocal auslesen.

Parameter:

• Time: Typ ist der WindowsTyp SYTEMTIME, der die zu stellende Zeit
beinhaltet.

E_DMSAPI_NOT_INIT
Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_CONN_HANDLE

Es wurde kein gültiger Connectionhand-
le übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Verbindungsauf-
bau
Referenz-Handbuch – DMS / API 55

Verbindungsmanagement 3 DMS ClientManagement

Mögliche Returnwerte:

DMSAPI_RestartResource

SYNTAX

DMSAPI_RestartResource(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_RESTART_REASON RestartRea /* RestartReason */

)

Diese Prozedur führt auf der Freelance Prozessstation einen Kalt- oder Warmstart
durch.

Nach dem Start wird die Prozessstation neu gebootet. D.h. die Verbindung ab- und
aufgebaut.

Parameter:

• Connhandle: ConnectionHandle für diese Ressource

– RestartReason

DMSAPI_RESTART_WARM: Warmstart der Prozessstation

DMSAPI_RESTART_COLD: Kaltstart der Prozessstation
 DMSAPI_RESTART_TOGGLE: Umschaltung der Prozessstation

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht für diese Ressour-
cennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft. Es
werden keine Zeiten vor 1984 (Beginn
der MMS-Time) gesendet

E_DMSAPI_INTERNAL_ERROR Interner Fehler beim Zeitsenden
56 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Variable Access Services

von Primary zu Secondary. Diese Befehl kann nur an eine redundante Prozesssta-
tion gesendet werden.

Mögliche Returnwerte:

3.2 Variable Access Services
Über die Dienste des Variablenmanagements können Daten von einem DMS-Ser-
ver:

• einmalig gelesen

• zyklisch gelesen

• einmalig geschrieben werden.

Über das DMS-API werden vollständige Variablenlisten gelesen und geschrieben.
Es müssen für die verschiedenen Dienste (Einmaliges Lesen, Einmaliges Schreiben,
Zyklisches Lesen) leere Listen erzeugt werden, in die dann Variablen eingefügt wer-
den. Alle Variablen innerhalb einer Variablenliste werden zum gleichen Zeitpunkt
gelesen bzw. geschrieben. Gleicher Zeitpunkt heißt hier, dass die Berechnung der
MSR-Funktionen und Tasks für die Dauer der Variablenlistenoperation unterbro-
chen wird.

Nach Beendigung der Lese- bzw. Schreiboperation kann die Variablen-Liste folgen-
dermaßen weiterverwendet werden:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wur-
de.

E_DMSAPI_NO_CONNECTION Keine Verbindung zu dieser Station.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_CONN_HANDLE Es wurde kein gültiger Connecti-
onhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 57

Achtung !!! 3 DMS ClientManagement

==> Löschen von vorhandenen Variablen aus der Variablenliste

==> Hinzufügen von neuen Variablen in die Variablenliste

==> Ändern von Werten innerhalb der Variablenliste

==> Löschen von allen Variablen aus der Variablenliste

==> Löschen der Variablenliste

Danach kann der Lese bzw.Schreibdienst erneut ausgeführt werden.

Nicht mehr benötigte Variablenlisten müssen immer explizit gelöscht werden. Auch
beim Verbindungsabbruch zu einer Station muss die Variablenliste gelöscht werden.
Nach dem Löschen einer Variablenliste wird für diese Variablenliste nichts mehr
empfangen. Wird das Löschen von Variablenlisten von der Applikation "vergessen",
kann die Applikation nach einer bestimmten Anzahl von verlorengegangenen Varia-
blenlisten keine neue mehr kreieren.

Zyklische Variablenlisten müssen vor Änderungen gestoppt werden und können
nach dem Ändern neu gestartet werden. Auch nach dem Stoppen einer Variablen-
liste wird für diese Variablenliste nichts mehr empfangen.

Einmalig zu lesende oder zu schreibende Variablenlisten lassen sich erst nach Emp-
fang der Antwort ändern. (Es macht wenig Sinn Variablenlisten vor Empfang der
Antwort zu löschen)

In einer Variablenliste können nur Variablen der gleichen Station enthalten sein.

3.3 Achtung !!!
Das Lesen / Schreiben von Variablen belastet den DMS-Server. Werden die Lese-
oder Schreibroutinen aus dem API zyklisch aufgerufen, eventuell so schnell wie
möglich, führt dies auf den Prozessstation zu einer CPU-Belastung von bis zu 80 %.
Deswegen sollten folgende Regeln beachtet werden:

• für zyklische Leseaufträge auch den Dienst ReadCycleVarList benutzen und
nicht selbst zyklisch den Dienst ReadVarList benutzen.
58 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Achtung !!!

• zum Lesen und Schreiben möglichst viele Aufträge in einer Variablenliste
durchführen und nicht jeden Variablendienst in einer eigenen Variablenliste
durchführen. Erst Variablenanforderungen sammeln und dann durchführen.

Im normalen Betrieb antwortet die Prozessstation nach einer Zeit von 20 -100 msec.

Die Struktur der Variablenliste ist auf Seite B-70, Empfangen / Dekodieren von
Daten beschrieben.

Die Prozeduren für Variablenlistenzugriffe lassen sich in folgendermaßen gliedern:

Erzeugen einer Variablenliste: DMSAPI_VLCreate

Ändern der Variablenliste: : DMSAPI_VLAddWriteVarByName(nur für Write)

 DMSAPI_VLAddReadVarByName(nur für Read)
 DMSAPI_VLAddWriteVarByAddr(nur für Write)
 DMSAPI_VLAddReadVarByAddr(nur für Read)
 DMSAPI_VLChangeValue (nur für Write)
 DMSAPI_VLDelVar
 DMSAPI_VLClear

einfache Variablendienste: DMSAPI_VLRead
 DMSAPI_VLWrite

zyklische Variablendienste: DMSAPI_VLReadCycle

stoppen zykl. Variablenlisten:DMSAPI_VLStopCycle

Löschen von Variablenlisten:DMSAPI_VLDelete
Referenz-Handbuch – DMS / API 59

Achtung !!! 3 DMS ClientManagement

Lebensdauer einer Variablenliste für Lese- und Schreibdienste
60 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

Lebensdauer einer Variablenliste für zyklische Lesedienste

3.3.1 DMSAPI_VLCreate

SYNTAX

DMS_RC DMSAPI_VLCreate(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 DMS_INT16 nVLService /* Art des VarList Service */,

DMS_HANDLE *lpDmsHandle /* Identifier für Varlist */

)

Durch diese Prozedur wird der Speicher und ein eindeutiger DMS-Handle für eine
DMS-Variablenliste erzeugt. Nach dem Erzeugen einer Variablenliste können Varia-
blen in diese Liste eingefügt werden.
Referenz-Handbuch – DMS / API 61

DMSAPI_VLCreate 3 DMS ClientManagement

Gefüllte Variablenlisten können über die Dienste Read/ Readcycle/ Write genutzt
werden.

Speicher und DMS-Handle werden nur über die Funktion DMSAPI_DeleteVarList
gelöscht.

Parameter:

• Connhandle: ConnectionHandle für diese Ressource

• nVLService:

DMSAPI_VL_SINGLE_READ: einmaliges Lesen dieser Variablenliste

DMSAPI_VL_CYCLE_READ: zyklisches Lesen dieser Variablenliste

DMSAPI_VL_SINGLE_WRITE: einmaliges Schreiben dieser VariablenlistelpD-
msHandle Handle dieser Variablenliste, über den alle weiteren Operationen auf
diese Variablenliste gesteuert werden.

Mögliche Returnwerte:

DMSAPI_VLAddReadVarByName

SYNTAX

DMS_RC DMSAPI_VLAddReadVarByName(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_CHAR *lpszVarname /* Variablenname */,

E_DMSAPI_NOT_INIT
Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Keine Ressourcen(Speicher / DMSHandles), um die-
se Variablenliste zu kreieren

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_CONN_HANDLE Es wurde kein gültiger Connectionhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
62 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer auf RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in RecVarStruct */

)

Diese Prozedur fügt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird über den Variablennamen adressiert. Die Prozedur wandelt Variablen-
namen zu DMS-Adressen um. Dadurch benötigt sie mehr Rechenzeit als die Rou-
tine

DMSAPI_VLAddVarReadByAddr.

Nachdem eine Variablenliste gefüllt wurde, kann der gewünschte Dienst ausgeführt
werden. Erst nachdem ein Lesedienst beendet (bzw. gestoppt) wurde, kann die Vari-
ablenliste über die Add und DeleteDienste verändert werden.

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benötigen, lässt
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zurück. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergröße einer Variablenliste an. Die Struktur DMS_REC_-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• lpszVarname: Name der zu lesenden Variablen

• lplpRecVar: Struktur der ausgefüllten Variablenliste

typedef struct DMS_REC_VARLIST_DATA {

DMS_HANDLEDmsHandle;

DMS_INT16 ActVarNo; /* aktuelle Anzahl von Variablen */

DMS_INT16 MaxVarNo; /* max. Anzahl von Variablen mit

 leeren Einträgen */

DMS_INT16 FreeBytes; /* Anzahl von freien Bytes in der VL */
Referenz-Handbuch – DMS / API 63

DMSAPI_VLCreate 3 DMS ClientManagement

DMS_REC_VAR *lpVar; /*Eigentliche Variablen-Liste */

} DMS_REC_VARLIST_DATA;

Die Struktur DMS_REC_VAR:

typedef struct DMS_REC_VAR {

DMS_VAR_STATUS VarStatus; /* Status der variable */

DMS_VAR_RC VarRc; /* ReturnCode nach Dienst */

DMS_OBJ_PATH ObjPath; /* ObjektPfad auf Server */

DMS_CHAR VarName; /* Variablenname bzw. NULL */

DMS_UINT32 ValueSize; /* Größe des ValueBuffer */

DMS_VAR_TYPE VarType; /*Typ des Wertes */

DMS_VALUE *VarValue; /* Wert der Variablen oder
 NULL */

} DMS_REC_VAR;

Der VarStatus kann folgende Werte annehmen:

DMS_VAR_NOT_VALID Nach Einfügen des Wertes und vor Ausführen des
 Dienstes bzw. falls bei Ausführung des Dienstes Fehler
 auftrat

DMS_VAR_CHANGED Nach Ausführen eines Dienstes

DMS_VAR_DELETED Variable wurde über DMSAPI_VLDelVar gelöscht,
 der Eintrag ist noch vorhanden

Der VarRc kann verschiedene Fehler vom Server annehmen. Siehe Anhang Fehler-
codes.

Der ObjPath hat die Struktur DMS_OBJ_PATH und beinhaltet die Adressierung auf
dem Server.

typedef struct {

 DMS_OBJNO ObjNo;

 DMS_CMPNOCmpNo;
64 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

} DMS_OBJ_PATH;

Der VarType nimmt verschiedene Werte an. (siehe Anhang DMS-Variablentypen)

Der VarValue ist ein Pointer der auf den Wert der Variablen nach Durchführung des
Lesedienstes (siehe Anhang DMS-Variablentypen) zeigt.

• lpnIndex innerhalb der lplpRecVar

Mögliche Returnwerte:

DMSAPI_VLAddWriteVarByName

SYNTAX

DMS_RC DMSAPI_VLAddWriteVarByName(

DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_CHAR *lpszVarname /* Variablenname */,

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine neue Variablenliste
angelegt werden.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information über die angegebene Variable vor-
handen

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle überge-
ben.

E_DMSAPI_INVALID_CONN_HANDLE Die angegebene Variable befindet sich nicht auf dem
angegebenen Ressource

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 65

DMSAPI_VLCreate 3 DMS ClientManagement

DMS_VAR_TYPE VarType; /* Typ des Wertes */

DMS_VALUE *lpVarValue; /* Wert der Variablen
 oder NULL */

DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer auf
 RecVarStruct */,

DMS_INT16 *lpnIndex /* Index in RecVarStruct */

)

Diese Prozedur fügt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird über den Variablennamen adressiert. Die Prozedur wandelt Variablen-
namen zu DMS-Adressen um. Dadurch benötigt sie mehr Rechenzeit als die Rou-
tine

DMSAPI_VLAddVarWriteByAddr.

Nachdem eine Variablenliste gefüllt wurde, kann der Schreibdienst ausgeführt wer-
den. Nachdem ein Schreibdienst beendet wurde, kann die Variablenliste über die
"Add, Change Delete"-Dienste verändert werden.

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benötigen, lässt
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zurück. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergröße einer Variablenliste an. Die Struktur DMS_REC_-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• lpszVarname: Name der zu lesenden Variablen

• VarType nimmt die folgenden verschiedenen Werte an. (siehe Anhang DMS-
Variablentypen)

• lpVarValue ist eine Referenz auf den Wert der Variablen zur Durchführung des
Schreibdienstes (siehe Anhang DMS-Variablentypen).
66 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

• lplpRecVar: Struktur der ausgefüllten Variablenliste

• lpnIndex: Index innerhalb der lplpRecVar

Mögliche Returnwerte:

DMSAPI_VLAddReadVarByAddr

SYNTAX

DMS_RC DMSAPI_VLAddReadVarByName (

 DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_OBJ_PATH lpOPath; /* Objektpfad auf server */

DMS_VAR_TYPE VarType; /* Typ des Wertes */

DMS_REC_VARLIST_DATA**lplpRecVar /* Pointer auf
 RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in
 RecVarStruct*/)

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine neue Variablen-
liste angelegt werden.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_VARTYP Übergebene Variable ist vom falschen Typ.

E_DMSAPI_INVALID_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information über die angegebene Variable vor-
handen

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle überge-
ben.

E_DMSAPI_INVALID_CONN_HANDLE Die angegebene Variable befindet sich nicht auf dem
angegebenen Ressource

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 67

DMSAPI_VLCreate 3 DMS ClientManagement

Diese Prozedur fügt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird über den Objektpfad und den Variablentyp adressiert. Die Prozedur
hat zu der Prozedur DMSAPI_VLAddReadVarByName einen Zeitvorteil, da der
Variablenname nicht in eine DMS-Adresse gewandelt werden muss.

Nachdem eine Variablenliste gefüllt wurde, kann der gewünschte Dienst ausgeführt
werden. Nachdem ein LeseDienst beendet (bzw. gestoppt) wurde, kann die Variab-
lenliste über die Add und DeleteDienste verändert werden.

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benötigen, lässt
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zurück. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergröße einer Variablenliste an. Die Struktur DMS_REC_-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• ObjPath hat die Struktur DMS_OBJ_PATH und beinhaltet die Adressierung
auf dem

• Server.

• typedef struct {

 DMS_OBJNO ObjNo;

 DMS_CMPNOCmpNo;

} DMS_OBJ_PATH;

• VarTypenimmt die folgenden verschiedenen Werte an. (siehe Anhang DMS-
Variablentypen)

• lplpRecVar: : Struktur der ausgefüllten Variablenliste

• lpnIndex: Index innerhalb der lplpRecVar
68 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

Mögliche Returnwerte:

DMSAPI_AddWriteVarByAddr

SYNTAX

DMS_RC DMSAPI_VLAddWriteVarByName(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_OBJ_PATH lpOPath; /* Objektpfad auf
 server */

 DMS_VAR_TYPE VarType; /* Typ des Wertes */

 DMS_VALUE *lpVarValue; /* Wert der Variablen oder
 NULL */

 DMS_REC_VARLIST_DATA**lplpRecVar /* Pointer auf RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in RecVarStruct */

)

Diese Prozedur fügt zu einer bestehenden Variablenliste ein Element hinzu. Das
Element wird über den Objektpfad und den Variablentyp adressiert. Die Prozedur
hat zu der Prozedur DMSAPI_VLAddWriteVarByName einen Zeitvorteil, da der
Variablenname nicht in eine DMS-Adresse gewandelt werden muss.

Nachdem eine Variablenliste gefüllt wurde, kann der gewünschte Dienst ausgeführt
werden. Nachdem ein SchreibDienst beendet wurde, kann die Variablenliste über
die Add, Change und DeleteDienste verändert werden.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine
neue Variablenliste angelegt werden.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlisten-
handle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 69

DMSAPI_VLCreate 3 DMS ClientManagement

Eine Variablenliste kann nur eine begrenzte Anzahl von Bytes aufnehmen. Diese
Anzahl von Bytes bestimmt die Anzahl der Variablen die kommuniziert werden. Da
Variablen verschiedener Datentypen unterschiedlich viel Speicher benötigen, lässt
sich keine Konstante DMSAPI_MAX_VAR_IN VARLIST definieren. Die Prozedur
DMSAPI_GetVarLen gibt den Speicherbedarf der einzelnen Variablentypen inner-
halb einer Variablenliste zurück. Die Konstante DMSAPI_VL_MAX_BYTES gibt
die maximale Speichergröße einer Variablenliste an. Die Struktur DMS_REC_-
VARLIST_DATA gibt immer den freien Speicherplatz innerhalb der Variablenliste
an.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• ObjPath has the structure DMS_OBJ_PATH and contains the addressing on the
server.

typedef struct { DMS_OBJNO ObjNo;

 DMS_CMPNOCmpNo;

} DMS_OBJ_PATH;

• VarType nimmt die folgenden verschiedenen Werte an. (siehe Anhang DMS-
Variablentypen)

• lpVarValue ist eine Referenz auf den Wert der Variablen zur Durchführung des
Schreibdienstes (siehe Anhang DMS-Variablentypen).

• lplpRecVar: Struktur der ausgefüllten Variablenliste

• lpnIndex: Index innerhalb der lplpRecVar

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Variablenliste ist voll. Es muss eine neue Variablenliste
angelegt werden.

E_DMSAPI_INVALID_VARTYP Übergebene Variable ist vom falschen Typ.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.
70 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLCreate

DMSAPI_VLChangeValue

SYNTAX

DMS_RC DMSAPI_VLChangeValue(

 DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nIndex /* Index in RecVarStruct */,

DMS_VAR_TYPE VarType; /* Typ des Wertes */

DMS_VALUE *lpVarValue; /* Wert der Variablen oder
 NULL*/
 DMS_REC_VARLIST_DATA**lplpRecVar /* Pointer auf
 RecVarStruct */,

)

Diese Prozedur ändert in einer bestehenden Variablenliste den Wert, der geschrieben
werden soll. Die Variablenliste darf zu dem Zeitpunkt des Prozeduraufrufs nicht auf
die Antwort des vorherigen Schreibzugriff warten.
Die Prozedur wird benötigt, falls mehrmals hintereinander auf die gleichen Variab-
len geschrieben werden soll. Die Variablenliste muss nicht jedesmal neu kreiert
werden.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• nIndex: Index innerhalb der lplpRecVar

• VarType nimmt die folgenden verschiedenen Werte an. (siehe Anhang DMS-
Variablentypen)

• lpVarValue ist eine Referenz auf den Wert der Variablen zur Durchführung des
Schreibdienstes (siehe Anhang DMS-Variablentypen).

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.
Referenz-Handbuch – DMS / API 71

DMSAPI_VLDelVar 3 DMS ClientManagement

• lplpRecVar: Struktur der ausgefüllten Variablenliste

Mögliche Returnwerte:

3.3.2 DMSAPI_VLDelVar

SYNTAX

DMS_RC DMSAPI_VLDelVar(

 DMS_HANDLE DmsHandle /* VarListHandle */,

DMS_INT16 nIndex /* Index in RecVarStruct */,

DMS_REC_VARLIST_DATA**lplpRecVar/* auf RecVarStruct */,

)

Diese Prozedur löscht aus einer bestehenden Variablenliste die Variable, die über
den Index adressiert wird. Die Indizes der anderen Variablen werden nicht verän-
dert. Beim Neueinfügen von Variablen in die Variablenliste werden diese Lücken
ausgefüllt.

Die Prozedur wird benötigt, falls in einer Grafik durch Benutzereingriff Einblend-
bilder geöffnet und geschlossen werden können.

Befindet sich eine Variable im zyklischen Lesezugriff, muss sie vor dem Löschen
von Variablen gestoppt werden.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_INDEX Ungültiger Index in der Variablenliste.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_VARTYP Übergebene Variable ist vom falschen Typ.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle überge-
ben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
72 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLClear

• nIndex: Index innerhalb der lplpRecVar

• lplpRecVar: Struktur der ausgefüllten Variablenliste

Mögliche Returnwerte:

3.3.3 DMSAPI_VLClear

SYNTAX

DMS_RC DMSAPI_VLDelVar(

 DMS_HANDLE DmsHandle /* VarListHandle */,

)

Diese Prozedur löscht aus einer bestehenden Variablenliste alle Variablen. Danach
können neue Variablen in die Variablenliste eingefüllt werden.Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl
die DMS-Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_INDEX Ungültiger Index in der Variablenliste.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlisten-
handle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle übergeben

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 73

DMSAPI_VLRead 3 DMS ClientManagement

3.3.4 DMSAPI_VLRead

SYNTAX

DMS_RC DMSAPI_VLRead(

DMS_HANDLE DmsHandle /* VarListHandle */;

DMS_INT16 nCBId /* CallbackId */,

DMS_INT16 nSyncFlag /* Synchron flag */,

 DMS_UINT32 ulProcT /* ProzedurTimeout */,

 DMS_UINT32 ulRecVarLen ^ /* Größe des Speichers

 auf den Pointer referenziert */,

DMS_REC_VARLIST_DATA *lpRecVar /* RecStruct der VL */

Diese Prozedur führt zu einer gefüllten Variablenliste den einfachen Lesedienst aus.
Auf diese Anfrage gibt es eine Antwort. Nach Erhalt und Auswertung der Antwort,
kann die Variablenliste über die Lösch- und Zufügprozeduren verändert und neu
gelesen werden bzw. komplett gelöscht werden.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• nCBId: CallbackId, bzw. wird die Variablenliste über die DMSAPI-
Receivefunktion abgeholt; CBId bekommt den Wert DMS_NO_CALLBACK

• nSyncFlag
DMSAPI_SYNCHRON: Die Prozedur wartet, die angegebene
ProzedurTimeout, auf die Antwort des Lesedienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des Lesezugriffs
automatisch zu wiederholen.

• ulProcT: 
DMSAPI_NO_TIMEOUT kein timeout
74 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLRead

Wert in Millisekunden
DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag
ausgeführt ist, bzw. er nicht ausgeführt werden kann.

• ulRecVarLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt.

• lpRecVar: beim synchronen Lesen die Struktur der gelesenen Variablenliste mit
den aktuellen Werten (Null bei Asynchron-Betrieb).

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_VARMODE Der aufgerufene Dienst stimmt mit dem beim Kreieren
übergebenen Variablenlistentyp nicht überein.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im synchron
Fall möglich.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die synchron
angeforderte Antwort wurde noch nicht empfangen. Die-
ser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource besteht
zur Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE Lesedienst konnte zur Zeit nicht ausgeführt werden. Es
werden mehr Dienste angefordert, als der Server inner-
halb eines Zeitintervalls bearbeiten kann. Dieser Fehler
kann nicht auftreten, wenn als Timeout DMSAPI_WAIT_-
FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 75

DMSAPI_VLReadCycle 3 DMS ClientManagement

3.3.5 DMSAPI_VLReadCycle

SYNTAX

DMS_RC DMSAPI_VLReadCycle(

DMS_HANDLE DmsHandle /* VarListHandle */;

DMS_UINT32 ulCycleTime /* Zykluszeit in ms */,

DMS_INT16 nCBId /* CallbackId */,

DMS_INT16 nSyncFlag /* Synchron flag */,

 DMS_UINT32 ulProcT /*ProzedurTimeout */,

 DMS_UINT32 ulRecVarLen /* Grösse des Speichers

auf den Pointer referenziert */,

 DMS_REC_VARLIST_DATA *lpRecVar /* RecStruct der VL */

)

Diese Prozedur führt zu einer gefüllten Variablenliste den zyklischen Lesedienst
aus. Auf diese Anfrage gibt es eine Antwort und zyklische Variablenlistennachrich-
ten. Der zyklische Lesedienst wird über die Funktion DMSAPI_StopCycleVar
gestoppt. Nach dem Stoppen kann die Variablenliste über die Lösch- und Zufügpro-
zeduren verändert werden und neu gelesen werden bzw. komplett gelöscht werden.

Handelt es sich um eine gestoppte Variablenliste, wird der neue zyklische Lesezu-
griff erst gestartet, wenn die Antwort des vorherigen Stoppens eingetroffen ist. Wird
die Variablenliste von der Applikation gestoppt bevor der zyklische Dienst ausge-
führt wurde, wird dieser storniert.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• ulCycleTime: Zykluszeit in Millisekunden, die angegebene Zykluszeit wird auf
die nächste durch 200 dividierbare Zahl gerundet.
76 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLReadCycle

• nCBId: CallbackId, bzw. wird die Variablenliste über die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

• nSyncFlag 
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort des Lesedienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des Lesezugriffs
automatisch zu wiederholen

• ulProcT: 
DMSAPI_NO_TIMEOUT kein Timeout

• Wert in Millisekunden
DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag
ausgeführt ist, bzw. er nicht ausgeführt werden kann.

• ulRecVarLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt.

• lpRecVar: beim synchronen Lesen die Struktur der gelesenen Variablenliste mit
den aktuellen Werten

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_VARMODE Der aufgerufene Dienst stimmt mit dem beim Kreieren
übergebenen Variablenlistentyp nicht überein.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die synchron an-
geforderte Antwort wurde noch nicht empfangen. Dieser
Fehler kann nicht auftreten, wenn als Timeout DMSA-
PI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im synchron
Fall möglich.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource besteht zur
Zeit keine Verbindung.
Referenz-Handbuch – DMS / API 77

DMSAPI_StopCycle 3 DMS ClientManagement

3.3.6 DMSAPI_StopCycle

SYNTAX

DMS_RC DMSAPI_VLStopCycle(

DMS_HANDLEDmsHandle/* VarListHandle */;

)

Die Prozedur stoppt eine laufende zyklische Variabenliste. Nach dem Stoppen einer
zyklischen Variablenliste wird für diese Variablenliste nichts mehr empfangen. D.h.
wird diese Prozedur aufgerufen, bevor die Applikation die ersten Werte für diese
Variablenliste empfangen hat, wird sie die angeforderten Werte nie erhalten und
auswerten können. Aus einer gestoppten Variablenliste können Variablen entfernt
und hinzugefügt werden. Danach kann diese Variablenliste erneut zyklisch gelesen
werden.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• nSyncFlag 
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE Lesedienst konnte zur Zeit nicht ausgeführt werden. Es
werden mehr Dienste angefordert, als der Server innerhalb
eines Zeitintervalls bearbeiten kann. Dieser Fehler kann
nicht auftreten, wenn als Timeout DMSAPI_WAIT_FORE-
VER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.
78 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_StopCycle

"ProzedurTimeout", auf die Antwort des Stopdienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des Stopzugriffs
automatisch zu wiederholen.

• ulProcT: 
DMSAPI_NO_TIMEOUT kein Timeout

Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag ausge-
führt ist, bzw. er nicht ausgeführt werden kann.

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_VARMODE Es ist kein zyklischer Lesedienst für diese Variablenlis-
te gestartet.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die syn-
chron angeforderte Antwort wurde noch nicht empfan-
gen. Dieser Fehler kann nicht auftreten, wenn als
Timeout DMSAPI_WAIT_FOREVER angegeben wur-
de.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource be-
steht zur Zeit keine Verbindung => Liste ist automa-
tisch gestoppt.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE Stoppdienst konnte zur Zeit nicht ausgeführt werden.
Es werden mehr Dienste angefordert, als der Server
innerhalb eines Zeitintervalls bearbeiten kann. Dieser
Fehler kann nicht auftreten, wenn als Timeout DMSA-
PI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle überge-
ben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 79

DMSAPI_VLWrite 3 DMS ClientManagement

3.3.7 DMSAPI_VLWrite

SYNTAX

DMS_RC DMSAPI_VLWrite(

DMS_HANDLE DmsHandle /* VarListHandle */;

DMS_INT16 nCBId /* CallbackId */,

DMS_INT16 nSyncFlag /* Synchron Flag */,

DMS_UINT32 ulProcT /* ProzedurTimeout */,

DMS_UINT32 ulRecVarLen /* Grösse des Speichers

 auf den Pointer referenziert */,

DMS_REC_VARLIST_DATA *lpRecVar /* RecStruct of VL */

)

Diese Prozedur führt zu einer gefüllten Variablenliste den Schreibdienst aus. Auf
diese Anfrage gibt es eine Antwort. Nach dem Erhalt der Antwort kann die Variab-
lenliste über die Wertänderungs-, Lösch- und Zufügprozeduren verändert, neu
geschrieben bzw. komplett gelöscht werden.

• DmsHandle: Variablenlistenhandle für diese Variablenliste

• nCBId: CallbackId, bzw. wird die Variablenliste über die DMSAPI-
Receivefunktion abgeholt, bekommt CBId den Wert DMS_NO_CALLBACK

• nSyncFlag 
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort des Schreibdienstes
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
Schreibzugriffs automatisch zu wiederholen.

• ulProcT: 
DMSAPI_NO_TIMEOUT kein Timeout
Wert in Millisekunden
80 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_VLWrite

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag
ausgeführt ist, bzw. er nicht ausgeführt werden kann.

• ulRecVarLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt.

• lpRecVar: beim synchronen Schreiben die Struktur der gelesenen
Variablenliste mit den aktuellen Werten

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_INVALID_VARMODE Der aufgerufene Dienst stimmt mit dem beim Kreieren
übergebenen Variablenlistentyp nicht überein.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die synchron
angeforderte Antwort wurde noch nicht empfangen. Dieser
Fehler kann nicht auftreten, wenn als Timeout DMSA-
PI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im synchron
Fall möglich.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource besteht zur
Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_RESOURCE Schreibdienst konnte zur Zeit nicht ausgeführt werden. Es
werden mehr Dienste angefordert, als der Server innerhalb
eines Zeitintervalls bearbeiten kann. Dieser Fehler kann
nicht auftreten, wenn als Timeout DMSAPI_WAIT_FORE-
VER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 81

DMSAPI_VLDelete 3 DMS ClientManagement

3.3.8 DMSAPI_VLDelete

SYNTAX

DMS_RC DMSAPI_VLDelete(

DMS_HANDLE DmsHandle /* VarListHandle */

)

Diese Prozedur löscht eine bestehende Variablenliste. Auch wenn sich die Variab-
lenliste im zyklischen Lesen befindet, wird sie automatisch gestoppt und gelöscht.
Nach dem Löschen werden keine Callbackfunktion für diese Variablenliste mehr
aufgerufen.

Parameter:

• DmsHandle: Variablenlistenhandle für diese Variablenliste

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Variablenlistenhandle überge-
ben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
82 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Alarmmanagement

3.4 Alarmmanagement
Starten der Alarmerfassung nach Verbindungsaufbau

Nach dem Starten des GetAlarmSummary wird die Callback-Funktion für die
Alarme bei jedem Eintreffen von neuen Alarm automatisch aufgerufen. Die Appli-
kation speichert sich diese Alarme in einer Alarmdatenbank und kann sie bei Bedarf
quittieren. Auf jede Alarmquittung gibt es eine Antwort. Die Callback-Funktion für
die AcknowledgeAlarme wird aufgerufen.
Referenz-Handbuch – DMS / API 83

DMSAPI_GetAlarmSummary 3 DMS ClientManagement

3.4.1 DMSAPI_GetAlarmSummary

SYNTAX

DMS_RC DMSAPI_GetAlarmSummary(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 DMS_INT16 nCBId /* Callbackid */,

 DMS_INT16 nSyncFlag /* Synchron Flag */,

 DMS_UINT32 ulProcT /* ProzedurTimeout*/,

 DMS_UINT32 ulRecAlaLen /* Größe des Speichers

auf den Pointer referenziert */,

DMS_REC_ALARMLIST_DATA*lpAlarmRec /* Pointer auf AlarmListStruct */

)

Nach einem GetAlarmSummary werden alle auf der Prozessstation liegenden und
alle ab diesem Zeitpunkt anfallenden Alarme an den Client gesendet. Nach einem
Verbindungsabbruch muss dieser Dienst neu angefordert werden.

Parameter:

• Connhandle: ConnectionHandle für diese Ressource

• nCBId: CallbackId, bzw. werden die Alarme über die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

• nSyncFlag 
DMSAPI_SYNCHRON:Die Prozedur wartet,solange wie das angegebene
"ProzedurTimeout", auf die 1. Antwort des GetAlarmSummarydienstes.
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
Schreibzugriffs automatisch zu wiederholen.
84 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_GetAlarmSummary

• ulProcT: 
DMSAPI_NO_TIMEOUT kein Timeout
Wert in Millisekunden
DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag
ausgeführt ist, bzw. er nicht ausgeführt werden kann.

• ulRecAlaLen: wird nur bei Benutzung des Synchronflags
DMSAPI_SYNCHRON benutzt und enthält die Länge des folgenden
Speichers.

• lpAlarmRec: beim synchronen Empfangen der Struktur des
GetAlarmSummary mit den ersten ca.43 Alarmen

typedef struct DMS_REC_ALARMLIST_DATA {

DMS_ALARM_LIST_TYPE ListType;

DMS_INT16 ActAlarmNo; /* aktuelle Anzahl von Alarmen */

DMS_REC_ALARM *lpAlarm; /* Alarm liste */

} DMS_REC_ALARMLIST_DATA;

Das Element ListType kann folgende Werte annehmen:

DMS_ALARM_GAS alte Alarme, die über ein GetAlarmSummary angefordert
worden. Es folgen noch alte Alarme.

DMS_ALARM_LAST_GAS Alle alten Alarme, die über GetAlarmSummary ange-
fordert wurden sind angekommen.

DMS_ALARM_EVENTS Liste mit aktuell anfallenden Alarmen

Beim Element lpAlarm handelt es sich um die folgende AlarmListe mit
ActAlarmNo Einträgen.

typedef struct DMS_REC_ALARM {

 DMS_DT TransitionTime; /* Alarmzeit */

 DMS_OBJNO ObjectId; /* ObjNummer */

 DMS_WORD16 AlarmIndex; /* Alarm index */

 DMS_ALARM_TYPE AlarmType; /* Alarm Typ */

 DMS_OBJNO ObjectClass; /* ObjektKlasse */
Referenz-Handbuch – DMS / API 85

DMSAPI_GetAlarmSummary 3 DMS ClientManagement

 DMS_ALARM_STATUS CurrAlarmStatus; /* aktu. AlarmStat */

 DMS_ALARM_STATUS PrevAlarmStatus; /* alter AlarmSt. */

 DMS_ALARM_PRIO Priority; /* Alarmprio */

 DMS_BOOLEAN NotificationLost; /* Alarmburst */

 DMS_RC rc; /* AlarmFehler */

 DMS_UINT32 ValueSize; /* Größe A-Wert */

 DMS_VAR_TYPE AlarmValType; /* Datentyp */

 DMS_VALUE *AlarmValue; /* Alarmwert */

} DMS_REC_ALARM;

Der Alarmtyp kann Werte annehmen, über die der Text für die Systemmeldungen
indentifiziert werden kann.

Der CurrAlarmStatus und PrevAlarmStatus kann folgende Werte annehmen:

Der AlarmValType nimmt die verschiedenen Werte für die verschiedenen Datenty-
pen an. (siehe Anhang DMS-Variablentypen)

Der AlarmValue ist eine Referenz auf den Wert des Alarmpunktes (siehe Anhang
DMS-Variablentypen).

DMS_ALARM_INACT_INACTNACKED Inaktiv/NichtQuittiert

DMS_ALARM_ACT_ACTNACKED Aktiv/Aktiv_NichtQuittiert

DMS_ALARM_INACT_INACTACKED Inaktiv/Inaktiv_Quittiert

DMS_ALARM_ACT_ACTACKED Aktiv/Quittiert

DMS_ALARM_INACT_ACTNACKED Inaktiv/Aktiv_NichtQuittiert

DMS_ALARM_AP_DELETED Alarmpunkt wurde gelöscht
86 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_CreateAckAlarmList

Mögliche Returnwerte:

3.4.2 DMSAPI_CreateAckAlarmList

DMSAPI_CreateAckAlarmList(ConnHandle, &DmsHandle);

TDurch diese Prozedur wird der Speicher und ein eindeutiger DMS-Handle für eine
DMS-Quittierungsalarmliste erzeugt. Nach dem Erzeugen dieser Liste können
AlarmQuittungen eingefügt werden.

Gefüllte Qutittierungslisten können über den Acknowledge Alarm an den Server
gesendet werden. Nach dem Empfang kann die Quittierungsliste über die Funktion
Clear geleert werden und neue Quittierungsmeldungen eingefügt werden.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_CONN_HANDLE Es wurde kein gültiger Connectionhandle übergeben.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die syn-
chron angeforderte Antwort wurde noch nicht empfan-
gen. Dieser Fehler kann nicht auftreten, wenn als
Timeout DMSAPI_WAIT_FOREVER angegeben wur-
de.

E_DMSAPI_NO_CONNECTION Zu der angegebenen Ressource besteht zur Zeit keine
Verbindung.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im syn-
chron Fall möglich.

E_DMSAPI_NO_RESOURCE GetAlarmSummary konnte zur Zeit nicht ausgeführt
werden. Es werden mehr Dienste angefordert, als der
Server innerhalb eines Zeitintervalls bearbeiten kann.
Dieser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 87

DMSAPI_AddAckAlarmByAddr 3 DMS ClientManagement

Speicher und DMS-Handle werden nur über die Funktion DMSAPI_DeleteAckA-
larmList gelöscht.

Parameter:

• Connhandle: ConnectionHandle für diese Ressource

• DMS_Handle: Handle dieser Quittierungsliste, über den alle weiteren
Operationen auf die Liste gesteuert werden

Mögliche Returnwerte:

3.4.3 DMSAPI_AddAckAlarmByAddr

DMSAPI_AddAckAlarmByAddr (DmsHandle, AlarmPoint, AlarmStatus,
&AlarmIndex,)

Diese Prozedur fügt zu einer bestehenden Quittierungsliste ein Element hinzu. Das
Element wird über den AlarmPunkt und den AlarmStatus beschrieben.

Nachdem eine Quittierungsliste gefüllt wurde, kann der Quittierungsdienst ausge-
führt werden. Nachdem die Quittierungen ausgewertet wurden, kann die Liste
geleert und erneut verwendet werden.

Parameter:

• Dmshandle: Handle für die Alarmquittierungsliste

• AlarmPoint des zu quittierenden Alarms

• AlarmStatus des zu quittierenden Alarms

• AlarmIndex innerhalb der zurückkommenden RecStruct

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_NO_RESOURCE Keine Ressourcen(Speicher / DMSHandles), um diese
Quittierungsliste zu kreieren

E_DMSAPI_INVALID_CONN_HANDLE Es wurde kein gültiger Connectionhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
88 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_ClearAckAlarmList

Mögliche Returnwerte:

3.4.4 DMSAPI_ClearAckAlarmList

DMSAPI_ClearAckAlarmList(DmsHandle)

Diese Prozedur löscht alle Quittierungen aus einer bestehenden Alarmquittierungs-
liste. Die Prozedur kann nicht aufgerufen werden, falls gerade eine Quittierung für
diese Liste läuft.

Parameter:

• Dmshandle: Handle für diese Alarmquittierungsliste

Mögliche Returnwerte:

3.4.5 DMSAPI_AckAlarmList

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
nicht initialisiert wurde.

E_DMSAPI_NO_RESOURCE Quittierungsliste ist voll. Sie muss erst versendet werden.
Danach können die weiteren Alarme quittiert werden.

E_DMSAPI_INVALID_ARG Übergabeparameter ist fehlerhaft

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Handle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Handle übergeben.

E_DMSAPI_SERVICE_IN_USE Die Antwort auf die Quittierung für diese Liste ist noch
nicht vom Server eingetroffen.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 89

DMSAPI_AckAlarmList 3 DMS ClientManagement

DMSAPI_AckAlarmList(DmsHandle, CBId, SyncMode, Timeout,and RecStruct);

Diese Prozedur führt, zu einer gefüllten Alarmquittierungsliste, den Quittierungs-
dienst durch. Auf diese Anfrage gibt es eine Antwort. Nach Erhalt und Auswertung
der Antwort, kann die Liste über die Lösch- und Zufügeprozeduren verändert wer-
den und erneut quittiert werden bzw. komplett gelöscht werden.

Parameter:

• Dmshandle: Handlefür diese Quittierungsliste

• CBId: CallbackId, bzw. wird die Quttierung über die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

• SyncFlag / ProcTimeOut
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort der Quittierung.

• DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
Schreibzugriffs automatisch zu wiederholen.

• ProcTimeOut: 
0 kein Timeout
Wert in Millisekunden

• DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag
ausgeführt ist, bzw. er nicht ausgeführt werden kann.

• RecStruct: beim synchronen Aufruf die Struktur der gelesenen
Quittierungsliste mit den aktuellen Werten
90 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_DeleteAckAlarmList

Mögliche Returnwerte:

3.4.6 DMSAPI_DeleteAckAlarmList

DMSAPI_DeleteAckAlarmList(DmsHandle);

Diese Prozedur löscht eine bestehende Alarmquittierungsliste. Wurde die Antwort
für den Quittierungsauftrag noch nicht empfangen, wird sie bei Empfang nicht an
die Applikation weitergeleitet.

Parameter:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die synchron
angeforderte Antwort wurde noch nicht empfangen.
Dieser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource besteht
zur Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im syn-
chron Fall möglich.

E_DMSAPI_NO_RESOURCE Quittierungsdienst konnte zur Zeit nicht ausgeführt wer-
den. Es werden mehr Dienste angefordert, als der Ser-
ver innerhalb eines Zeitintervalls bearbeiten kann. Die-
ser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Listenhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 91

DMSAPI_AckAlarmByList 3 DMS ClientManagement

• Dmshandle: Handle für diese Alarmquittierungsliste

Mögliche Returnwerte:

3.4.7 DMSAPI_AckAlarmByList

SYNTAX

DMS_RC DMSAPI_ AckAlarmByList(

DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

DMS_HANDLE *lpDmsHandle /* Identifier fuer Acklist */,

DMS_INT16 nCBId /* CallbackId */,

DMS_INT16 ActAlarmNo /* aktuelle Anzahl von zu
 quittierenden Alarmen */,

DMS_REC_ACKALARM *lpAlarmAck /* Pointer auf AlarmAckStruct */

DMS_INT16 nSyncFlag /* Synchron Flag */,

DMS_UINT32 ulProcT /* ProzedurTimeout*/,

);

Diese Prozedur führt zu einer übergebenen, von der Applikation selbstgefüllten,
Alarmquittierungsliste den Quittierungsdienst durch. Auf diese Anfrage gibt es eine
Antwort. Nach Erhalt und Auswertung der Antwort, wird die Liste automatisch
gelöscht, d.h. der DmsHandle ist ungültig. Bei der synchronen Antwort auf diese
Anfrage werden in die übergebene Liste die FehlerCodes auf die einzelnen Quittie-
rungen kodiert.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Handle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
92 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_AckAlarmByList

Parameter:

• ConnHandle: Connectionhandle für diese Ressource

• lpDmsHandle: Handle für diese Quittierungsliste

• nCBId: CallbackId, bzw. wird die Quttierung über die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

• ActAlarmNo: : Anzahl der übergebenen zu quittierenden Alarme

lpAlarmAck: ausgefüllte Liste mit Alarmen, die quittiert werden sollen Beim Ele-
ment lpAlarm handelt es sich um die folgende AlarmListe mit ActAlarmNo Einträ-
gen.

typedef struct DMS_REC_ACKALARM {

DMS_OBJNO ObjectId; /* ObjNumber */

DMS_WORD16 AlarmIndex; / * AlarmIndex */

DMS_ALARM_STATUS AlarmStatus; /* Curr. AlarmSt. */

DMS_RC rc; /* Alarm error */

} DMS_REC_ACKALARM;

Der AlarmStatus kann folgende Werte annehmen:

DMS_ALARM_INACT_INACTNACKED Inaktiv/NichtQuittiert

DMS_ALARM_ACT_ACTNACKED Aktiv/Aktiv_NichtQuittiert

DMS_ALARM_INACT_INACTACKED Inaktiv/Inaktiv_Quittiert

DMS_ALARM_ACT_ACTACKED Aktiv/Quittiert

DMS_ALARM_INACT_ACTNACKED Inaktiv/Aktiv_NichtQuittiert

DMS_ALARM_AP_DELETED Alarmpunkt wurde gelöscht

• nSyncFlag 
DMSAPI_SYNCHRON:Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort der Alarmquittierung.
Referenz-Handbuch – DMS / API 93

DMSAPI_AckAlarmByList 3 DMS ClientManagement

DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden der
Alarmquittierung automatisch zu wiederholen.

• ulProcT:

 DMSAPI_NO_TIMEOUT kein timeout

Wert in Millisekunden

DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag ausge-
führt ist, bzw. er nicht ausgeführt werden kann.

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht nicht initialisiert wurde.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die synchron
angeforderte Antwort wurde noch nicht empfangen.
Dieser Fehler kann nicht auftreten, wenn

als Timeout DMSAPI_WAIT_FOREVER angegeben
wurde.

E_DMSAPI_NO_CONNECTION Zu der beim Kreieren angegebenen Ressource besteht
zur Zeit keine Verbindung.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im syn-
chron Fall möglich.

E_DMSAPI_NO_RESOURCE Quittierungsdienst konnte zur Zeit nicht ausgeführt wer-
den. Es werden mehr Dienste angefordert, als der Ser-
ver innerhalb eines Zeitintervalls bearbeiten kann. Die-
ser Fehler kann nicht auftreten, wenn als Timeout
DMSAPI_WAIT_FOREVER angegeben wurde.

E_DMSAPI_INVALID_DMS_HANDLE Es wurde kein gültiger Listenhandle übergeben.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
94 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Domainmanagement

3.5 Domainmanagement
Das Domainmangement dient dem Austausch von größeren Konfigurationsdaten-
mengen zwischen DMS-Client und DMS-Server. Diese Datenmengen werden
Domains genannt. Ein Client kann folgende Domaindienste auf dem Server anfor-
dern:

• Hinunterladen von Domains auf den Server

• Heraufladen von Domains vom Server

• Löschen von Domains auf dem Server

Dieses Domainmangement kann nur von Freelance Engineering ausgeführt werden.
Die Prozeduren sind daher nicht für die DMSAPI-Applikationen freigegeben und
beschrieben.

3.6 ProgramInvokation Management
Zur Zeit ist das Management für "ProgramInvokation" nur für Freelance Enginee-
ring implementiert und freigegeben. Das Namensmanagement der DMSAPI-Appli-
kation besitzt zur Zeit keine Konfigurationsinformation zur Umsetzung der
Tasknamen auf der Prozessstation zu DMS-Adresse.

DMSAPI_StartPI

DMSAPI_StartPIByName (CBId, PIName, PILen, PI-Parameter, &DMS_Handle,
SyncMode, Timeout, &PIMsg)

DMSAPI_StartPIByAddr (ConnHandle, CBId, ObjNo, PILen, PI-Parameter, &
DMS_Handle, SyncMode, Timeout, &PIMsg)

Die Prozedur führt auf einer DMS-Serverstation einen "StartProgramInvokation"-
Dienst aus. Entweder wird die "ProgramInvokation" über den Namen identifiziert
oder über Objektnummer und Verbindung.

Parameter:
Referenz-Handbuch – DMS / API 95

ProgramInvokation Management 3 DMS ClientManagement

• Connhandle: ConnectionHandle für diese Ressource

• CBId: CallbackId, bzw. werden die Alarme über die DMSAPI-Receivefunktion
abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

• PIName: Name des PI-Objektes, das gestartet werden soll, das
DMSNamemangement muss aktiviert sein

• ObjNo: Objektnummer des PI-Objektes, das gestartet werden soll

• PILen: Länge der PI-Parameter

• PI-Parameters: Parameter, die an die PI übergeben werden

• Dmshandle: Handle für diese Quittierungsliste

• CBId: CallbackId, bzw. wird die Quttierung über die DMSAPI-
Receivefunktion abgeholt bekommt CBId den Wert DMS_NO_CALLBACK

• SyncFlag / ProcTimeOut
DMSAPI_SYNCHRON: Die Prozedur wartet, solange wie das angegebene
"ProzedurTimeout", auf die Antwort des PI-Startens.
DMSAPI_ASYNCHRON: Es wird nicht auf die Antwort gewartet. Das
Timeout wird benutzt um bei Ressourcenmangel das Senden des
PIStartzugriffs automatisch zu wiederholen.

• ProcTimeOut: 
0 kein Timeout
Wert in Millisekunden

• DMSAPI_WAIT_FOREVER: Prozedur kehrt erst zurück, wenn der Auftrag
ausgeführt ist, bzw. er nicht ausgeführt werden kann.

• RecStruct: Beim synchronen Aufruf der Prozedur befindet sich darin die
Struktur der PI-Antwort mit den aktuellen Werten
96 Referenz-Handbuch – DMS / API

3 DMS ClientManagement ProgramInvokation Management

Mögliche Returnwerte:

DMSAPI_StopPI

DMSAPI_StopPI (ConnHandle, PIName, PILen, PI-Parameter, &DMS_Handle,

SyncMode,Timeout,&PIMsg)

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_TIMEOUT Der aufgerufene Dienst wurde ausgeführt, die synchron an-
geforderte Antwort wurde noch nicht empfangen. Dieser Feh-
ler kann nicht auftreten, wenn als Timeout DMSAPI_WAIT_-
FOREVER angegeben wurde.

E_DMSAPI_NO_CONNECTION Zu der angegebenen Ressource besteht zur Zeit keine Ver-
bindung.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF Zu dem angegebenen PI-Objekt gibt es keine Information im
Namensmagement

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist nicht installiert.

E_DMSAPI_SMALL_RCV_BUFF Übergebener Receivebuffer ist zu klein, nur im synchron Fall
möglich.

E_DMSAPI_NO_RESOURCE StartProgramInvokation konnte zur Zeit nicht ausgeführt wer-
den. Es werden mehr Dienste angefordert, als der Server in-
nerhalb eines Zeitintervalls bearbeiten kann. Dieser Fehler
kann nicht auftreten, wenn als Timeout DMSAPI_WAIT_FO-
REVER angegeben wurde.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 97

Empfangen/Dekodieren von Daten 3 DMS ClientManagement

DMSAPI_ResetPI

DMSAPI_ResetPI (ConnHandle, PIName, PILen, PI-Parameter, &DMS_Handle,

SyncMode,Timeout,&PIMsg)

3.7 Empfangen/Dekodieren von Daten
Applikationen haben im DMS-API drei Möglichkeiten um Nachrichten von der Ser-
verstation zu empfangen:

• In der Prozedur, die die Anfrage stellt, kann synchron auf die Antwort gewartet
werden. Hierbei stellt die Applikation den Speicher zur Verfügung in den die
Nachricht kodiert wird. Die Nachrichten für die zyklischen Variablenlisten
müssen weiter empfangen werden.

• Die Applikation kann die Antworten über die DMSAPI_Receive-Funktion
aktiv abholen. Hierbei stellt die Applikation den Speicher zur Verfügung in den
die Nachricht kodiert wird.

• Die Applikation kann sich über Callback-Funktion über eintreffende
Nachrichten informieren lassen. Der Speicher in der die Nachricht kodiert ist,
gehört dem DMS-API. Nach dem Beenden der Callback-Funktion ist der
Speicher ungültig.

3.7.1 Strukturdefinitionen

Werden Nachrichten von der Serverstation empfangen, wird die Applikation
benachrichtigt. Sie erhält Daten für folgende eintreffende Nachrichten.

==> Verbindungsaufbau/abbau:Verbindungsstruktur

==> Variablendienste: Variablenstruktur

==> InformationReport: InformationReportstruktur, die
 weitergehende Strukturdefinition ist
98 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Strukturdefinitionen

 applikationsabbhängig Freelance definiert die
 Strukturen für Kurven und Störablaufprotokolle

==> Alarmdienste: Alarmstruktur

==> Alarmquittierungsdienst: Alarmquittierungsstruktur

==> Downloaddienste: Downloadstruktur

==> ProgramInvokationdieste: ProgramInvokationstruktur

==> Versionsänderungen: Versionsstruktur

Im Kapitel DMS-Utilities gibt es für diese Strukturen eine globale Funktion, die zu
Debugzwecken den Inhalt dieser Strukturen ausgibt:

DMSAPI_DumpRecData

Datentyp Komponente Wertebereich

DMS_RC rc

DMS_CONN_HANDLE ConnHandle: Handle der Ver-
bindung

DMS_INT32 BuffLen:

Länge des folgenden Buffers,
die Länge muss bei synchro-
nen Aufrufen bzw. beim syn-
chronen Empfangen von Da-
ten über die DMSAPI-
Receivefunktion groß ge-nug
sein.
Referenz-Handbuch – DMS / API 99

Strukturdefinitionen 3 DMS ClientManagement

Verbindungsstruktur

Beim Verbindungsaufbau kann der ReturnCode folgende Werte annehmen:

• E_DMSAPI_OK: Alles in Ordnung

• E_DMSAPI_INVALID_STATION_TYPE: Falscher Stationstyp

• E_DMSAPI_INVALID_STATION_NO: Falsche Stationsnummer

• E_DMSAPI_NO_OS: Kein Betriebssystem

Beim Verbindungsabbbau kann der ReturnCode nur folgenden Wert annehmen:

• E_DMSAPI_ABORT: Verbindung abgebrochen

DMS_INT32 BuffType DMS_REC_CONN_STATION_TYPE

DMS_REC_VARLIST_TYPE

DMS_REC_INFO_REPORT_TYPE

DMS_REC_ALARMLIST_TYPE

DMS_REC_ALARMACK_LIST_TYPE

DMS_REC_PI_TYPE

DMS_REC_DOM_TYPE

DMS_REC_VERS_TYPE

DMS_REC_UNION lpRecBuff: Union über alle
Receivestrukturen

Datentyp Komponente Wertebereich

DMS_INT32 lBoardType:

Typ des CPU-Board

DMS_CPU_UNKNOWN

DMS_CPU_DCP02

DMS_CPU_DCP10

DMS_CPU_PC

DMS_CPU_HK80

DMS_INT32 lOSType:

Typ des Betriebssystems

DMS_OSVERSION_EPROM DMS_OS-
VERSION_MSR DMS_OSVERSI-
ON_GWY
100 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Strukturdefinitionen

Variablenstruktur

Die Variablenstruktur wird mit folgenden Returncodes aufgerufen:

• E_DMSAPI_OK: Alles in Ordnung

• E_DMSAPI_ABORT: Verbindung abgebrochen

Datentyp Komponente Wertebereich

DMS_HANDLE D MSHandle

DMS_INT16 MaxNoOfVar
Maximale Anzahl der Variablen

DMS_INT16 ActNoOfVar
Anzahl der belegten Variablen

DMS_INT16 FreeBytes
Anzahl der freien Bytes in Liste

DMS_VAR_ELEM DMSVarElem 
Eine Tabelle mit MaxNoOfVar Einträgen
von denen ActNoOfVar gültig sind.

DMS_INT32 lGwySubType

Untertyp des Gateways

DMS_SUBTYPE_UNKN_GWY

DMS_SUBTYPE_P_GWY

DMS_SUBTYPE_DDE_GWY

DMS_UINT32 ulIPAddress

DMS_INT32 OwnStationNo: Eigene Stationsnum-
mer wird nur benötigt, falls Station als
Serverstation fungiert.

DMS_INT32 lRedFlag DMS_STATION_PRIMARY DMS_STA-
TION_SECONDARY
Referenz-Handbuch – DMS / API 101

Strukturdefinitionen 3 DMS ClientManagement

Die Struktur des DMS_VAR_ELEMS

Infomationreportstruktur

Die Variablenstruktur wird nur mit folgendem Returncode aufgerufen:

• E_DMSAPI_OK: Alles in Ordnung

Datentyp Komponente Wertebereich

DMS_INT32 IRId MSR supports:
- DMSAPI_CP_ID
- DMSAPI_SAP_ID

DMS_INT32 Buffer (application-depen-
dent)

Datentyp Komponente Wertebereich

DMS_OBJPATH DMS-Adressierung:

ObjNumber

CmpNumber

DMS_CHAR VarName Variablenname oder

NULL

DMS_UINT32 ValueSize

DMS_VAR_RC VarRc: ReturnCode für diese 1 Varia-
ble

DMS_VAR_TYPE VarType: Typ der Variablen DMS_VAR_TYPE_WORD16
DMS_VAR_TYPE_WORD32

DMS_VAR_STATUS VarStatus DMS_NOT_VALID
DMS_CHANGED
DMS_NOT_CHANGED

DMS_DELETED

DMS_VALUE VarValue Falls die Variable ungültig bzw. ge-
löscht ist wird hier ein NullPointer
übergeben
102 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Strukturdefinitionen

Die Struktur für DMSAPI_CP_ID und DMSAPI_CP_ID

Alarmstruktur

Die Alarmstruktur wird nur mit folgendem Returncode aufgerufen:

• E_DMSAPI_OK: Alles in Ordnung

Datentyp Komponente Wertebereich

DMS_INT32 NoOfAlarm

Anzahl der Alarmele-
mente

DMS_ALARM_EL
EM

DMSAlarmElem

Datentyp Komponente Wertebereich

DMS_INT16 NoOfVar

Anzahl der Variable-
nelemente

DMS_OBJNO ObjNumber Objektnummer des Bau-
steins

DMS_VAR_TYPE VarType[6] Datentypen der Variablen

DMS_INT16 ContentLen Länge der Daten

DMS_DT StartEreigniszeit für Ar-
chivierung

DMS_BYTE Daten:

- NoOfVar Zeitstempel

- Daten

DMS_DT
Referenz-Handbuch – DMS / API 103

Strukturdefinitionen 3 DMS ClientManagement

Die Struktur der DMS_ALARM_ELEM

Alarmquittierungsstruktur

Die Alarmstruktur wird mit folgenden Returncodes aufgerufen:

• E_DMSAPI_OK: Alles in Ordnung

• E_DMSAPI_ABORT: Verbindung abgebrochen

Datentyp Komponente Wertebereich

DMS_INT32 NoOfAckAlarm

Anzahl der quittierten Alarme

DMS_ALARM_ACK_ELEM DMSAlarmElem

Datentyp Komponente Wertebereich

DMS_APATH DMS-Adressierung:

• ObjNumber

• AlarmNumber

DMS_DT Alarm zeit

DMS_WORD16 Alarm Type

DMS_ASTATCurr CurrAlarmStatus

DMS_ASTATPrev PrevAlarmStatus

DMS_BOOLEAN NotificationLost

DMS_VALUE lpMsgValue
104 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Strukturdefinitionen

Die Struktur der DMS_ALARM_ELEM

Downloadstruktur

Die Downloadstruktur wird mit folgenden Returncodes aufgerufen:

• E_DMSAPI_OK: Alles in Ordnung

• W_DMSAPI_DL_IS_RUNNING: Download läuft noch

• E_DMSAPI_ABORT: Verbindung ist abgebrochen

• E_DMSAPI_DOWNLOAD_ABORT: Server hat Download abgebrochen

• E_DMSAPI_INVALID_CONF: Server konnte Domain nicht
 installieren/Löschen

Datentyp Komponente Wertebereich

DMS_INT32 DMSHandle

DMS_INT32 Percent: Down-
loadstatus in Pro-
zent

0 -100

ProgrammInvokationstruktur

Die "Programminvokation"-Struktur wird mit folgenden Returncodes aufgerufen:

• E_DMSAPI_OK: Alles in Ordnung

Datentyp Komponente Wertebereich

DMS_APATH DMS-Adressie-
rung:

ObjNumber

AlarmNumber

DMS_ASTAT CurrAlarmStatus

DMS_RC rc: ReturnCode für
einzelne Quittie-
rung
Referenz-Handbuch – DMS / API 105

Synchrone Dienste 3 DMS ClientManagement

• E_DMSAPI_ABORT: Verbindung ist abgebrochen

• E_DMSAPI_INVALID_CONF: Server konnte PI nicht finden

• E_DMSAPI_PI_IN_USE: Server konnte PI nicht ausführen, da sie gerade
 ausgeführt wird

Versionsstruktur

Die Versionsstruktur wird nur mit folgendem Returncode aufgerufen:

E_DMSAPI_OK: Alles in Ordnung

Bei jeder Umkonfiguration wird jede Callback-Funktion benachrichtigt, für welche
Ressource eine Umkonfiguration stattgefunden hat. Nach einer Umkonfigurierung
hat das Namemanagement neue Werte. Eventuell sind die laufenden Variablenlisten
ungültig, bzw. verweisen auf andere Variablen.

3.7.2 Synchrone Dienste

Alle Dienste, die einen Dienst auf dem Server ausführen und damit diesen zum Sen-
den einer Antwort veranlassen, können synchron aufgerufen werden. Der Dienst
kommt erst zurück, wenn die Antwort da ist. Der Antwortbuffer wird von der Appli-

Datentyp Komponente Wertebereich

DMS_INT32 DMSHandle

Datentyp Komponente

DMS_INT32 RessourcenNo

DMS_CHAR Projektname

DMS_INT32 MajorVersionNo

DMS_INT32 MinorVersionNo

DMS_INT32 PatchVersionNo

DMS_INT32 MaxObjN
106 Referenz-Handbuch – DMS / API

3 DMS ClientManagement DMSAPI_RegisterCltCB

kation zur Verfügung gestellt. Die Antwort wird in der Übergabestruktur zurückge-
geben.

DMSAPI_Receive (ReceiveTimeOut,&RecStruct);

Alle Dienste, die einen Dienst auf dem Server ausführen und damit diesen zum Sen-
den einer Antwort veranlassen, können asynchron aufgerufen werden. Der Dienst
kommt sofort nach dem Senden zurück. Ist für den Dienst keine Callback-Funktion
installiert, (CBId ist auf DMS_NO_CALLBACK gesetzt) muss die Antwort über
die DMSAPI_Receivefunktion abgeholt werden. Der Antwortbuffer wird von der
Applikation zur Verfügung gestellt. Die Antwort wird in der Übergabestruktur
zurückgegeben.

3.7.3 DMSAPI_RegisterCltCB

SYNTAX

DMS_RC DMSAPI_RegisterCltCB(

 DMS_INT16 nCBId /* CallbackId */,

 DMS_REC_DATA_PROC CallBackProc/* Callbackfunction */

);

Diese Prozedur registriert eine Callbackfunktion mit einer bestimmten CallbackId.
Die registrierte Callbackfunktion wird beim Empfangen von Daten aufgerufen.
Beim Verbindungsaufbau und Abbau werden alle registrierten Callback-Funktionen
aufgerufen.

Das Registrieren der verschiedenen Callback-Funktionen sollte / muss vor dem Auf-
ruf des DMSAPI_Init stattfinden. Direkt nach dem Initialisieren ist das DMS aktiv
und kann ab dem Zeitpunkt mit Clientstationen verbunden werden.

Diese Verbindungen werden den Applikationen auch über die Verbindungsstruktur
in den Callback-Funktionen angezeigt.

Parameter:

• nCBId: CallbackId, für welche die folgende Prozedur installiert wird.
Referenz-Handbuch – DMS / API 107

DMSAPI_RegisterCltCB 3 DMS ClientManagement

• CallBackProc: Callbackfunktion, die beim Empfangen von Daten für die CBID
aufgerufen wird. Wird als Parameter NULL übergeben, wird die Callback-
Funktion deinstalliert.

typedef DMS_RC (* DMS_REC_DATA_PROC) (DMS_REC_-
DATA *DmsRec);

Mögliche Returnwerte:

DMSAPI_RegisterFreeCltCB (&CBID, (*DMSRC) (Fnc(&RecStruct)))

Diese Prozedur registriert eine Callbackfunktion und gibt eine freie CallbackId
zurück. Die registrierte Callbackfunktion wird beim Empfangen von Daten aufgeru-
fen. Beim Verbindungsaufbau und Abbau werden alle registrierten Callback-Funkti-
onen aufgerufen.

Das Registrieren der verschiedenen Callback-Funktionen sollte / muss vor dem Auf-
ruf des DMSAPI_Init stattfinden. Direkt nach dem Initialisieren ist das DMS aktiv
und kann ab dem Zeitpunkt mit Clientstationen verbunden werden.

Diese Verbindungen werden den Applikationen auch über die Verbindungsstruktur
in den Callback-Funktionen angezeigt.

Parameter:

• CBId: CallbackIdentifikation, für welche die folgende Prozedur installiert
wird.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist
nicht installiert.

E_DMSAPI_DUPLICATE_CALLBACK Für die angegebene CallbackId ist schon
eine Funktion installiert.

E_DMSAPI_NO_RESOURCE Die maximale Anzahl der Callbackfuntki-
onen ist registriert.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
108 Referenz-Handbuch – DMS / API

3 DMS ClientManagement Callback function (&RecStruct)

• Fnc: Callbackfunktion, die beim Empfangen von Daten für die CBId
aufgerufen wird. Wird als Parameter NULL übergeben, wird die Callback-
Funktion deinstalliert.

Mögliche Returnwerte:

3.7.4 Callback function (&RecStruct)

Wird der DMS-Dienst für eine Callback-Funktion aufgerufen, wird die Antwort an
die Callback-Funktion übergeben. Nach Beendigung der Callbackfunktion ist der
Datenbereich ungültig. Gibt die Callbackfunktion einen ReturnCode ungleich Null
zurück wird die Verbindung eingerissen und neu aufgebaut.

In Multitasking (bzw. Multithreading)- Umgebungen kann die Callback-Funktion
aus verschiedenen Task-Kontexten "gleichzeitig" aufgerufen werden. Hier kann in
der Funktion auch auf das Eintreffen von Ereignissen gewartet werden. Dieses
Ereignis darf aber nicht der Empfang von weiteren Daten auf dieser Verbindung
sein. Nur die anderen Verbindungen werden weiter bedient.

Bei Verbindungsauf- und abbauen werden immer alle Callback-Funktionen aufgeru-
fen. Auch die Verbindung zu Freelance Engineering wird dann angezeigt.

Bei jeder Konfigurationsänderung werden ebenso alle CallbackFunktionen aufgeru-
fen. Hier muss die Applikation selber entscheiden, was getan werden muss. Z.B.
welche Dienste gingen gerade schief, weil die Konfiguration nicht gestimmt hat und
können nun wiederholt werden. Oder auch welche Variablen müssen neu gelesen
werden, weil sich die internen Freelance Adressinformationen geändert haben. Kon-
figurationsänderungen können durch Sperren des Objektverzeichnisses verhindert

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CALLBACK Die angegebene Callback-Funktion ist
nicht installiert.

E_DMSAPI_DUPLICATE_CALLBACK Für die angegebene CallbackId ist
schon eine Funktion installiert.

E_DMSAPI_NO_RESOURCE Die maximale Anzahl der Callback-
funktionen ist registriert.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 109

Callback function (&RecStruct) 3 DMS ClientManagement

werden. In diesem Fall meldet Freelance Engineering, dass sich die Downloads
nicht durchführen lassen.
110 Referenz-Handbuch – DMS / API

4 Namensverwaltung

4 Namensverwaltung

Das Namemanagement steht nur auf Stationen zur Verfügung, die in Freelance
Engineering als Gateway konfiguriert und geladen wurden. Das Empfangen, der von
Freelance Engineering zu ladenden Dateien (Domains), geschieht über die Server-
prozeduren des Domainmangements. Die Domains sind binärkodiert.

Das Namemangement gilt nur für eine Ressource, d.h. wird das DMSAPI für meh-
rere Ressourcen gleichzeitig betrieben haben die Ressourcen unterschiedliche
Adressräume.

z.B:

Resource 1 verwaltet Projekt1
Resource 2 verwaltet Projekt2

Die Umkonfiguration von Freelance Engineering kann verhindert werden, wenn das
Objektverzeichnis gesperrt wird. Hier gibt es die Funktionen: DMSAPI_LockOV
und DMSAPI_UnlockOV.

Das Namemanagement verfügt über folgende Informationen:

• Versionsinformation: Freelance Engineering überprüft, ob die Version des
angeschlossen Gateways mit der konfigurierten Version übereinstimmt.

• Stationsinformation über die IPAdressen, Versionen, u.a. aller Stationen eines
Freelance projektes

• VariablenInformation über alle Variablen, für die in Freelance Engineering ein
Lese- oder Schreibzugriff konfiguriert wurde

• MSR-Stelleninformationen über alle MSR-Stellen, für die in Freelance
Engineering ein Lese- oder Schreibzugriff konfiguriert wurde

• Informationen über Freelance Objektklassen, mit allen ComponentenNamen
für die adressierbaren Variablen eines Bausteins.
Referenz-Handbuch – DMS / API 111

Dateiverzeichnis 4 Namensverwaltung

4.1 Dateiverzeichnis
Vor dem Initialisieren des DMSAPI kann die Applikation ein Gatewayverzeichnis
bestimmen unter dem ein Directorybaum angelegt wird. Unter dem Verzeichnis
wird für jede initalisierte Ressource ein eigenes Directory angelegt. Dieses Direc-
tory bekommt den Namen Res<OwnResNo>. In diesem Verzeichnis wird eine Datei
namens "Proj.dom" abgelegt, in dem das zuletzt für diese Resource benutzte Projekt
steht. Unter dem Verzeichnis wird für jedes Projekt ein eigenes Directory mit dem
Namen des Projektes angelegt. In diesem Verzeichnis werden durch den Download
von Freelance Engineering folgende Dateien abgelegt:

• vers.dom:Datei mit den Informationen über die eigene Projektversion

• ov.dom:Datei mit den Informationen über die Größe des Objektverzeichnis und
den Ladezustand der einzelnen Objekte

• stat.dom:Datei mit den Informationen über die verschiedenen Ressourcen

• version.dom:Datei mit den Informationen über die Versionsinformation auf den
einzel nen Ressourcen

• tag.dom:Datei mit den Informationen über die MSR-Stellen

• var.dom:Datei mit den Informationen über die Variablen

• fb<Num>.dom:Datei mit den Informationen für die einzelnen Objektklassen,
wie Funktionsbausteine, SFC und benutzerdefinierten Strukturen

Im Beispiel ist im Windows Explorer ein Gatewayverzeichnis auf Laufwerk D:
unter freelance\proj angelegt. Unter diesem Verzeichnis wurden 2 Gateways mit den
Ressourcenummern 88 und 123 angelegt. Die Ressource 88 wurde von Freelance
Engineering mit den Projekten projA und projB geladen, die Ressource 123 von
einem anderen Freelance Engineering mit den Projekten proj1, proi2 und proj3.
112 Referenz-Handbuch – DMS / API

4 Namensverwaltung DMSAPI_SetProjectDir

ap018gr.bmp

4.1.1 DMSAPI_SetProjectDir

SYNTAX

DMS_RC DMSAPI_SetProjectDir(

DMS_CHAR * szProjectDir

);

Wird das DMS-API auf einem Rechner mit Festplatte betrieben und auf diesem die
Gateway-Konfiguration hinuntergeladen, kann das GatewayVerzeichnis durch die
Funktion DMSAPI_SetProjectDir gesetzt werden. Durch dieses Setzen werden
automatisch alle Freelance Domains unter diesem Verzeichnis installiert. Ändert
sich durch den Aufruf dieser Funktion das Projektverzeichnis, wird automatisch die
Verbindung zu allen Client-Stationen (in der Regel Freelance Engineering) unter-
brochen. Das Projektdirectory wird für alle Ressourcen auf das gleiche Verzeichnis
gesetzt. Solange das Projektverzeichnis nicht gesetzt ist kann Freelance Engineering
keine Konfiguration laden.
Referenz-Handbuch – DMS / API 113

DMSAPI_ChangeProject 4 Namensverwaltung

Parameter:

• szProjectDir: gültiges Verzeichnis

Mögliche Returnwerte:

4.1.2 DMSAPI_ChangeProject

SYNTAX

DMSAPI_ChangeProject(

DMS_RES_NOOwnResNo /* eigene Ressourcenummer */,

DMS_CHAR *szProjectName /* Projektname */

)

Wird das DMS-API auf einem Rechner mit Festplatte betrieben und auf diesem die
Gateway-Konfiguration hinuntergeladen, kann das GatewayVerzeichnis durch die
Funktion DMSAPI_ChangeProject gesetzt werden. Durch dieses Setzen werden
automatisch alle Freelance Domains unter diesem Verzeichnis installiert. Ändert
sich durch den Aufruf dieser Funktion das Projektverzeichnis, wird automatisch die
Verbindung zu allen Client-Stationen (in der Regel Freelance Engineering) unter-
brochen. Ist das angegebene Projekt nicht vorhanden, liefern die Funktionen des
Namemangements nichts zurück. Freelance Engineering setzt beim Initialisieren

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die
DMS-Schicht für diese Ressourcennummer
nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INVALID_DIR auf Directory kann nicht zugegriffen werden

E_DMSAPI_CONFIGURING Freelance Engineering lädt gerade Konfigura-
tion

E_DMSAPI_INTERNAL_ERROR Interner Fehler
114 Referenz-Handbuch – DMS / API

4 Namensverwaltung Projektinformation

und beim Laden der ganzen Station selbständig das Projektverzeichnis auf den Pro-
jektnamen von Freelance Engineering.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• szProjektname: Der Projektname muss ein gültiger Dateiname sein

Mögliche Returnwerte:

4.2 Projektinformation

4.2.1 DMSAPI_GetProjectInfo

SYNTAX

DMS_RC DMSAPI_GetProjectInfo(

DMS_RES_NO OwnResNo /* Eigene Ressourcen. . */,

DMS_VERSION_DATA* lpVersionData /* Versionsdata */

);

Es stehen die folgenden Informationen zur Verfügung, wenn das DMSAPI über die
Funktion DMSAPI_Init initialisiert wurde. Bei jedem Download von Freelance
Engineering erhalten alle angemeldeten Callbackfunktionen diese Informationen
automatisch.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_CONFIGURING Freelance Engineering lädt gerade Konfiguration

E_DMSAPI_INVALID_DIR auf Directory kann nicht zugegriffen werden

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 115

Projektinformation 4 Namensverwaltung

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• lpVersionData:

typedef struct DMS_VERSION_DATA {

DMS_CHAR *ProjName; /* Projektname */

DMS_WORD16wMajorVersion; /* MajorversionsNummer*/

DMS_WORD16 wMinorVersion; /* MinorversionsNummer */

DMS_WORD16 wPatchVersion; /* PatchversionsNummer */

} DMS_VERSION_DATA;

Der Projektname kann durch die Funktion DMSAPI_ChangeProject geändert wer-
den. Unterscheidet sich der aktuelle Projektname von dem Projekt das Freelance
Engineering berarbeitet und wird von Freelance Engineering aus die Gatewaystation
geladen erhält die Gatewaystation automatisch Projektname und folgende Versions-
nummern von Freelance Engineering.

Die Majorversionsnummer ändert sich bei jedem "Laden der ganzen Station" von
Freelance Engineering. Der alte Wert wird inkrementiert.

Die Minorversionsnummer ändert sich mit jedem einzelnen Objekt, das von Free-
lance Engineering hinuntergeladen wird. Der alte Wert wird inkrementiert.

Die Patchversionsnummer ändert sich auf dem Gateway nicht. Sie bleibt konstant
auf 0.

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
116 Referenz-Handbuch – DMS / API

4 Namensverwaltung Sperren des "Namemanagement"

4.3 Sperren des "Namemanagement"

4.3.1 DMSAPI_LockOV

SYNTAX

DMS_RC DMSAPI_LockOV(

DMS_RES_NO OwnResNo /* Eigene Ressourcen. */

);

Soll über einen bestimmten Zeitraum eine Umkonfiguration von Freelance Enginee-
ring verhindert werden, kann diese über das Sperren des Objektverzeichnisses ver-
hindert werden. Freelance Engineering zeigt dann an, dass auf dieses Gateway keine
Konfiguration geladen werden kann.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

Mögliche Returnwerte:

4.3.2 DMSAPI_UnlockOV

SYNTAX

DMSAPI_UnlockOV

DMS_RES_NO OwnResNo /* Eigene Ressourcen. */

);

Soll nach einer Sperrung des Objektverzeichnisses die Umkonfiguration durch Free-
lance Engineering wieder zugelassen werden ist diese Prozedur aufzurufen.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_ALREADY_DONE Objektverzeichnis ist schon gesperrt

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 117

Stationsinformation 4 Namensverwaltung

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

Mögliche Returnwerte:

4.4 Stationsinformation
Über die ServerProzeduren des Domainmangements werden folgende 2 Binärdo-
mains empfangen:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_ALREADY_DONE Sperrung des OV ist schon aufgehoben

E_DMSAPI_INTERNAL_ERROR Interner Fehler

Stationname IP-address 1 IP-address 2 StatNo StatType TimeOut

DPS1 172.16.1.2 172.16.1.3 2 RED_MSR 45

DPS2 172.16.1.4 0.0.0.0 3 MSR 120

GWY1 172.16.1.5 0.0.0.0 4 GWY 15

....

Table 1.

StationNo MajorVersion MinorVersion PatchVersion

2 142 340 0

3 10 223 2

....
118 Referenz-Handbuch – DMS / API

4 Namensverwaltung DMSAPI_GetFirstResourceInfo

Der Zugriff auf diese Stationsinformation wird über folgende 2 Prozeduren gesteu-
ert:

• DMSAPI_GetFirstResourceInfo

• DMSAPI_GetNextResourceInfo

!!!

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus 2 Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide Tasks
nicht alle Elemente aus der Stationsdomains sondern abwechselnd die nächsten Ele-
mente aus der Domain.

!!!

Nach Umkonfiguration dieser Stationsdomain durch Freelance Engineering muss
immer erneute die Prozedur ein GetFirst aufgerufen werden. Die Getnext-Routine
liefert sonst einen Fehler zurück.

4.4.1 DMSAPI_GetFirstResourceInfo

SYNTAX

DMS_RC DMSAPI_GetFirstResourceInfo(

DMS_RES_NO OwnResNo /* Eigene ResNum */,

DMS_UINT32 *lpulNoOfRes /* Anzahl der Ressourcen */,

DMS_UINT32 ResNameLen /* max. Länge Ressname */,

DMS_CHAR *lpResName /* Ressname */,

DMS_NAME_RESOURCE_DATA*lpResInfo /* RessInfo */

);

Die Prozedur gibt die Informationen, über die erste Ressource, innerhalb der Res-
sourcendomain zurück.

Parameter:
Referenz-Handbuch – DMS / API 119

DMSAPI_GetFirstResourceInfo 4 Namensverwaltung

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• lpulNoOfRes: Anzahl der vorhandenen Ressourcen wird zurückgegegeben

• ResNameLen: Länge des folgenden Buffers (DMS_MAX_RESNAME_LEN)

• lpResName:Buffer für Ressourcenname

• lpResInfo: Ressourceinformation

typedef struct DMS_NAME_RESOURCE_DATA {

DMS_WORD32 dwIPAddr1;

DMS_WORD32 dwIPAddr2;

DMS_RES_NO ResNo;

DMS_RES_TYPE ResType;

DMS_UINT16 wTimeOut; /* in sec. */

DMS_UINT16 wMajorVersionNo;

DMS_UINT16 wMinorVersionNo;

DMS_UINT16 wPatchVersionNo;

} DMS_NAME_RESOURCE_DATA;

Der ResType kann folgende Werte annehmen:

DMS_OS_DIGIVIS

DMS_OS_DIGITOOL

DMS_OS_EPROM

DMS_OS_MSR

DMS_OS_DDE_GWY

DMS_OS_P_GWY

DMS_OS_GWY
120 Referenz-Handbuch – DMS / API

4 Namensverwaltung DMSAPI_GetNextResourceInfo

Mögliche Returnwerte:

4.4.2 DMSAPI_GetNextResourceInfo

SYNTAX

DMS_RC DMSAPI_GetNextResourceInfo(

DMS_RES_NO OwnResNo /* Eigene RessNummer */,

DMS_UINT32 ResNameLen /* max. Länge Ressname */,

DMS_CHAR *lpResName /* Ressname */,

DMS_NAME_RESOURCE_DATA*lpResInfo /* RessInfo */

);

Die Prozedur gibt die Informationen, über die weiteren Ressourcen, innerhalb der
Ressourcendomain zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ResNameLen: Länge des folgenden Buffers (DMS_MAX_RESNAME_LEN)

• lpResName:Buffer für Ressourcenname

• lpResInfo: Ressourceinformation

typedef struct DMS_NAME_RESOURCE_DATA {

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initialisiert
wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine Station im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 121

DMSAPI_GetNextResourceInfo 4 Namensverwaltung

DMS_WORD32 dwIPAddr1;

DMS_WORD32 dwIPAddr2;

DMS_RES_NO ResNo;

DMS_RES_TYPE ResType;

DMS_UINT16 wTimeOut; /* in sec. */

DMS_UINT16 wMajorVersionNo;

DMS_UINT16 wMinorVersionNo;

DMS_UINT16 wPatchVersionNo;

} DMS_NAME_RESOURCE_DATA;

Der ResType kann folgende Werte annehmen:

DMS_OS_DIGIVIS

DMS_OS_DIGITOOL

DMS_OS_EPROM

DMS_OS_MSR

DMS_OS_DDE_GWY

DMS_OS_P_GWY

DMS_OS_GWY

Parameter:

• OwnResourceNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init
muss aufgerufen sein.

• StationNameLen: Länge des folgenden Buffers

• lpStationName:Buffer für Stationsname

• lpStationInfo: Stationsinformation
122 Referenz-Handbuch – DMS / API

4 Namensverwaltung Variableninformation

Mögliche Returnwerte:

4.5 Variableninformation
Über die ServerProzeduren des Domainmangements wird folgende Binärdomain
empfangen:

Der Zugriff auf diese Variableninformation wird über folgende 2 Prozeduren
gesteuert:

• DMSAPI_GetFirstVarInfo

• DMSAPI_GetNextVarInfo

!!!

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus 2 Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide Tasks

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_NO_ACCESS Funktion: Getfirst wurde nicht aufgerufen

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine weiteren Stationen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler

Variable name Data type Access StatNo ObjNo CompNo

ANA_E DIGI_FLOAT3 2 R 1 131 1

BIN_A1 DIGI_BOOLEAN R/W 2 131 2

...
Referenz-Handbuch – DMS / API 123

DMSAPI_GetFirstVarInfo 4 Namensverwaltung

nicht alle Elemente aus der Variablendomain sondern abwechselnd die nächsten
Elemente aus der Domain.

!!!

Nach Umkonfiguration dieser Stationsdomain durch Freelance Engineering muss
immer erneut dieProzedur ein GetFirst aufgerufen werden. Die Getnext-Routine lie-
fert sonst einen Fehler zurück.

4.5.1 DMSAPI_GetFirstVarInfo

SYNTAX

DMS_RC DMSAPI_GetFirstVarInfo(

DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_UINT32 *lpulNoOfVar /* Anzahl der Var */,

 DMS_UINT32 VarNameLen /* max. Laenge Varname */,

 DMS_CHAR *lpVarName /* Variablenname */,

 DMS_NAME_VAR_DATA*lpVarInfo /* VariablenInfo */);

Die Prozedur gibt die Informationen, über die erste Variable, innerhalb der Variab-
lendomain zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• lpulNoOfVar: Anzahl der vorhandenen Variablen wird zurückgegeben

• VarNameLen: Länge des folgenden Buffers(DMS_MAX_VARNAME_LEN)

• lpVarName: Buffer für Variablenname

• lpVarInfo: Variableninformation

typedef struct DMS_NAME_VAR_DATA {
124 Referenz-Handbuch – DMS / API

4 Namensverwaltung DMSAPI_GetNextVarInfo

DMS_WORD32 dwAccessRights;

DMS_VAR_TYPE VarType;

DMS_RES_NO ResNo;

DMS_OBJ_PATH Opath;

} DMS_NAME_VAR_DATA;

dwAccessRights kann die folgenden Werte annehmen:DMS_READ_ONLY

DMS_READ_WRITE

VarType kann verschiedenen Werte annehmen. (siehe Anhang DMS-Variablenty-
pen)

Opath ist die DMS-Adressierung auf dem Server:

typedef struct {

DMS_OBJNOObjNo;

DMS_CMPNOCmpNo}

DMS_OBJ_PATH;

Mögliche Returnwerte:

4.5.2 DMSAPI_GetNextVarInfo

SYNTAX

DMS_RC DMSAPI_GetNextVarInfo(

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine Variablen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 125

DMSAPI_GetNextVarInfo 4 Namensverwaltung

DMS_RES_NO OwnResNo /*Eigene RessourceNummer */,

DMS_UINT32 VarNameLen /* max. Länge Varname */,

 DMS_CHAR *lpVarName /*Variablenname */,

 DMS_NAME_VAR_DATA*lpVarInfo /*VariablenInfo */);

Die Prozedur gibt die Informationen, über die weiteren Variablen, innerhalb der
Variablendomain zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• VarNameLen: Länge des folgenden Buffers(DMS_MAX_VARNAME_LEN)

• lpVarName: Buffer für Variablenname

• lpVarInfo : Variableninformation

typedef struct DMS_NAME_VAR_DATA {

DMS_WORD32dwAccessRights;

DMS_VAR_TYPE VarType;

DMS_RES_NO ResNo;

DMS_OBJ_PATH Opath;

} DMS_NAME_VAR_DATA;

dwAccessRights kann die folgenden Werte annehmen:

 DMS_READ_ONLY

DMS_READ_WRITE

VarType kann verschiedenen Werte annehmen. (siehe Anhang DMS-Variablenty-
pen)

Opath ist die DMS-Adressierung auf dem Server:

typedef struct {
126 Referenz-Handbuch – DMS / API

4 Namensverwaltung MSR-Stelleninformation

DMS_OBJNOObjNo;

DMS_CMPNOCmpNo}

DMS_OBJ_PATH;

Mögliche Returnwerte:

4.6 MSR-Stelleninformation
Über die ServerProzeduren des Domainmangements wird folgende Binärdomain
empfangen:

Der Zugriff auf diese MSR-Stellen-Information wird über folgende 2 Prozeduren
gesteuert:

• DMSAPI_GetFirstTagInfo

• DMSAPI_GetNextTagInfo

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_NO_ACCESS Funktion: Getfirst wurde nicht aufgerufen

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine weiteren Variablen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler

MSR name ResNo Access Object class ObjNo CmpNo

ANA_Z1 1 R DIGI_ANA_Z(267) 2689 0

BinOver 1 RW DIGI_BINOV(279) 2788 0

StructTst 2 RW Structured var (520) 131 12

.....
Referenz-Handbuch – DMS / API 127

MSR-Stelleninformation 4 Namensverwaltung

!!!

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus zwei Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide
Tasks nicht alle Elemente aus der MSR-Stellendomain sondern abwechselnd die
nächsten aus der Domain.

!!!

Nach Umkonfiguration dieser MSR-Stellendomain durch Freelance Engineering
muss immer erneut die Prozedur GetFirst aufgerufen werden. Die Getnext-Routine
liefert sonst einen Fehler zurück.

DMSAPI_GetFirstTagInfo

SYNTAX

DMSAPI_GetFirstTagInfo(

DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_UINT32 *lpulNoOfTag/* Anzahl der Tags */,

 DMS_UINT32 TagNameLen/* max. Länge Tagname */,

 DMS_CHAR *lpTagName /* MSR-Stellenname */,

 DMS_NAME_TAG_DATA*lpTagInfo /* Taginfo*/

);

Die Prozedur gibt die Informationen, über die erste MSR-Stelle, innerhalb der
MSR-Stellendomain zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• lpulNoOfTag : Anzahl der vorhandenen MSR-Stellen wird zurückgegeben

• TagNameLen: Länge des folgenden Buffers(DMS_MAX_TAGNAME_LEN)

• lpTagName:Buffer für MSR-Stellenname
128 Referenz-Handbuch – DMS / API

4 Namensverwaltung MSR-Stelleninformation

• lpTagInfo : MSR-Stelleninformation

typedef struct DMS_NAME_TAG_DATA {

DMS_WORD32 dwAccessRights;

DMS_RES_NO ResNo;

DMS_OBJNO ObjClass;

DMS_OBJNO ObjNo;

DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

dwAccessRights kann die folgenden Werte annehmen:

DMS_READ_ONLY

DMS_READ_WRITE

Mögliche Returnwerte:

DMSAPI_GetNextTagInfo

SYNTAX

DMSAPI_GetNextTagInfo(

DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

DMS_UINT32 TagNameLen /* max. Länge Tagname */,

 DMS_CHAR *lpTagName /* MSR-Stellenname */,

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine MSR-Stellen im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 129

MSR-Stelleninformation 4 Namensverwaltung

 DMS_NAME_TAG_DATA*lpTagInfo /* TagInfo*/

);

Die Prozedur gibt die Informationen, über alle weiteren MSR-Stellen, innerhalb der
MSR-Stellendomain zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• TagNameLen: Length of the next buffer in sequence
(DMS_MAX_TAGNAME_LEN)

• lpTagName: Buffer for tag name

• lpTagInfo: Tag information

typedef struct DMS_NAME_TAG_DATA {

DMS_WORD32 dwAccessRights;

DMS_RES_NO ResNo;

DMS_OBJNO ObjClass;

DMS_OBJNO ObjNo;

DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

dwAccessRights kann die folgenden Werte annehmen:

DMS_READ_ONLY

DMS_READ_WRITE

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.
130 Referenz-Handbuch – DMS / API

4 Namensverwaltung MSR-Stelleninformation

DMSAPI_GetTagByAddr

CGEXPORT DMS_RC DMSAPI_GetTagByAddr (

 DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_RES_NO ResNo /* RessNummer */,

 DMS_OBJNO ObjNo /* ObjektPfad */,

 DMS_UINT32 TagNameLen /* max. Länge Tagname */,

 DMS_CHAR *lpTagName /* MSR-Stellenname */,

 DMS_NAME_TAG_DATA*lpTagInfo /* Taginfo*/

);

Die Prozedur gibt die Informationen über einen "Tag", der über Ressourcenummer
und Objektnummer adressiert wird, zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ResNo: RessourcenNummer der ServerStation.

• ObjNo: Objektnummer des gesuchten Objektes

• TagNameLen: Länge des folgenden Buffers(DMS_MAX_TAGNAME_LEN)

• lpTagName:Buffer für MSR-Stellenname

• lpTagInfo : MSR-Stelleninformation

typedef struct DMS_NAME_TAG_DATA {

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_EMPTY_CONF keine weiteren MSR-Stellen im Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_NO_ACCESS Funktion: Getfirst wurde nicht aufgerufen

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 131

Objektklassen-Stelleninformation 4 Namensverwaltung

DMS_WORD32 dwAccessRights;

DMS_RES_NO ResNo;

DMS_OBJNO ObjClass;

DMS_OBJNO ObjNo;

DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

dwAccessRights kann die folgenden Werte annehmen:

 DMS_READ_ONLY

DMS_READ_WRITE

Mögliche Returnwerte:

4.7 Objektklassen-Stelleninformation
Über die ServerProzeduren des Domainmangements werden mehrere Binärdomains
empfangen:

Analogzähler: Objektklasse 267

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_INVALID_CONF keine MSR-Stellen für die Adresse im Projekt vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler

Variablenname Zugriff DatenTyp ComponentNr

Enable RW DIGI_BOOLEAN 1
132 Referenz-Handbuch – DMS / API

4 Namensverwaltung Objektklassen-Stelleninformation

BinärÜberwacher: Objektklasse 279

Datenbaustein: Objektklasse 520 (Namen sind vom Anwender definiert)

Datenbaustein: Objektklasse 510 (Namen sind vom Anwender definiert)

Im Beispiel handelt es sich bei dem Datenbaustein 520 um eine mehrstufige Adres-
sierung:

Die mehrstufige Adressierung über Variablennamen lautet dann z.B.:

StructTst/Struct2/Elem2

Eingang R DIGI_FLOAT32 2

...

Variablenname Zugriff DatenTyp ComponentNr

Enable R DIGI_BOOLEAN 1

Eingang RW DIGI_BOOLEAN 2

...

Variablenname Zugriff DatenTyp ComponentNr

Struct1 RW Datenbaustein 510 1

Struct2 RW Datenbaustein 510 n

...

Variablenname Write DatenTyp ComponentNr

Elem1 RW DIGI_BOOLEAN 1

Elem2 RW DIGI_FLOAT32 2

....

Elemn RW DIGI_INT32 n
Referenz-Handbuch – DMS / API 133

DMSAPI_GetFirstCmpOfObjClass 4 Namensverwaltung

Die KomponentenNummer berechnet sich dann:

KomponentenNummer von StructTst +

KomponentenNummer von Struct2 +

KomponentenNummer von StrucElem2 .

Es ist eine beliebig tiefe Schachtelung möglich. Rekursion muss ausgeschlossen
sein.

• DMSAPI_GetFirstCmpOfObjClass

• DMSAPI_GetNextCmpOfObjClass

!!!

Bei der Benutzung dieser Funktionen auf Multitaskingbetriebssystemen ist in der
Applikation auf entsprechende Verriegelungsmechanismen zu achten. D.h. werden
aus zwei Tasks abwechselnd die GetNext-Funktion aufgerufen, bekommen beide
Tasks nicht alle Elemente aus der Objektlassendomains sondern abwechselnd die
nächsten aus der Domain.

!!!

Nach Umkonfiguration dieser Stationsdomain durch Freelance Engineering muss
immer ein erneutes GetFirst aufgerufen werden. Die Getnext-Routine liefert einen
Fehler zurück.

Die verfügbaren Komponenten aller Bausteine sind im Handbuch "Freelance 200
Zusatzprogramme - Anhang" aufgelistet.

4.7.1 DMSAPI_GetFirstCmpOfObjClass

SYNTAX

DMS_RC DMSAPI_GetFirstCmpOfObjClass(

 DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_OBJNO ObjClass /* Objektklasse */,
134 Referenz-Handbuch – DMS / API

4 Namensverwaltung DMSAPI_GetFirstCmpOfObjClass

 DMS_UINT32 *lpulNoOfCmp /* Anzahl der Komponenten */,

 DMS_UINT32 CmpNameLen /* max. Länge Komp.namen */,

 DMS_CHAR *lpCmpName /* Komponentenname */,

 DMS_NAME_OBJ_DATA *lpObjInfo /* ObjektInfo */

);

Die Prozedur gibt die Informationen, über die erste Komponente, innerhalb der
angegebenen Objektklasse zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ObjClass: Objektnummer der gesucht Objektklasse

• lpulNoOfCmp : Anzahl der vorhandenen Komponenten wird zurückgegeben

• CmpNameLen: Länge des folgenden
Buffers(DMS_MAX_COMPNAME_LEN)

• lpCmpName: Buffer für Komponentenname

• lpObjInfo: Information über die 1. Komponente der Objektklasse

typedef struct DMS_NAME_OBJ_DATA {

 DMS_WORD16 nRWFlag;

 DMS_CMPNO CmpNo;

 DMS_VAR_TYPE VarType;

 DMS_WORD16 Reserved;

} DMS_NAME_OBJ_DATA;

dwAccessRights kann die folgenden Werte annehmen:
 DMS_READ_ONLY

DMS_READ_WRITE
Referenz-Handbuch – DMS / API 135

DMSAPI_GetNextCmpOfObjClass 4 Namensverwaltung

Mögliche Returnwerte:

4.7.2 DMSAPI_GetNextCmpOfObjClass

SYNTAX

DMS_RC DMSAPI_GetNextCmpOfObjClass(

 DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_OBJNO ObjClass /* Objektklasse */,

DMS_UINT32 CmpNameLen/* max. Länge Komp.namen */,

 DMS_CHAR *lpCmpName /* Komponentenname */,

 DMS_NAME_OBJ_DATA*lpObjInfo /* ObjektInfo */

);

Die Prozedur gibt die Informationen, über alle weiteren Komponenten, innerhalb
der angegebenen Objektklasse zurück.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ObjClass: Objektnummer der gesucht Objektklasse

• CmpNameLen: Länge des folgenden
Buffers(DMS_MAX_COMPNAME_LEN)

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-
Schicht für diese Ressourcennummer nicht initiali-
siert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_EMPTY_CONF keine Objektklasse dieses Typs vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_INTERNAL_ERROR Interner Fehler
136 Referenz-Handbuch – DMS / API

4 Namensverwaltung Adressen-Konvertierung

• lpCmpName:Buffer für Komponentenname

• lpObjInfo:Information über die 1. Komponente der Objektklasse

typedef struct DMS_NAME_OBJ_DATA {

 DMS_WORD16 nRWFlag;

 DMS_CMPNO CmpNo;

 DMS_VAR_TYPE VarType;

 DMS_WORD16 Reserved;

} DMS_NAME_OBJ_DATA;

dwAccessRights kann die folgenden Werte annehmen:

 DMS_READ_ONLY

DMS_READ_WRITE

Mögliche Returnwerte:

4.8 Adressen-Konvertierung
Zusätzlich zu diesen Grundfunktionen gibt es die Möglichkeit "Variablennamen" in
"Freelance -Objektpfad" zu wandeln und umgekehrt.

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_EMPTY_CONF keine weiteren Informationen über diese Objektklasse vor-
handen

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 137

DMSAPI_GetVarNameByOPath 4 Namensverwaltung

4.8.1 DMSAPI_GetVarNameByOPath

SYNTAX

DMS_RC DMSAPI_GetVarnameByOPath (

 DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_RES_NO ResNo /* RessNummer */,

 DMS_OBJ_PATH *lpOPath /* ObjektPfad */,

 DMS_UINT32 VarNameLen /* Max. . Länge Varname */,

 DMS_CHAR *lpVarName /* VariablenName */);

Die Prozedur wandelt einen Objektpfad in einen Variablennamen um.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• ResNo: RessourcenNummer der ServerStation.

• lpOPath: Objektpfad der gesuchten Variablen

typedef struct {

DMS_OBJNO ObjNo;

DMS_CMPNOCmpNo;

} DMS_OBJ_PATH;

• VarNameLen: Länge des folgenden Buffers (DMS_MAX_VARNAME_LEN)

• lpVarName:Buffer für Variablenname

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht für
diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.
138 Referenz-Handbuch – DMS / API

4 Namensverwaltung DMSAPI_GetVarInfoByName

4.8.2 DMSAPI_GetVarInfoByName

SYNTAX

DMS_RC DMSAPI_GetVarInfoByName(

 DMS_RES_NO OwnResNo /* Eigene RessourceNummer */,

 DMS_CHAR *lpVarName /* VariablenName */,

 DMS_RES_NO *lpResNo /* RessNummer */,

 DMS_OBJ_PATH *lpOPath /*ObjektPfad*/,

 DMS_VAR_TYPE *lpVarType /* DigiTyp */,

DMS_WORD32 * lpAccessRights /* Access Rights */

);

Die Prozedur wandelt einen Variablennamen in einen "Objektpfad" um. Dabei muss
es sich bei dem Variblennamen nicht um eine Variable handeln, die über die Funkti-
onen GetFirstVar und GetNextVar erhalten werden, sondern es kann sich auch um
eine aus "Tag" und Komponentennamen zusammengesetzte Variable handlen.

Parameter:

• OwnResNo: RessourcenNummer der eigenen Station. Das DMSAPI_Init muss
aufgerufen sein.

• lpVarName: Name der gesuchten Variable

• lpResNo: RessourcenNummer der ServerStation.

• lpOPath: Objektpfad der gesuchten Variablen

typedef struct {

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_SMALL_RCV_BUFF Übergebener Buffer ist zu klein.

E_DMSAPI_INVALID_CONF keine Information über die Variable vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 139

DMSAPI_GetVarInfoByName 4 Namensverwaltung

DMS_OBJNO ObjNo;

DMS_CMPNOCmpNo;

} DMS_OBJ_PATH;

• lpVarType kann verschiedenen Werte annehmen. (siehe Anhang DMS-
Variablentypen)

• lpAccessRights kann die folgenden Werte annehmen:

 DMS_READ_ONLY

DMS_READ_WRITE

Mögliche Returnwerte:

E_DMSAPI_NOT_INIT Die Funktion wurde aufgerufen, obwohl die DMS-Schicht
für diese Ressourcennummer nicht initialisiert wurde.

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_NO_CONF kein Projekt vorhanden

E_DMSAPI_INVALID_CONF keine Information über die Variable vorhanden

E_DMSAPI_INTERNAL_ERROR Interner Fehler
140 Referenz-Handbuch – DMS / API

5 Server Management

5 Server Management

Es gibt vordefinierte Funktionen über die das von Freelance Engineering benötigte
ServerManagement ausgeführt werden kann:

• Ablegen der Konfigurationsdomains für das Namemanagement auf Platte

• Start/Stop des DMS`s während einer Umkonfiguration

• Auslesen der Versionsinformation.
Referenz-Handbuch – DMS / API 141

5 Server Management

142 Referenz-Handbuch – DMS / API

6 DMS utilities DMSAPI_GetStringByValue

6 DMS utilities

6.1 DMSAPI_GetStringByValue
SYNTAX

DMS_RC DMSAPI_GetStringByValue(

 DMS_UINT32 ulStrLen /* Größe des Speichers auf den
 Pointer referenziert*/,

 DMS_CHAR *lpszString /* Speicher fuer String */,

 DMS_VAR_TYPEVarType /* VariablenTyp */,

 DMS_VALUE *lpvVarValue /* Variablenwert*/

);

Die Prozedur wandelt einen Freelance -Wert in einen druckbaren String um.

Parameter:

• ulStrlen: maximale Länge des Buffers

• lpszString:Buffer für String

• Vartype:Typ des Wertes

• lpvVarValue:Freelance-Wert

Mögliche Returnwerte:

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_SMALL_RCV_BUFF Buffer zu klein

E_DMSAPI_INTERNAL_ERROR Interner Fehler
Referenz-Handbuch – DMS / API 143

DMSAPI_GetValueByString 6 DMS utilities

6.2 DMSAPI_GetValueByString

SYNTAX

DMS_RC DMSAPI_GetValueByString(

 DMS_UINT32 ulValLen /* Größe des Speichers auf den Pointer
 referenziert */,

 DMS_VALUE *lpvVarValue /* Speicher fuer Variablenwert */,

 DMS_VAR_TYPEVarType /* VariablenTyp */,

 DMS_CHAR *lpszString /* Wert als String */

);

Die Prozedur wandelt einen eingelesen String in einen Freelance -Wert um.

Parameter:

• ulValLen: maximale Länge des Buffers

• lpvVarValue:Buffer für Value

• Vartype:Typ des Wertes

• lpvVarValue:Freelance -Wert als String

Mögliche Returnwerte:

E_DMSAPI_INVALID_ARG Übergabeparameter sind fehlerhaft.

E_DMSAPI_SMALL_RCV_BUFF Buffer zu klein

E_DMSAPI_INTERNAL_ERROR Interner Fehler
144 Referenz-Handbuch – DMS / API

6 DMS utilities DMSAPI_GetVarLen

6.3 DMSAPI_GetVarLen
SYNTAX

int DMSAPI_GetVarLen(

DMS_VAR_TYPE VarType /* VariablenTyp */

);

Die Prozedur gibt für einen Freelance -Datentyp die Länge des Speichers zurück,
die eine Variable dieses Typs in einer Variablenliste benötigt.

Parameter:

• VarType can take various different values. (See Appendix - DMS Variable
Types)

Mögliche Returnwerte:

Die Länge des Datentypen in Bytes oder -1 falls ein ungültiger Variablentyp überge-
ben wird.

6.4 DMSAPI_DumpRecData

SYNTAX

void DMSAPI_DumpRecData(

DMS_REC_DATA * DmsRecData /* */

) ;

Die Prozedur gibt (Dump) die Struktur einer Receivestruktur auf StandardOutput.

Parameter:

• RecData: ReceiveData
Referenz-Handbuch – DMS / API 145

DMSAPI_DumpRecData 6 DMS utilities

146 Referenz-Handbuch – DMS / API

Anhang A Variablen Typen und Fehler Codes DMS-Variablentypen

Anhang A Variablen Typen und Fehler Codes

A.1 DMS-Variablentypen
Im DMSAPI bestehen Variablen immer aus Typ und Wert. Die Variablentypen kön-
nen folgende Werte annehmen:

Define für Variablentyp Wert für

Variablentyp

 Typedef in UNION DMS_VALUE

DMS_VAR_TYPE_BOOLEAN 0x01 DMS_BOOLEAN Boolean;
typedef unsigned char DMS_BOOLEAN;

DMS_VAR_TYPE_CHAR 0x02 DMS_CHAR Char;
typedef char DMS_CHAR;

DMS_VAR_TYPE_BYTE 0x03 DMS_BYTE Byte; 
typedef unsigned char DMS_BYTE;

DMS_VAR_TYPE_INT8 0x04 DMS_INT8 Int8; 
typedef char DMS_INT8;

DMS_VAR_TYPE_WORD16 0x05 DMS_WORD16 Word16;

typedef unsigned short DMS_WORD16;

DMS_VAR_TYPE_UINT16 0x06 DMS_UINT16 Uint16;

typedef unsigned short DMS_UINT16;

DMS_VAR_TYPE_INT16 0x07 DMS_INT16 Int16;

typedef short DMS_INT16;

DMS_VAR_TYPE_WORD32 0x08 DMS_WORD32 Word32;

typedef unsigned long DMS_UINT32;

DMS_VAR_TYPE_UINT32 0x09 DMS_UINT32 Uint32;

typedef unsigned long DMS_UINT32;
Referenz-Handbuch – DMS / API 147

DMS-Variablentypen Anhang A Variablen Typen und Fehler Codes

DMS_VAR_TYPE_INT32 0x0A DMS_INT32 Int32;

typedef long DMS_INT32;

DMS_VAR_TYPE_FLOAT32 0x0B DMS_FLOAT32 Float32;

typedef float DMS_FLOAT32;

DMS_VAR_TYPE_TIME 0x0C DMS_TIME DmsTime;

typedef long DMS_INT32;

DMS_VAR_TYPE_DT 0x0D DMS_DT DmsDT;

/* ms since 1.1.1970 0.00 hrs GMT */

typedef struct {

 DMS_WORD32 dwMSecondsHigh;

 DMS_WORD32 dwMSecondsLow;

} DMS_DT;

DMS_VAR_TYPE_STRING8 0x0E DMS_STRING8 String8;

typedef struct {

 DMS_WORD16 wMaxStringLen;

 DMS_CHAR Content[10];

} DMS_STRING8;

DMS_VAR_TYPE_STRING16 0x0F DMS_STRING16 String16;

typedef struct {

 DMS_WORD16 wMaxStringLen;

 DMS_CHAR Content[18];

} DMS_STRING16;

DMS_VAR_TY-
PE_STRING32

0x10 DMS_STRING32 String32;

typedef struct {

 DMS_WORD16 wMaxStringLen;

 DMS_CHAR Content[34];

} DMS_STRING32;
148 Referenz-Handbuch – DMS / API

Anhang A Variablen Typen und Fehler Codes DMS-Variablentypen

DMS_VAR_TY-
PE_STRING64

0x11 DMS_STRING64 String64;

typedef struct {

 DMS_WORD16 wMaxStringLen;

 DMS_CHAR Content[66];

} DMS_STRING64;

DMS_VAR_TYPE_STRING128 0x12 DMS_STRING128 String128;

typedef struct {

 DMS_WORD16 wMaxStringLen;

 DMS_CHAR Content[130];

} DMS_STRING128;

DMS_VAR_TYPE_STRING256 0x13 DMS_STRING256 String256;

typedef struct {

 DMS_WORD16 wMaxStringLen;

 DMS_CHAR Content[258];

} DMS_STRING256;

DMS_VAR_TYPE_OBJNO 0x2C DMS_OBJNO ObjNo;

typedef unsigned long DMS_UINT16;

DMS_VAR_TYPE_CMPNO 0x2D DMS_CMPNO CmpNo;

typedef unsigned long DMS_UINT16;
Referenz-Handbuch – DMS / API 149

DMS-FehlerCodes Anhang A Variablen Typen und Fehler Codes

A.2 DMS-FehlerCodes

Define für Error Wert für Error Beschreibung des Fehlers

E_DMSAPI_OK 0x00000000 Kein Fehler

E_DMSAPI_NOT_INIT 0x00000001 Das DMSAPI ist für die angegebene
Ressource nicht initialisiert

E_DMSAPI_INVALID_CONF 0x00000002 Keine Konfiguration für angegebene Na-
men vorhanden

E_DMSAPI_INVALID_ARG 0x00000003 Funktion wurde mit falschem Parameter
aufgerufen

E_DMSAPI_SMALL_RCV_BUFF 0x00000004 Der übergebene Buffer ist zu klein

E_DMSAPI_EMPTY_CONF 0x00000005 Für die angegebene Namemana-
ge¬ment-Klasse ist keine Information
vorhanden

E_DMSAPI_INTERNAL_ERROR 0x00000006 Interner DMS-Fehler ist aufgetreten.
Aus Sicherheitsgründen sollte die Appli-
kation möglichst schnell und "daten-
schonend" verlassen werden.

E_DMSAPI_ACCESS_ERROR 0x00000007 Auf angegebene Station oder Variable
kann nicht zugegriffen werden.

E_DMSAPI_NO_CONF 0x00000008 Für die angegebene Ressource ist keine
Konfiguration vorhanden

E_DMSAPI_INVALID_DMS_HAND-
LE

0x00000009 Der übergebene DMS-Handle ist nicht
gültig

E_DMSAPI_INVALID_-
CONN_HANDLE

0x0000000a Der übergebene ConnectionHandle ist
nicht gültig

E_DMSAPI_NO_RESOURCE 0x0000000b Das DMS hat zur Zeit keine Ressour-
cen. Unter Umständen können Ressour-
cen nicht zurückgegeben werden, weil
Callbackfunktionen die Applikation blo-
ckieren.
150 Referenz-Handbuch – DMS / API

Anhang A Variablen Typen und Fehler Codes DMS-FehlerCodes

E_DMSAPI_VARLIST_IN_USE 0x0000000c Eine Variablenliste kann nicht verändert
werden, solange ein Dienst noch nicht
abgeschlossen ist.

E_DMSAPI_NO_CALLBACK 0x0000000d Für den übergebenen CallbackId ist kei-
ne Callbackfunktion angege-ben.

E_DMSAPI_DUPLICATE_CALL-
BACK

0x0000000e Unter der angegebene CallbackId wurde
schon eine Callback-Funktion angemel-
det.

E_DMSAPI_INVALID_INDEX 0x00000000f In der Variablenliste befindet sich unter
dem angebenen Index keine gültige Va-
riable.

E_DMSAPI_INVALID_VARTYPE 0x00000010 Der Wert des Variablentyps ist ungültig

E_DMSAPI_INVALID_VARMODE 0x00000011 Variablenliste wurde für einen Dienst
kreiert und soll nun für einen anderen
Dienst benutzt wer-den.

E_DMSAPI_NO_CONNECTION 0x00000012 Keine Verbindung zu der angegebenen
Station

E_DMSAPI_ALREADY_INIT 0x00000013 Das DMSAPI wurde für diese Station
schon initialisiert

E_DMSAPI_MAX_APPLICATION 0x00000014 Das DMSAPI kann nur für eine bestimmt
Anzahl Ressourcen initialisiert werden.

E_DMSAPI_MAX_CONNECTION 0x00000015 Das DMSAPI kann nur zu einer be-
stimmten Anzahl von Ressourcen Ver-
bindungen öffnen.

E_DMSAPI_TIMEOUT 0x00000016 Der Dienst konnte nicht innerhalb des
angegebenen Timeouts ausgeführt wer-
den.

E_DMSAPI_INVALID_DIR 0x00000017 Das angebene Verzeichnis existiert
nicht.
Referenz-Handbuch – DMS / API 151

DMS-FehlerCodes Anhang A Variablen Typen und Fehler Codes

152 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele DMSAPI-Beispiele

Anhang B Applikationsschnittstelle Freelance
Beispiele

B.1 DMSAPI-Beispiele
Die Beispiele werden bei der DMSAPI - Installation vom Setup in das angegebene
Freelance-Verzeichnis

(z.B. c:\Freelance) unter

... \dmsapi\ - incluce

- lib

- samples

angelegt.

B.2 Variablendienste

B.2.1 Einfaches Lesen "read.c"

/*

*/

#if 0

FILENAME $Workfile: read.c $

VERSION $Revision: 1.0 $ (0)

HISTORY

HISTORY_END

/* $Log: read.c_v $
Referenz-Handbuch – DMS / API 153

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

*/

#endif

/*

 Demo program for DMSAPI-communication (Windows) :

– Calling convention : dmsard <OwnStationNo> <Variablename>

– Init of DMSAPI

– Register of a Callback-Function

– Connect to a Station

– Create a VariableList

– In a loop the Variable given as argument will be read once with
async and once with sync option

*/

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

#include <time.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

int StationConnect=0;

int ReadFlag=0;
154 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/

DMS_REC_VARLIST_DATA *lpVarList;

int i;

 switch (lpDmsRec->SrvType) {

 case DMS_REC_CONN_TYPE:

 /* DMSAPI calls Callback everytime a station connects or

 disconnects */

 if (!lpDmsRec->DmsRc)

 StationConnect=1;

 else

 StationConnect=0;

 break;

 case DMS_REC_VARLIST_TYPE:

 /* case value for a received variable value */

 DMSAPI_DumpRecData(lpDmsRec);

 ReadFlag=1;

lpVarList = lpDmsRec->SrvBuff.lpVarList;

for (i = 0; i < lpVarList->MaxVarNo; i++)

{

Referenz-Handbuch – DMS / API 155

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

if (lpVarList->lpVar[i].VarStatus != DMS_VAR_DELETED)

{

if (lpVarList->lpVar[i].VarRc)

{

/* DMSAPI reports an error in Read Operation */

} else

if (lpVarList->lpVar[i].VarStatus != DMS_VAR_NOT_VALID)

{

/* Read was successful :

 Datatype in lpVarList->lpVar[i].VarType,

Value in lpVarList->lpVar[i].VarValue

*/

}

}

}

 break;

 default:

 printf ("unexpected Case\n");

 }

return(0);

}

/*--

 If there is no valid config in c:\digimat\gwy\resxxx

 this function waits for config from Freelance Engineering

 you can change the ProjectDir by SetProjectDir
156 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

 before calling DMSAPI_Init

--*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

 DMS_CHAR Resname[10];

 DMS_UINT32 NoOfRes;

 DMS_NAME_RESOURCE_DATA ResInfo;

 if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,

 &ResInfo)) {

 printf ("No Config for GWY-Id %d : Configure from Freelance Engineering
and press any key to continue\n",

 OwnResNo);

 for (;;) {

 Sleep(100);

 if (kbhit()) {

 getch();

 break;

 }

 }

 }

}

Referenz-Handbuch – DMS / API 157

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

int wmain (int argc, TCHAR ** argv) {

 DMS_HANDLE nVLHandle=-1;

 DMS_RC rc;

 DMS_RES_NO OwnStationNo=37;

 DMS_RES_NO StationNo=5;

 DMS_CONN_HANDLE ConnHandle;

 DMS_REC_VARLIST_DATA *lpRecVar;

 DMS_INT16 Index;

 DMS_INT16 OwnCallBackId=1;

 char szAscStation[20];

 char szAscVarName[20];

 BOOL fUnicodeError=FALSE;

 DMS_OBJ_PATH Path;

 DMS_VAR_TYPE Dtype; /* DigiTyp */

 DMS_WORD32 Access;

 char Temp[3500];

 DMS_REC_DATA RecData;

 /* Sessionstart */

 if (argc!=3) {

 printf ("Calling Convention: dmsadr <iOwnStationNo> <VarName>");

 return(0);

 }
158 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

 wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);

 WideCharToMultiByte(CP_ACP ,0,argv[1],-1,

(LPSTR)szAscStation,10,NULL,&fUnicodeError);

 sscanf(szAscStation,"%d",&OwnStationNo);

 WideCharToMultiByte(CP_ACP ,0,argv[2],-1,

(LPSTR)szAscVarName,20,NULL,&fUnicodeError);

 /* init with standard GWY */

 if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)
{

 printf ("Error in DMSAPI_Init : %x\n");

 goto _LBL_FNC_XIT;

 }

 /* register CallBack - Function */

rc=DMSAPI_RegisterCltCB(OwnCallBackId,OwnDMSAPICallback);

 if (rc) {

 printf("Fehler beim Register Proc \n");

 goto _LBL_FNC_XIT;

 }

/* check, if there is a valid config */

 WaitForConfig(OwnStationNo);

 /* look for variable in configuration */

 rc=DMSAPI_GetVarInfoByName(OwnStationNo,szAscVarName,

 &StationNo,&Path,&Dtype,&Access);
Referenz-Handbuch – DMS / API 159

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

 if (rc){

 printf("Variable not found in configuration \n");

 goto _LBL_FNC_XIT;

 }

 else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",

 szAscVarName,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,

 (int)Dtype,(int)Access);

 /* Connecting to Station */

if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,

 &ConnHandle,DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {

 printf("Fehler beim Connect %08lx to Station %d\n",rc,StationNo);

 goto _LBL_FNC_XIT;

 }

while (!StationConnect) {

 Sleep(100);

 printf ("trying to connect to Station %d ..\n",StationNo);

 if (kbhit()) goto _LBL_FNC_XIT;

 }

 printf ("Station connected\n");

/* create VarList */

if ((rc=DMSAPI_VLCreate (ConnHandle,DMSAPI_VL_SINGLE_READ,&nVL-
Handle))!=E_DMSAPI_OK) {

 printf("Error in VLCreate %lx\n",rc);

 goto _LBL_FNC_XIT;

 }
160 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Variablendienste

/* build VarListe*/

 if ((rc=DMSAPI_VLAddReadVarByName (nVLHandle,szAscVarName,

 &lpRecVar,&Index))!=E_DMSAPI_OK) {

 printf("Error in AddVar : %lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 for (;;) {

 /* Async Read Loop */

 if ((rc=DMSAPI_VLRead(nVLHandle,OwnCallBackId,DMSAPI_STD_A-
SYNC))!=E_DMSAPI_OK) {

 printf("Error in VLRead %lx\n",rc);

 }

 /* Antwort auswerten */

 while (!ReadFlag) {

 Sleep(10);

 if (kbhit()) goto _LBL_FNC_XIT;

 }

 ReadFlag=0;

 lpRecVar=(DMS_REC_VARLIST_DATA *) Temp;
Referenz-Handbuch – DMS / API 161

Variablendienste Anhang B Applikationsschnittstelle Freelance Beispiele

 if ((rc=DMSAPI_VLRead(nVLHandle,0,DMSAPI_SYN-
CHRON,1000,3500,lpRecVar))

 !=E_DMSAPI_OK) {

 printf("Fehler beim VLRead sync %lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 RecData.SrvType=DMS_REC_VARLIST_TYPE;

 RecData.SrvBuff.lpVarList=lpRecVar;

 DMSAPI_DumpRecData(&RecData);

 }

_LBL_FNC_XIT:

 /* Disconnect */

 if ((rc=DMSAPI_VLDelete(nVLHandle))!=E_DMSAPI_OK)

 printf("Error in VLDelete %lx\n",rc);

 DMSAPI_Disconnect(ConnHandle);

 while (StationConnect) {

 Sleep(100);

 if (kbhit()) break;

 }
162 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c"

 /* DMS_Ende */

 DMSAPI_Exit(OwnStationNo);

 return(0);

}

B.2.2 Zyklisches Lesen "acycle.c"

/*

*/

#if 0

FILENAME acycle.c

HISTORY

 1 deu create

HISTORY_END

#endif

/*

DMSAPI-demo showing the use of the ReadCyclic call

– Init of DMSAPI

– Register of a Callback-Function

– Connect to a Station

– Create a VariableList

– In a loop the Variable given as argument will be read cyclic

*/

#include <windows.h>
Referenz-Handbuch – DMS / API 163

Zyklisches Lesen "acycle.c" Anhang B Applikationsschnittstelle Freelance Beispiele

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

#include <time.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

int StationConnect=0;

int ReadFlag=0;

/*--

 If there is no valid config in c:\digimat\gwy\resxxx

 this function waits for config from Freelance Engineering

 you can change the ProjectDir by SetProjectDir

 before calling DMSAPI_Init

--*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];

 DMS_UINT32 NoOfRes;

 DMS_NAME_RESOURCE_DATA ResInfo;

 if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,

 &ResInfo)) {
164 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c"

 printf ("No Config: Configure from Freelance Engineering and press any key to
continue\n");

 for (;;) {

 Sleep(100);

 if (kbhit()) {

 getch();

 break;

 }

 }

 }

}

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/

DMS_REC_VARLIST_DATA *lpVarList;

int i;

 switch (lpDmsRec->SrvType) {

 case DMS_REC_CONN_TYPE:
Referenz-Handbuch – DMS / API 165

Zyklisches Lesen "acycle.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 if (!lpDmsRec->DmsRc)

 StationConnect=1;

 else

 StationConnect=0;

 break;

 case DMS_REC_VARLIST_TYPE:

 ReadFlag=1;

 DMSAPI_DumpRecData(lpDmsRec);

lpVarList = lpDmsRec->SrvBuff.lpVar-
List;

for (i = 0; i < lpVarList->MaxVarNo;
i++)

{

if (lpVarList-
>lpVar[i].VarStatus != DMS_VAR_DELETED)

{

if (lpVarList->lpVar[i].VarRc)

{

/*
DMSAPI reports an error in Read Operation */

} else

if (lpVarList->lpVar[i].VarStatus != DMS_VAR_NOT_VALID)

{

/* Read was successful :

Datatype in lpVarList->lpVar[i].VarType,

Value in lpVarList->lpVar[i].VarValue
166 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c"

*/

}

}

}

 break;

 default:

 printf ("unknown case\n");

 }

 return(0);

}

int wmain (int argc, TCHAR ** argv) {

 DMS_HANDLE nVLHandle=-1;

 DMS_RC rc;

 DMS_RES_NO OwnStationNo=37;

 DMS_RES_NO StationNo=5;

 DMS_CONN_HANDLE ConnHandle;

 DMS_REC_VARLIST_DATA *lpRecVar;

 DMS_INT16 Index;

 DMS_INT16 OwnCallBackId=1;

 DMS_INT16 i;

 char szAscStation[20];

 char szAscVarName[20];

 BOOL fUnicodeError=FALSE;
Referenz-Handbuch – DMS / API 167

Zyklisches Lesen "acycle.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 DMS_OBJ_PATH Path;

 DMS_VAR_TYPE Dtype; /* DigiTyp */

 DMS_WORD32 Access;

 /* session start */

 if (argc<3) {

 printf ("Calling Convention: dmsacyc <OwnStationNo> <VarName> <Var-
Name>");

 return(0);

 }

 wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);

 WideCharToMultiByte(CP_ACP ,0,argv[1],-1,

(LPSTR)szAscStation,10,NULL,&fUnicodeError);

 sscanf(szAscStation,"%d",&OwnStationNo);

 if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)

 goto _LBL_FNC_XIT;

 /* register CallBack - Funktion */

 rc=DMSAPI_RegisterCltCB(OwnCallBackId,OwnDMSAPICallback);

 if (rc) {

 printf("Error in Register Proc \n");

 goto _LBL_FNC_XIT;
168 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c"

 }

 WaitForConfig(OwnStationNo);

 /* Connecting to Station */

 WideCharToMultiByte(CP_ACP ,0,argv[2],-1,

(LPSTR)szAscVarName,20,NULL,&fUnicodeError);

 rc=DMSAPI_GetVarInfoByName(OwnStationNo,szAscVarName,

 &StationNo,&Path,&Dtype,&Access);

 if (rc) {

 printf("not found %s \n",szAscVarName);

 goto _LBL_FNC_XIT;

 }

 if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,

 &ConnHandle,DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {

 printf("Error in Connect %08lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 while (!StationConnect) {

 Sleep(100);

 if (kbhit()) goto _LBL_FNC_XIT;

 }

 printf ("Station connected\n");

/* create VariablenList */
Referenz-Handbuch – DMS / API 169

Zyklisches Lesen "acycle.c" Anhang B Applikationsschnittstelle Freelance Beispiele

if ((rc=DMSAPI_VLCreate (ConnHandle,DMSAPI_VL_CYCLE_READ,&nVL-
Handle))!=E_DMSAPI_OK) {

 printf("Error in VLCreate %lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 /* build VariableList */

 for (i=2;i<argc;i++) {

 WideCharToMultiByte(CP_ACP ,0,argv[i],-1,

(LPSTR)szAscVarName,20,NULL,&fUnicodeError);

 rc=DMSAPI_GetVarInfoByName(OwnStationNo,szAscVarName,

 &StationNo,&Path,&Dtype,&Access);

 if (rc) printf("Var not found in config %s \n",szAscVarName);

 else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",

 szAscVarName,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,

 (int)Dtype,(int)Access);

 if ((rc=DMSAPI_VLAddReadVarByName (nVLHandle,szAscVarName,

 &lpRecVar,&Index))!=E_DMSAPI_OK) {

 printf("Error in AddVar :%lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 }

for (;;) {

/* read cyclic */
170 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Zyklisches Lesen "acycle.c"

 if ((rc=DMSAPI_VLReadCycle(nVLHandle,1000,OwnCallBackId,

 DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {

 printf("Error in VLRead %lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 printf ("Readcycle\n");

/* check response */

 while (!ReadFlag) {

 Sleep(1);

 if (kbhit()) goto _LBL_FNC_XIT;

 }

 if ((rc=DMSAPI_VLStopCycle(nVLHandle))!=E_DMSAPI_OK) {

 printf("Fehler beim VLStop %lx\n",rc);

 goto _LBL_FNC_XIT;

 }

 ReadFlag=0;

}

_LBL_FNC_XIT:

 /* Disconnect */

 Sleep(1000);
Referenz-Handbuch – DMS / API 171

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 if ((rc=DMSAPI_VLDelete(nVLHandle))!=E_DMSAPI_OK)

 printf("Error in VLDelete %lx\n",rc);

 DMSAPI_Disconnect(ConnHandle);

 while (StationConnect) {

 Sleep(100);

 if (kbhit()) break;

 }

 /* the end */

 DMSAPI_Exit(OwnStationNo);

 return(0);

}

B.2.3 Einfaches Schreiben "awrite.c"

/*

*/

#if 0

FILENAME awrite.c

#endif

#if 0

 HISTORY

 1 deu create
172 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

 HISTORY_END

#endif

/*

 Demo program for DMSAPI-communication (Windows) :

– Calling convention : dmsawrt <OwnStationNo>

– Init of DMSAPI

– Register of a Callback-Function

– look for the first float variable in the config.

– Connect to the Station with this variable

– In a loop the Variable will be written

*/

#include <windows.h>

#include "cgen.h"

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

#include <time.h>

#include "digityp.hg"

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"
Referenz-Handbuch – DMS / API 173

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

int StationConnect = 0;

int WriteFlag = 0;

int ListNo = 0;

int RespNo = 0;

int success=0;

int failed=0;

/*--

 DMSAPI-Callback

--*/

DMS_RC OwnDMSAPICallback(DMS_REC_DATA * lpDms-
Rec)

{

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/

DMS_REC_VARLIST_DATA *lpVarList;

DMS_INT16 i;

switch (lpDmsRec->SrvType)

{

case DMS_REC_CONN_TYPE:
174 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

/* DMSAPI calls Callback everytime a station connects or disconnects */

if (!lpDmsRec->DmsRc)

 StationConnect = 1;

else

{

StationConnect = 0;

}

break;

case DMS_REC_VARLIST_TYPE:

/* case value for a received variable value or a write conf. */

lpVarList = lpDmsRec->SrvBuff.lpVarList;

for (i = 0; i < lpVarList->MaxVarNo; i++)

{

if (lpVarList->lpVar[i].VarStatus != DMS_VAR_DELETED)

{

if (lpVarList->lpVar[i].VarRc)

{

/* error occured writing the value ! */

failed++;

}

else

{

/* write was successful*/

suc-
cess++;

}

Referenz-Handbuch – DMS / API 175

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

}

}

WriteFlag = 1;

ListNo++;

RespNo++;

break;

default:

printf("unexpected Case\n");

}

return (0);

}

/*--

 Main-Programm

--*/

int

wmain(int argc, TCHAR ** argv)

{

DMS_HANDLE nVLHandle = -1;

DMS_RC rc;

DMS_RES_NO OwnStationNo = 123;

DMS_RES_NO StationNo = 5;

int i, TempStationNo;

DMS_CONN_HANDLE ConnHandle = -1;

DMS_REC_VARLIST_DATA *lpRecVar;

DMS_INT16 Index;
176 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

DMS_INT16 OwnCallBackId = 1;

DMS_VALUE DmsValue;

DMS_FLOAT32 AddConst;

DMS_UINT32 NoOfVar;

DMS_NAME_VAR_DATA VarInfo;

DMS_CHAR Name[50];

DMS_CHAR szAscStation[50];

BOOL fUnicodeError = FALSE;

DMS_INT16 j, ActVarNo, NoAnswer = 0;

DWORD dwOldTicks = GetTickCount();

/*---

 If station no. is handed over, it will be converted

--*/

if (argc <= 1)

{

printf("Calling Convention: dmsawrt <iOwnStati-
onNo> ");

return (0);

}

if (argc > 1)

{

WideCharToMultiByte(CP_ACP, 0, argv[1], -1,

 (LPSTR) szAscStation, 10, NULL,
&fUnicodeError);
Referenz-Handbuch – DMS / API 177

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

sscanf(szAscStation, "%d", &TempStationNo);

OwnStationNo = (DMS_RES_NO) TempStationNo;

}

/* ---

 DMSAPI-Init

--*/

/* init with standard GWY */

if ((rc = DMSAPI_Init(OwnStationNo, DMS_OS_GWY, 1, TRUE))
!= E_DMSAPI_OK)

{ printf("Error DMSAPI_Init %08lx \n", rc);

goto _LBL_FNC_XIT;

}

/* ---

 Setting CallBack - Function

--*/

rc = DMSAPI_RegisterCltCB(OwnCallBackId, OwnDMSAPICall-
back);

if (rc)

{

printf("Error DMSAPI_Register Proc %08lx \n", rc);

goto _LBL_FNC_XIT;

}

/* ---

 Read first variable of datatype Float
178 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

--*/

rc = DMSAPI_GetFirstVarInfo(OwnStationNo, &NoOfVar, 50,
Name, &VarInfo);

if (rc)

{

printf("No Config for GWY-Id %d : Configure from
Freelance Engineering and press any key to continue\n",

 OwnStationNo);

for (;;)

{

Sleep(100);

if (kbhit())

{

getch();

break;

}

}

rc = DMSAPI_GetFirstVarInfo(OwnStationNo,
&NoOfVar, 50, Name, &VarInfo);

if (rc)

{

printf("Error DMSAPI_GetFirstVarInfo %08lx \n", rc);

goto _LBL_FNC_XIT;

}

Referenz-Handbuch – DMS / API 179

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

}

for (;;)

{

if (VarInfo.VarType == DIGI_FLOAT32)

break;

rc = DMSAPI_GetNextVarInfo(OwnStationNo, 50, Name, &VarInfo);

if (rc)

{

printf("Error DMSAPI_GetNextVa-
rInfo %08lx \n", rc);

goto _LBL_FNC_XIT;

}

}

/* ---

 Connect to corresponding station

--*/

StationConnect = 0;

if ((rc = DMSAPI_ConnectByNo(OwnStationNo, VarInfo.ResNo,
&ConnHandle,

 DMSAPI_STD_A-
SYNC)) != E_DMSAPI_OK)

{

printf("Error DMSAPI_ConnectByNo %08lx\n");

goto _LBL_FNC_XIT;
180 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

}

while (!StationConnect)

{

Sleep(100);

if (kbhit())

goto _LBL_FNC_XIT;

}

/* ---

 Creating VariableList

--*/

if ((rc = DMSAPI_VLCreate(ConnHandle, DMSAPI_VL_SING-
LE_WRITE, &nVLHandle)) != E_DMSAPI_OK)

{

printf("Fehler beim VLCreate %lx\n", rc);

goto _LBL_FNC_XIT;

}

/* ---

 Adding Variable to List

 we are filling the List with 280 variables(always the same)

--*/

DmsValue.Float32 = (DMS_FLOAT32) 0.0;

AddConst = (DMS_FLOAT32) 1.0;
Referenz-Handbuch – DMS / API 181

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

for (ActVarNo = 0; ActVarNo < 280; ActVarNo++)

{

if ((rc = DMSAPI_VLAddWriteVarByName(nVLHandle, Name, DIGI_FLOAT32,

 &DmsValue, &lpRecVar, &Index)) != E_DMSAPI_OK)

{

printf("Error DMSAPI_VLAddWrite-
VarByName:%lx\n", rc);

break;

}

}

ActVarNo--;

printf("Anzahl der Var %d\n", ActVarNo);

/* ---

Loop: writes 1.Var from 0.0 to 1000.0, then from

1000.0 to 0.0

--*/

for (;;)

{

if (DmsValue.Float32 == (DMS_FLOAT32) 0.0)

AddConst = (DMS_FLOAT32) 1.0;

else

if (DmsValue.Float32 == (DMS_FLOAT32) 1000.0)

AddConst = (DMS_FLOAT32) - 1.0;
182 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

/* ---

 Write VariableList

--*/

rc = DMSAPI_VLWrite(nVLHandle, OwnCallBackId, DMSAPI_STD_ASYNC);

if (rc)

{

printf("Error in VLWrite %08lx\n", rc);

if ((rc = DMSAPI_VLClear(nVL-
Handle)) != E_DMSAPI_OK)

{

printf("Error VLClear %lx\n", rc);

goto _LBL_FNC_XIT;

}

}

/* ---

 Wait for Answer

--*/

else

{

i = 0;

while (!WriteFlag)

{

i++;

if (kbhit())

goto _LBL_FNC_XIT;
Referenz-Handbuch – DMS / API 183

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

if (i > 10000)

{

NoAns-
wer++;

if ((rc = DMSAPI_VLDelete(nVLHandle)) != E_DMSAPI_OK)

printf("Error VLDelete %lx\n", rc);

if ((rc = DMSAPI_VLCreate(ConnHandle,

DMSA-
PI_VL_SINGLE_WRITE, &nVLHandle)) != E_DMSAPI_OK)

{

printf("Fehler beim VLCreate %lx\n", rc);

goto _LBL_FNC_XIT;

}

/* ---

 Adding Variable to List

--*/

DmsValue.Flo-
at32 = (DMS_FLOAT32) 0.0;

AddConst = (DMS_FLOAT32) 1.0;

for (j = 0; j < ActVarNo; j++)

{

if ((rc = DMSAPI_VLAddWriteVarByName(nVLHandle, Name, DIGI_FLOAT32,
184 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Einfaches Schreiben "awrite.c"

 &Dms-
Value, &lpRecVar, &Index)) != E_DMSAPI_OK)

{

printf("Error DMSAPI_VLAddWriteVarByName:%lx\n", rc);

goto _LBL_FNC_XIT;

}

}

break;

}

}

}

printf("Received WriteRequests: %d LostWriteNo %d
write failed %d VarsPerSec %d\r",

 RespNo, NoAnswer,failed, (RespNo * ActVarNo *
1000) / (GetTickCount() - dwOldTicks));

RespNo = 0;

dwOldTicks = GetTickCount();

WriteFlag = 0;

/* ---

 Change Value for next Write

--*/

DmsValue.Float32 += AddConst;

for (j = 0; j < ActVarNo; j++)

{

Referenz-Handbuch – DMS / API 185

Einfaches Schreiben "awrite.c" Anhang B Applikationsschnittstelle Freelance Beispiele

rc = DMSAPI_VLChangeValue(nVL-
Handle, j,

DIGI_FLO-
AT32, &DmsValue, &lpRecVar);

if (rc)

{

printf("Error DMSAPI_-
VLChangeValue Index% d %08lx\n", j, rc);

goto _LBL_FNC_XIT;

}

}

}

_LBL_FNC_XIT:

/* ---

 Deleting VariableList

--*/

if ((rc = DMSAPI_VLDelete(nVLHandle)) != E_DMSAPI_OK)

printf("Error VLDelete %lx\n", rc);

/* ---

 Disconnecting Station

--*/
186 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

Sleep(2000);

if (ConnHandle != -1)

DMSAPI_Disconnect(ConnHandle);

while (StationConnect)

{

Sleep(100);

if (kbhit())

break;

}

/* ---

 DmsApi-Exit

--*/

DMSAPI_Exit(OwnStationNo);

printf("Exit done\n");

return (0);

}

B.3 Alarmdienste "aalarm.c"
/*

*/

#if 0

FILENAME aalarm.c

HISTORY

 1 deu create
Referenz-Handbuch – DMS / API 187

Alarmdienste "aalarm.c" Anhang B Applikationsschnittstelle Freelance Beispiele

HISTORY_END

#endif

/*

DMSAPI-Demo showing the use of the message function calls

Init DMSAPI

– Register a Callback-Function

– Connect a Station

– call to GetAlarmSummary

– receive the messages

– AutoAcknowledge of all non acknowledged messages

*/

#include "cgen.h"

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>

#include <time.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

#define ESCAPE goto _LBL_FNC_XIT;
188 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

 DMS_INT16 OwnCallBackId=1;

/*--

 If there is no valid config in c:\digimat\gwy\resxxx

 this function waits for config from Freelance Engineering

 you can change the ProjectDir by SetProjectDir

 before calling DMSAPI_Init

--*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

 DMS_CHAR Resname[10];

 DMS_UINT32 NoOfRes;

 DMS_NAME_RESOURCE_DATA ResInfo;

 if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,

 &ResInfo)) {

printf ("No Config: Configure from Freelance Engineering and press any key to
continue\n");

 for (;;) {

 Sleep(100);

 if (kbhit()) {

 getch();

 break;

 }

 }

 }
Referenz-Handbuch – DMS / API 189

Alarmdienste "aalarm.c" Anhang B Applikationsschnittstelle Freelance Beispiele

}

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/

 DMS_RC rcloc;

 DMS_REC_ACKALARM AckAL[DMSAPI_MAX_ALARM_IN_ACKAL];

 DMS_REC_ALARMLIST_DATA *lpRecAL;

 int i;

 DMS_INT16 Ackno=0;

 DMS_HANDLE DmsHandle;

 DMSAPI_DumpRecData(lpDmsRec);

 switch (lpDmsRec->SrvType) {

 case DMS_REC_CONN_TYPE:

 if (!lpDmsRec->DmsRc) {

 if (lpDmsRec->SrvBuff.lpConn->ulConnFlag != DMS_RES_CLIENT) {

/* every time a station connects, a getAlarmsummary should be called */

 rcloc=DMSAPI_GetAlarmSummary(lpDmsRec->ConnHandle,

 OwnCallBackId,DMSAPI_STD_ASYNC);

if (rcloc) {

 printf("GetAlarmSummary %08lx\n",rcloc);

 }

 }
190 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

 }

 break;

case DMS_REC_ALARMLIST_TYPE:

/* this case is for the messages */

 lpRecAL=lpDmsRec->SrvBuff.lpAlarmList;

 for (i=0;i<lpRecAL->ActAlarmNo;i++) {

 if (lpRecAL->lpAlarm[i].CurrAlarmStatus==DMS_ALARM_INACT_I-
NACTNACKED ||

 lpRecAL->lpAlarm[i].CurrAlarmStatus==DMS_ALARM_ACT_ACT-
NACKED ||

 lpRecAL->lpAlarm[i].CurrAlarmStatus==DMS_ALARM_INACT_AC-
TNACKED) {

 AckAL[Ackno].ObjectId=lpRecAL->lpAlarm[i].ObjectId;

 AckAL[Ackno].AlarmIndex=lpRecAL->lpAlarm[i].AlarmIndex;

 AckAL[Ackno].AlarmStatus=lpRecAL->lpAlarm[i].CurrAlarmStatus;

 AckAL[Ackno].rc=E_DMSAPI_OK;

 Ackno++;

 }

 }

 if (Ackno) {

/* there are some messages to acknowledge */

 rcloc=DMSAPI_AckAlarmByList(lpDmsRec->ConnHandle,&Dms-
Handle,

 OwnCallBackId,Ackno,AckAL,DMSAPI_STD_ASYNC);

 if (rcloc) printf ("Error in Alarmacknowledge %08lx\n",rcloc);

 else printf ("Acknowledge %d\n",Ackno);

 }
Referenz-Handbuch – DMS / API 191

Alarmdienste "aalarm.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 break;

 default:

 break;

 }

 return(0);

}

int main (int argc, char * * argv) {

 DMS_RC rc;

 DMS_RES_NO OwnStationNo=88;

 DMS_RES_NO StationNo=5;

 DMS_CONN_HANDLE ConnHandle;

if (argc!=3) {

 printf ("Calling Convention: dmsala <OwnStationNo> <MsrStationNo>");

 return(0);

 }

 sscanf(argv[1],"%d",&OwnStationNo);

 sscanf(argv[2],"%d",&StationNo);

/* DMSAPI-Init */

 if ((rc=DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE))!=E_DMSA-
PI_OK) {

 printf("Error DMSAPI_Init %08lx \n",rc);

 goto _LBL_FNC_XIT;

 }
192 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Alarmdienste "aalarm.c"

rc=DMSAPI_RegisterCltCB(OwnCallBackId,OwnDMSAPICallback);

 if (rc) {

 printf("Error DMSAPI_Register Proc %08lx \n",rc);

 goto _LBL_FNC_XIT;

 }

 WaitForConfig(OwnStationNo);

if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,

 &ConnHandle,DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {

 printf("Error DMSAPI_ConnectByNo %08lx\n");

 goto _LBL_FNC_XIT;

 }

 for (;;) {

/* nothing to do here, it all happens in the callback function */

 Sleep(100);

 if (kbhit()) {

 getch();

 goto _LBL_FNC_XIT;

 }

 }

_LBL_FNC_XIT:

 /* Disconnect */

 rc=DMSAPI_RegisterCltCB(OwnCallBackId,NULL);

 DMSAPI_Disconnect(ConnHandle);

Sleep(1000);
Referenz-Handbuch – DMS / API 193

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

/* DMS_Ende */

 DMSAPI_Exit(OwnStationNo);

 printf("Exit erreicht\n");

 return(0);

}

B.4 Namensverwaltung "name.c"
/*

*/

#if 0

Projekt: Freelance

FILENAME name.c $

COMMENT

 DMSAPI - Demo showing the use of the name management

COMMENT_END

VERSION $Revision: 1.0 $ (0)

HISTORY

HISTORY_END

/* $Log: name.c_v $

*/

#endif

/*

/*

 DMSAPI - Demo showing the use of the name management

– Init of DMSAPI

– register a Callback-Function
194 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

– Output of all informations the name management can give

– conversion routines for the variable names

*/

#include <windows.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <malloc.h>

#include <conio.h>

#include <time.h>

int StationConnect=0;

/*--

 DMS-API-Callback

--*/

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/
Referenz-Handbuch – DMS / API 195

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

DMSAPI_DumpRecData(lpDmsRec);

 switch (lpDmsRec->SrvType) {

 case DMS_REC_CONN_TYPE:

 if (!lpDmsRec->DmsRc)

 StationConnect=1;

 else

 StationConnect=0;

 break;

 default:

 printf ("unknown case\n");

 }

 return(0);

}

/*--

 If there is no valid config in c:\digimat\gwy\resxxx

 this function waits for config from Freelance Engineering

 you can change the ProjectDir by SetProjectDir

 before calling DMSAPI_Init

--*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

 DMS_CHAR Resname[10];

 DMS_UINT32 NoOfRes;

 DMS_NAME_RESOURCE_DATA ResInfo;
196 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

 if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,

 &ResInfo)) {

 printf ("No Config: Configure from Freelance Engineering and press any key to
continue\n");

 for (;;) {

 Sleep(100);

 if (kbhit()) {

 getch();

 break;

 }

 }

}

}

/*--

 main-Programm

--*/

int main (int argc, char * * argv) {

 DMS_RC rc;

 DMS_RES_NO StationNo=1;

 DMS_RES_NO OwnStationNo=19;

 DMS_VAR_TYPE Dtype; /* DigiTyp */

 DMS_WORD32 Access;

 DMS_UINT32 j,i,NoOfVar;

 DMS_UINT32 NoOfCmp;
Referenz-Handbuch – DMS / API 197

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 DMS_CHAR Name[50] ;

 DMS_CHAR CmpName[50] ;

 DMS_NAME_RESOURCE_DATA StatInfo;

 DMS_NAME_VAR_DATA VarInfo;

 DMS_NAME_TAG_DATA TagInfo;

 DMS_NAME_OBJ_DATA ObjInfo;

 DMS_INT16 OwnCallBackId=1;

 DMS_OBJ_PATH Path;

/*--

 check para

--*/

if (argc>1) {

 sscanf(argv[1],"%d",&OwnStationNo);

 }

else

{

printf("Calling Convention: dmsnam <iOwnStationNo> \n\n");

return (0);

}

/*--

 start a session

--*/

rc=DMSAPI_Init(OwnStationNo,DMS_OS_MSR,1,TRUE);

 if (rc) {

 printf("Error in Init %x\n",rc);

 goto _LBL_FNC_XIT;
198 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

 }

/*--

 Set CallBack function

--*/

rc=DMSAPI_RegisterCltCB(OwnCallBackId,OwnDMSAPICallback);

 if (rc) {

 printf("Error in Register %x \n",rc);

 goto _LBL_FNC_XIT;

 }

WaitForConfig(OwnStationNo);

/* ---

 get the info about the configured stations

--*/

printf("Stations:\n");

 rc=DMSAPI_GetFirstResourceInfo(OwnStationNo,&NoOfVar,50,Name,&Sta-
tInfo);

 if (!rc) {

 for (i=0;i<NoOfVar-1;i++) {

 printf("%s\n",Name);

 rc=DMSAPI_GetNextResourceInfo(OwnStationNo,50,Name,&StatInfo);

 if (rc) printf ("Error %08lx\n",rc);

 }

 printf("%s\n",Name);

 }
Referenz-Handbuch – DMS / API 199

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 else printf ("Error %08lx\n",rc);

/* ---

 get the info about the configured variables

--*/

 printf("Variables:\n");

 rc=DMSAPI_GetFirstVarInfo(OwnStationNo,&NoOfVar,50,Name,&VarInfo);

 if (!rc) {

 for (i=0;i<NoOfVar-1;i++) {

printf("%s/DigVal 3 0.22\n",Name,(int)VarInfo.OPath.ObjNo,

 (int)VarInfo.OPath.CmpNo);

 rc=DMSAPI_GetNextVarInfo(OwnStationNo,50,Name,&VarInfo);

 if (rc) printf ("Error %08lx\n",rc);

 }

 printf("%s\n",Name,(int)VarInfo.OPath.ObjNo,

 (int)VarInfo.OPath.CmpNo);

 }

 else printf ("Error %08lx\n",rc);

/* ---

 get the info about the configured tags

 for every found Tag : get info about the tag (all pins and parameter)

--*/

 printf("Tags:\n");

 rc=DMSAPI_GetFirstTagInfo(OwnStationNo,&NoOfVar,50,Name,&TagInfo);

 if (!rc) {

 for (i=0;i<NoOfVar;i++) {
200 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Namensverwaltung "name.c"

 printf ("Tag %s : %d\n",Name,(int)TagInfo.ObjClass);

 rc=DMSAPI_GetFirstCmpOfObjClass(OwnStationNo,TagInfo.ObjClass,

 &NoOfCmp,50,CmpName,&ObjInfo);

 if (!rc) {

 for (j=0;j<NoOfCmp-1;j++) {

 if (!rc) {

 printf("%s/%s\n",Name,CmpName);

 }

 else printf ("- Error ");

 rc=DMSAPI_GetNextCmpOfObjClass(OwnStati-
onNo,TagInfo.ObjClass,

 50,CmpName,&ObjInfo);

 }

 if (!rc) {

/* if (ObjInfo.nRWFlag)*/

 printf("%s/%s\n",Name,CmpName);

 }

 else printf ("- Error \n");

 }

 else

 printf(" No components %08lx\n",rc);

 if (i<NoOfVar-1) {

 rc=DMSAPI_GetNextTagInfo(OwnStationNo,50,Name,&TagInfo);

 if (rc) printf ("Error %08lx\n",rc);

 }
Referenz-Handbuch – DMS / API 201

Namensverwaltung "name.c" Anhang B Applikationsschnittstelle Freelance Beispiele

 }

 }

 else printf ("Error %08lx\n",rc);

/* ---

now showing the conversion routine DMSAPI_GetVarInfoByName

--*/

 printf("now showing the conversion routine DMSAPI_GetVarInfoByName\n");

 for (;;) {

 printf("give a name of a Variable (quit with 'q')\n");

 scanf("%s",Name);

 if (Name[0]=='q' && strlen(Name)==1) goto _LBL_FNC_XIT;

 else {

rc=DMSAPI_GetVarInfoByName(OwnStationNo,Name,&Stati-
onNo,&Path,&Dtype,

 &Access);

 if (rc) printf("variable not found \n");

 else printf ("%s : Station %d Path %d - %d Type %d Access %d\n",

 Name,(int) StationNo,(int) Path.ObjNo,(int) Path.CmpNo,

 (int)Dtype,(int)Access);

 }

 }

_LBL_FNC_XIT:

/*--

 the end

--*/

DMSAPI_Exit(OwnStationNo);
202 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Setzen der Zeit "settime.c"

 return (0);

}

B.5 Setzen der Zeit "settime.c"
/*

*/

#if 0

FILENAME settime.c

HISTORY

 1 deu create

HISTORY_END

#endif

/* DMSAPI-demo showing the use of the DMSAPI_SetRemoteTimeByString
call

– Calling convention: dmstime dd.mm.yyyy hh:mm:ss

– Init

– DMSAPI_SetRemoteTimeByString

– Exit DMS

*/

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <conio.h>
Referenz-Handbuch – DMS / API 203

Setzen der Zeit "settime.c" Anhang B Applikationsschnittstelle Freelance Beispiele

#include <time.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

int main (int argc, char ** argv) {

DMS_RES_NO OwnStationNo=187;

 char Time[100];

 DMS_RC rc;

if (argc<3) {

 printf ("Calling Convention: dmstime dd.mm.yyyy hh:mm:ss

 on a system with german local settings\n");

 printf ("Calling Convention: dmstime mm/dd/yyyy hh:mm:ss

 on a system with english local settings\n");

 return(0);

 }

if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)

 goto _LBL_FNC_XIT;

sprintf(Time,"%s %s", argv[1],argv[2]);

/* the DMSAPI will only accept strings which have the correct syntax correspon-
ding to the

 settings in your Registry (--> control panel -> international)

*/

if ((rc =DMSAPI_SetSystemTimeByString(Time)) != E_DMSAPI_OK)

 printf ("Error in SetSystemTime %x : \n",rc);

_LBL_FNC_XIT:

DMSAPI_Exit(OwnStationNo);
204 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Redundanzwechsel Primary - Secondary

 return(0);

}

B.6 Redundanzwechsel Primary - Secondary "toggle.c"
/*

*/

#if 0

FILENAME toggle

HISTORY

 1 deu create

HISTORY_END

#endif

/*

 DMSAPI-demo showing the use of the ReadCyclic call
– Init of DMSAPI
– Register of a Callback-Function
– Connect to a Station
– issue a RestartResource with Toggle_cmd
– sleep given time
– toggle again in loop

*/

#include <windows.h>

#include <dos.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>
Referenz-Handbuch – DMS / API 205

Redundanzwechsel Primary - Secondary "toggle.c" Anhang B Applikationsschnittstelle Freelance

#include <ctype.h>

#include <conio.h>

#include <time.h>

#include "dmstyp.h"

#include "dmsapi.h"

#include "dmserr.h"

int StationConnect=0;

int PIRecv=0;

#define MAX_DMS_VL 10

/*--

 If there is no valid config in c:\digimat\gwy\resxxx

 this function waits for config from Freelance Engineering

 you can change the ProjectDir by SetProjectDir

 before calling DMSAPI_Init

--*/

void WaitForConfig(DMS_RES_NO OwnResNo) {

DMS_CHAR Resname[10];

 DMS_UINT32 NoOfRes;

 DMS_NAME_RESOURCE_DATA ResInfo;

if (DMSAPI_GetFirstResourceInfo(OwnResNo,&NoOfRes,10,Resname,

 &ResInfo)) {

printf ("No Config: Configure from Freelance Engineering and press any key to
continue\n");

 for (;;) {

 Sleep(100);

 if (kbhit()) {
206 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Redundanzwechsel Primary - Secondary

 getch();

 break;

 }

 }

 }

}

DMS_RC OwnDMSAPICallback (DMS_REC_DATA *lpDmsRec) {

/* Callback-function called by DMSAPI

Attention : this function is called in the context of a communication thread

which has a higher priority than the main thread

you have to protect your data and code !

*/

printf("OwnCallback\n");

 DMSAPI_DumpRecData(lpDmsRec);

 switch (lpDmsRec->SrvType) {

 case DMS_REC_CONN_TYPE:

 if (!lpDmsRec->DmsRc)

 StationConnect=1;

 else

 StationConnect=0;

 break;

 default:

 printf ("Was ist das?\n");

 break;

 }
Referenz-Handbuch – DMS / API 207

Redundanzwechsel Primary - Secondary "toggle.c" Anhang B Applikationsschnittstelle Freelance

return(0);

}

int wmain (int argc, TCHAR ** argv) {

 DMS_RC rc;

 DMS_RES_NO OwnStationNo=37;

 DMS_RES_NO StationNo=5;

 DMS_CONN_HANDLE ConnHandle;

 DMS_INT16 OwnCallBackId=1;

 DMS_INT16 i;

 char szAscStation[20];

 BOOL fUnicodeError=FALSE;

 int TimeCount,PISnd=0;

/* session start*/

if (argc<4) {

 printf (

 "Calling Convention: dmsatog <OwnStationNo> <StationNo> <ToggleTime
Sec>");

 return(0);

 }

 wprintf (L"%s %s %s\n",argv[0],argv[1],argv[2]);

 WideCharToMultiByte(CP_ACP ,0,argv[1],-1,

(LPSTR)szAscStation,10,NULL,&fUnicodeError);

 sscanf(szAscStation,"%d",&OwnStationNo);

 WideCharToMultiByte(CP_ACP ,0,argv[2],-1,

(LPSTR)szAscStation,10,NULL,&fUnicodeError);

 sscanf(szAscStation,"%d",&StationNo);
208 Referenz-Handbuch – DMS / API

Anhang B Applikationsschnittstelle Freelance Beispiele Redundanzwechsel Primary - Secondary

 WideCharToMultiByte(CP_ACP ,0,argv[3],-1,

(LPSTR)szAscStation,10,NULL,&fUnicodeError);

 sscanf(szAscStation,"%d",&TimeCount);

if (DMSAPI_Init(OwnStationNo,DMS_OS_GWY,1,TRUE)!=E_DMSAPI_OK)

 goto _LBL_FNC_XIT;

/* register CallBack - Function */

rc=DMSAPI_RegisterCltCB(OwnCallBackId,OwnDMSAPICallback);

 if (rc) {

 printf("Error in Register Proc \n");

 goto _LBL_FNC_XIT;

 }

/* check if config available */

(OwnStationNo);

 /* Connecting to Station */

if ((rc=DMSAPI_ConnectByNo(OwnStationNo,StationNo,

 &ConnHandle,DMSAPI_STD_ASYNC))!=E_DMSAPI_OK) {

 printf("Error in Connect %08lx\n",rc);

 goto _LBL_FNC_XIT;

 }

(!StationConnect) {

 Sleep(100);

 if (kbhit()) goto _LBL_FNC_XIT;

 }

 printf ("Station connected\n");

for (;;) {

printf ("issue toggle command to station %d\n",StationNo);
Referenz-Handbuch – DMS / API 209

Redundanzwechsel Primary - Secondary "toggle.c" Anhang B Applikationsschnittstelle Freelance

/* issue a Red-Toggle on the process station */

 DMSAPI_RestartResource(ConnHandle,DMS_RESTART_TOG-
GLE);

for (i=0;i<TimeCount;i++) {

Sleep(1000);

 if (kbhit()) goto _LBL_FNC_XIT;

 }

}

_LBL_FNC_XIT:

/* Disconnect */

Sleep(1000);

DMSAPI_Disconnect(ConnHandle);

while (StationConnect) {

 Sleep(100);

if (kbhit()) break;

 }

 /* the end */

DMSAPI_Exit(OwnStationNo);

 return(0);

}

210 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

Anhang C DMS-API-Dateien

C.1 dmstyp.h
/*

COMMENT

*

 DMS-API

Digimatik Message Specification Application Interface

Kommunication Protocol for Freelance Process Level

Type and other Definitions

*

COMMENT_END

FILENAME $Workfile: dmstyp.h $

VERSION $Revision: 1.7.1.1 $ (0)

HISTORY

HISTORY_END

/**
********/

 $Log: dmstyp.h_v $
Referenz-Handbuch – DMS / API 211

Anhang C DMS-API-Dateien

*******/

#if __cplusplus

extern "C" {

#endif

#ifndef _DMSAPI_TYP_H

#define _DMSAPI_TYP_H

/*---

 FREELANCE Basic-Datatypes

---*/

typedef unsigned short DMS_WORD16;

typedef unsigned long DMS_WORD32;

typedef float DMS_FLOAT32;

typedef signed char DMS_INT8;

typedef short DMS_INT16;

typedef long DMS_INT32;

typedef DMS_WORD16 DMS_UINT16;

typedef DMS_WORD32 DMS_UINT32;

typedef char DMS_CHAR;

typedef unsigned char DMS_BYTE;

typedef unsigned char DMS_BOOLEAN;

typedef DMS_UINT16 DMS_OBJNO;

typedef DMS_UINT16 DMS_CMPNO;

typedef DMS_INT32 DMS_TIME;
212 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

typedef struct

{

 DMS_WORD32 dwMSecondsHigh; /* ms since 1.1.1970 0.00 Uhr GMT (high)
*/

 DMS_WORD32 dwMSecondsLow; /* ms since 1.1.1970 0.00 Uhr GMT (low)
*/

} DMS_DT;

/*---

 FREELANCE String-Datatypes

---*/

#define DMS_STRING_ALGN 2 /* 2 Bytes Allignement at the end of each
String */

/* **** DMS_STRING8 - Typ ***** */

#define DMS_STRING8_LENGTH 8

typedef struct {

 DMS_WORD16 wMaxStringLen; /* max Len of String */

 DMS_CHAR Content[DMS_STRING8_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRING8;

typedef DMS_STRING8 * LPDMS_STRING8;

/* **** STRING16 - Typ ***** */

#define DMS_STRING16_LENGTH 16

typedef struct {

 DMS_WORD16 wMaxStringLen; /* max Len of String */

 DMS_CHAR Content[DMS_STRING16_LENGTH+DMS_STRING_ALGN];
/* Content */
Referenz-Handbuch – DMS / API 213

Anhang C DMS-API-Dateien

} DMS_STRING16;

typedef DMS_STRING16 * LPDMS_STRING16;

/* **** STRING32 - Typ ***** */

#define DMS_STRING32_LENGTH 32

typedef struct {

 DMS_WORD16 wMaxStringLen; /* max Len of String */

 DMS_CHAR Content[DMS_STRING32_LENGTH+DMS_STRING_ALGN];
/* Content */

} DMS_STRING32;

typedef DMS_STRING32 * LPDMS_STRING32;

/* **** DMS_STRING64 - Typ ***** */

#define DMS_STRING64_LENGTH 64

typedef struct {

 DMS_WORD16 wMaxStringLen; /* max Len of String */

 DMS_CHAR Content[DMS_STRING64_LENGTH+DMS_STRING_ALGN];
/* content */

} DMS_STRING64;

typedef DMS_STRING64 * DMS_LPSTRING64;

/* **** DMS_STRING128 - Typ ***** */
214 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

#define DMS_STRING128_LENGTH 128

typedef struct {

 DMS_WORD16 wMaxStringLen; /* max Len of String */

 DMS_CHAR Cont-
ent[DMS_STRING128_LENGTH+DMS_STRING_ALGN]; /* Content */

} DMS_STRING128;

typedef DMS_STRING128 * LPDMS_STRING128;

/* **** DMS_STRING256 - Typ ***** */

#define DMS_STRING256_LENGTH 256

typedef struct {

 DMS_WORD16 wMaxStringLen; /* max Len of String */

 DMS_CHAR Cont-
ent[DMS_STRING256_LENGTH+DMS_STRING_ALGN]; /* content */

} DMS_STRING256;

typedef DMS_STRING256 * LPDMS_STRING256;

/*---

 FREELANCE Datatype-Union

---*/

typedef union {

 DMS_WORD16 Word16;

 DMS_WORD32 Word32;

 DMS_FLOAT32 Float32;
Referenz-Handbuch – DMS / API 215

Anhang C DMS-API-Dateien

 DMS_INT8 Int8;

 DMS_INT16 Int16;

 DMS_INT32 Int32;

 DMS_UINT16 Uint16;

 DMS_UINT32 Uint32;

 DMS_CHAR Char;

 DMS_BOOLEAN Boolean;

 DMS_BYTE Byte;

 DMS_OBJNO ObjNo;

 DMS_CMPNO CmpNo;

 DMS_TIME DmsTime;

 DMS_DT DmsDT;

 DMS_STRING8 String8;

 DMS_STRING16 String16;

 DMS_STRING32 String32;

 DMS_STRING64 String64;

 DMS_STRING128 String128;

 DMS_STRING256 String256;

} DMS_VALUE;

/*---

 maximale StringLaengen

---*/

#define DMS_MAX_RESNAME_LEN 10

#define DMS_MAX_VARNAME_LEN 40

#define DMS_MAX_TAGNAME_LEN 15
216 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

#define DMS_MAX_COMPNAME_LEN 15

/*---

 DMS Resource number and type

---*/

typedef unsigned short DMS_RES_NO;

typedef unsigned short DMS_RES_TYPE;

/*---

 DMS variable types

---*/

typedef unsigned short DMS_VAR_TYPE;

#define DMS_VAR_TYPE_BOOLEAN 0x01

#define DMS_VAR_TYPE_CHAR 0x02

#define DMS_VAR_TYPE_BYTE 0x03

#define DMS_VAR_TYPE_INT8 0x04

#define DMS_VAR_TYPE_WORD16 0x05

#define DMS_VAR_TYPE_UINT16 0x06

#define DMS_VAR_TYPE_INT16 0x07

#define DMS_VAR_TYPE_WORD32 0x08

#define DMS_VAR_TYPE_UINT32 0x09

#define DMS_VAR_TYPE_INT32 0x0A

#define DMS_VAR_TYPE_FLOAT32 0x0B

#define DMS_VAR_TYPE_TIME 0x0C

#define DMS_VAR_TYPE_DMSTIME 0x0D
Referenz-Handbuch – DMS / API 217

Anhang C DMS-API-Dateien

#define DMS_VAR_TYPE_STRING8 0x0E /* Strings */

#define DMS_VAR_TYPE_STRING16 0x0F /* Strings */

#define DMS_VAR_TYPE_STRING32 0x10 /* Strings */

#define DMS_VAR_TYPE_STRING64 0x11 /* Strings */

#define DMS_VAR_TYPE_STRING128 0x12 /* Strings */

#define DMS_VAR_TYPE_STRING256 0x13 /* Strings */

#define DMS_VAR_TYPE_OBJNO 0x2C

#define DMS_VAR_TYPE_CMPNO 0x2D

/*---

 DMS var error type

---*/

typedef unsigned long DMS_VAR_RC;

/*---

 DMS error

---*/

typedef unsigned long DMS_RC;

/*---

 DMS ConnectionHandle

---*/
218 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

typedef int DMS_CONN_HANDLE;

#define DMSAPI_HANDLE_MIN_NO 0

#define DMSAPI_HANDLE_MAX_NO 150

#define DMSAPI_NO_HANDLE -1

/*---

 DMS Service Handle

---*/

typedef short DMS_HANDLE;

/*---

 DMS Variable ObjPath

---*/

typedef struct {

 DMS_OBJNO ObjNo;

 DMS_CMPNO CmpNo;

} DMS_OBJ_PATH;

/*---

 DMS - Client Receive Services

---*/

#define DMSAPI_SYNCHRON 1

#define DMSAPI_ASYNCHRON 2

#define DMSAPI_WAIT_FOREVER 0xffffffff

#define DMSAPI_NO_TIMEOUT 0
Referenz-Handbuch – DMS / API 219

Anhang C DMS-API-Dateien

#define DMSAPI_STD_ASYNC DMSAPI_ASYNCHRON, DMSAPI_WAIT_FO-
REVER, 0, NULL

typedef enum {

 DMS_REC_CONN_TYPE,

 DMS_REC_VARLIST_TYPE,

 DMS_REC_INFO_REPORT_TYPE,

 DMS_REC_ALARMLIST_TYPE,

 DMS_REC_ACKALARMLIST_TYPE,

 DMS_REC_PROGRAM_INVOCATION_TYPE,

 DMS_REC_DOMAIN_TYPE,

 DMS_REC_VERSION_TYPE

} DMS_REC_SERVICE_TYPE;

/* ---

 Connection management

---*/

typedef enum {

 DMS_CONN_OK, /* o.k.*/

 DMS_CONN_ABORT, /* no connection */

 DMS_CONN_INVALID_RES_TYPE, /* wrong resource type */

 DMS_CONN_INVALID_RES_NO, /* wrong resource number */

 DMS_CONN_NO_OS, /* no operation system */

 DMS_CONN_SECONDARY, /* remote station is secondary =>

 cannot connect */
220 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

 DMS_CONN_INVALID_VERSION /* wrong DMS_Version */

} DMS_CONN_STATUS;

/* ---

values for nBTRLnk in connect- routines

---*/

#define DMS_BTR_TCPIP 1 /* Standard BTR using TCPIP */

#define DMS_BTR_REDLNK 2 /* BTR only for redundant resource */

/* ---

 values for connection flag

---*/

#define DMS_RES_PRIMARY 1 /* connection to a primary server */

#define DMS_RES_SECONDARY 2 /* connection to a secondary server */

#define DMS_RES_CLIENT 3 /* connection to a client */

/* ---

 values for the cpu board type

---*/

#define DMS_CPU_UNKNOWN 0 /* ... */

#define DMS_CPU_DCP02 1 /* CPU_01, 960CA/CF */

#define DMS_CPU_DCP10 2 /* CPU_02, 960Hx */

#define DMS_CPU_PC 3 /* PC */
Referenz-Handbuch – DMS / API 221

Anhang C DMS-API-Dateien

/* ---

 values for OS_RES_TYPE

---*/

#define DMS_OS_DIGIVIS 1

#define DMS_OS_DIGITOOL 2

#define DMS_OS_EPROM 3

#define DMS_OS_MSR 4

#define DMS_OS_DDE_GWY 5

#define DMS_OS_P_GWY 6

#define DMS_OS_GWY 7

typedef struct DMS_REC_CONN_DATA {

 DMS_RES_NO OwnResNo; /* Own Resource Id */

 DMS_RES_NO ResNo; /* remote resource Id */

 DMS_RES_TYPE ResType; /* OS Types */

 DMS_CONN_STATUS ConnStatus; /* connection state */

 DMS_UINT32 ulIPAddr; /* IP-adresse of remote resource */

 DMS_UINT32 ulBoardType; /* cpu board type */

 DMS_UINT32 ulConnFlag; /* ConnectionFlag */

} DMS_REC_CONN_DATA;
222 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

typedef enum {

 DMS_RESTART_WARM,

 DMS_RESTART_COLD,

 DMS_RESTART_FATAL,

 DMS_RESTART_TOGGLE

} DMS_RESTART_REASON;

/* ---

 Variable mangement

---*/

#define DMSAPI_VL_SINGLE_READ 1

#define DMSAPI_VL_CYCLE_READ 2

#define DMSAPI_VL_SINGLE_WRITE 3

#define DMSAPI_NOACCESS 0x00

#define DMSAPI_READONLY 0x01

#define DMSAPI_WRITEONLY 0x02

#define DMSAPI_READWRITE 0x03

typedef enum {

 DMS_VAR_NOT_VALID,

 DMS_VAR_NOT_CHANGED,

 DMS_VAR_CHANGED,

 DMS_VAR_DELETED
Referenz-Handbuch – DMS / API 223

Anhang C DMS-API-Dateien

} DMS_VAR_STATUS;

typedef struct DMS_REC_VAR {

 DMS_VAR_STATUS VarStatus;

 DMS_VAR_RC VarRc;

 DMS_OBJ_PATH ObjPath;

 DMS_CHAR * VarName;

 DMS_UINT32 ValueSize; /* Size of ValueBuffer */

 DMS_VAR_TYPE VarType;

 DMS_VALUE *VarValue;

} DMS_REC_VAR;

typedef struct DMS_REC_VARLIST_DATA {

 DMS_HANDLE DmsHandle;

 DMS_INT16 ActVarNo; /* actual amount of variables */

 DMS_INT16 MaxVarNo; /* max. amount of variables */

 DMS_INT16 FreeBytes; /* amount of free bytes in the VL */

 DMS_REC_VAR * lpVar;

} DMS_REC_VARLIST_DATA;

/* ---

 Version data

---*/
224 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

typedef struct DMS_VERSION_DATA {

 DMS_CHAR *ProjName; /* Projectname */

 DMS_WORD16 wMajorVersion;

 DMS_WORD16 wMinorVersion;

 DMS_WORD16 wPatchVersion;

} DMS_VERSION_DATA;

typedef struct DMS_REC_VERSION_DATA {

 DMS_CHAR *ProjName; /* Projectname */

 DMS_WORD16 wMajorVersion;

 DMS_WORD16 wMinorVersion;

 DMS_WORD16 wPatchVersion;

 DMS_OBJNO ObjClass;

 DMS_OBJNO ObjNo;

} DMS_REC_VERSION_DATA;

/* ---

 Alarmmanagement

---*/
Referenz-Handbuch – DMS / API 225

Anhang C DMS-API-Dateien

typedef DMS_WORD16 DMS_ALARM_TYPE;

typedef enum {

 DMS_ALARM_PRIO_0,

 DMS_ALARM_PRIO_1,

 DMS_ALARM_PRIO_2,

 DMS_ALARM_PRIO_3,

 DMS_ALARM_PRIO_4,

 DMS_ALARM_PRIO_5,

} DMS_ALARM_PRIO;

typedef enum {

 DMS_ALARM_INACT_ACTNACKED, /* inactive/active_not_acknowled-
ged */

 DMS_ALARM_ACT_ACTNACKED, /* active/active_not_acknowledged */

 DMS_ALARM_INACT_INACTNACKED, /* inactive/ not_acknowledged */

 DMS_ALARM_ACT_ACTACKED, /* active/ acknowledged */

 DMS_ALARM_NOT_VALID_4,

 DMS_ALARM_NOT_VALID_5,

 DMS_ALARM_INACT_INACTACKED, /* inactive/inactive_acknowledged
*/

 DMS_ALARM_NOT_VALID_7,

 DMS_ALARM_AP_DELETED /* message object was deleted */
226 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

} DMS_ALARM_STATUS;

typedef enum {

 DMS_ALARM_GAS,

 DMS_ALARM_LAST_GAS,

 DMS_ALARM_EVENTS,

} DMS_ALARM_LIST_TYPE;

typedef struct DMS_REC_ALARM {

 DMS_DT TransitionTime;

 DMS_OBJNO ObjectId;

 DMS_WORD16 AlarmIndex;

 DMS_ALARM_TYPE AlarmType;

 DMS_OBJNO ObjectClass;

 DMS_ALARM_STATUS CurrAlarmStatus;

 DMS_ALARM_STATUS PrevAlarmStatus;

 DMS_ALARM_PRIO Priority;

 DMS_BOOLEAN NotificationLost;

 DMS_RC rc;

 DMS_UINT32 ValueSize;

 DMS_VAR_TYPE AlarmValType;

 DMS_VALUE *AlarmValue;

} DMS_REC_ALARM;

#define DMSAPI_MAX_ALARM_IN_AL 43
Referenz-Handbuch – DMS / API 227

Anhang C DMS-API-Dateien

typedef struct DMS_REC_ALARMLIST_DATA {

 DMS_ALARM_LIST_TYPE ListType;

 DMS_INT16 ActAlarmNo; /* actual amount of messages */

 DMS_REC_ALARM *lpAlarm; /* message list */

} DMS_REC_ALARMLIST_DATA;

typedef struct DMS_REC_ACKALARM {

 DMS_OBJNO ObjectId;

 DMS_WORD16 AlarmIndex;

 DMS_ALARM_STATUS AlarmStatus;

 DMS_RC rc;

} DMS_REC_ACKALARM;

#define DMSAPI_MAX_ALARM_IN_ACKAL 157

typedef struct DMS_REC_ACKALARMLIST_DATA {

 DMS_HANDLE DmsHandle;

 DMS_INT16 ActAckAlarmNo; /* actual amount of acknowledged messa-
ges */

 DMS_REC_ACKALARM *lpAckAlarm; /* acknowledged message list */

} DMS_REC_ACKALARMLIST_DATA;
228 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

/* ---

 Receivedata Union

---*/

typedef union {

 DMS_REC_CONN_DATA *lpConn;

 DMS_REC_VARLIST_DATA *lpVarList;

 DMS_REC_ALARMLIST_DATA *lpAlarmList;

 DMS_REC_ACKALARMLIST_DATA *lpAckAlarmList;

 DMS_REC_VERSION_DATA *lpVersion;

} DMS_REC_SERVICE_DATA;

typedef struct DMS_REC_DATA {

 DMS_CONN_HANDLE ConnHandle; /* StationsConnHandle */

 DMS_RC DmsRc; /* ErrorCode */

 DMS_UINT32 BuffSize; /* Size of DataBuffer */

 DMS_REC_SERVICE_TYPE SrvType; /* ServiceTyp */

 DMS_REC_SERVICE_DATA SrvBuff; /* Pointer to DmsData */

} DMS_REC_DATA;

typedef DMS_RC (* DMS_REC_DATA_PROC) (DMS_REC_DATA *DmsRec);
Referenz-Handbuch – DMS / API 229

Anhang C DMS-API-Dateien

#define DMSAPI_MAX_CB 10

#define DMSAPI_NO_CALLBACK 0

/* ---

 Server management

---*/

typedef enum {

DMS_WRITE_SERVICE_TYP,

 DMS_READ_SERVICE_TYP,

 DMS_GETDATA_ADDR_SERVICE_TYP

} DMS_VAR_SERVICE_TYP;

typedef struct {

 DMS_OBJ_PATH ObjPath;

 int VarLen;

 DMS_VAR_TYPE VarType;

 DMS_VALUE *VarValue;

 DMS_VAR_RC VarRc;

} DMS_VAR_ELEM;

typedef DMS_RC (* DMS_VAR_SERVER_PROC)

 (

 DMS_CONN_HANDLE ConnHandle,
230 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

 DMS_VAR_SERVICE_TYP VarServiceTyp,

 int VarElemNo,

 DMS_VAR_ELEM *VarElem

);

typedef enum {

 DMS_DLINIT_SERVICE_TYP,

 DMS_DLEXIT_SERVICE_TYP,

 DMS_ULINIT_SERVICE_TYP,

 DMS_ULEXIT_SERVICE_TYP,

 DMS_DELDOM_SERVICE_TYP

} DMS_DOM_SERVICE_TYP;

typedef enum {

 DMS_DOM_RAM_TYP,

 DMS_DOM_PRAM_TYP,

 DMS_DOM_FILE_TYP,

 DMS_DOM_PROC_TYP

} DMS_DOMAIN_TYP;

typedef DMS_RC (* DMS_DOM_SERVER_PROC)

 (

 DMS_CONN_HANDLE ConnHandle,
Referenz-Handbuch – DMS / API 231

Anhang C DMS-API-Dateien

 DMS_OBJNO ObjNo,

 DMS_RC rc,

 DMS_DOMAIN_TYP DomainType,

 DMS_INT32 *DomainLen,

 DMS_CHAR *DomainContent,

 DMS_CHAR **OwnDomainContent

);

/* ---

 DMS Name management

---*/

typedef struct DMS_NAME_RESOURCE_DATA {

 DMS_WORD32 dwIPAddr1;

 DMS_WORD32 dwIPAddr2;

 DMS_RES_NO ResNo;

 DMS_RES_TYPE ResType;

 DMS_UINT16 wTimeOut; /* in Sek */

 DMS_UINT16 wMajorVersionNo;

 DMS_UINT16 wMinorVersionNo;

 DMS_UINT16 wPatchVersionNo;

} DMS_NAME_RESOURCE_DATA;

typedef struct DMS_NAME_VAR_DATA {
232 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien

 DMS_WORD32 dwAccessRights;

 DMS_VAR_TYPE VarType;

 DMS_RES_NO ResNo;

 DMS_OBJ_PATH OPath;

} DMS_NAME_VAR_DATA;

typedef struct DMS_NAME_TAG_DATA {

 DMS_WORD32 dwAccessRights;

 DMS_RES_NO ResNo;

 DMS_OBJNO ObjClass;

 DMS_OBJNO ObjNo;

 DMS_CMPNO CmpNo;

} DMS_NAME_TAG_DATA;

typedef struct DMS_NAME_OBJ_DATA {

 DMS_WORD16 nRWFlag;

 DMS_CMPNO CmpNo;

 DMS_VAR_TYPE VarType;

 DMS_WORD16 Reserved;

 /* component name as string null terminated and 4 byte alignment */
Referenz-Handbuch – DMS / API 233

dmsapi.h Anhang C DMS-API-Dateien

} DMS_NAME_OBJ_DATA;

/* ---

 DMS-Utilities

---*/

typedef struct DMS_VAR_CODE {

char szDateStringSyntax[5];

char szDecimal[10];

char sz1000Decimal[10];

char szDate[10];

char szTimeSeparation[10];

BOOLEAN fDigiTimeAsLong;

} DMS_VAR_CODE;

#endif /* _DMSAPI_TYP_H defined */

#if __cplusplus

}

#endif

C.2 dmsapi.h
#ifdef CGEN

COMMENT
234 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

*

 DMS-API

 Digimatik Message Specification ApplicationInterface

 Kommunication Protocol for Digimatik Process Level

 Functions

*

COMMENT_END

FILENAME $Workfile: DMSAPI.H $

VERSION $Revision: 1.13.1.0 $ (0)

HISTORY

HISTORY_END

/* $Log: DMSAPI.H_v $

*/

#endif

#if __cplusplus

extern "C" {

#endif

#ifndef _DMSAPI_FNC_H

#define _DMSAPI_FNC_H

#ifdef __DMS_API_INIT_FKT__
Referenz-Handbuch – DMS / API 235

dmsapi.h Anhang C DMS-API-Dateien

ifdef WIN32

define CGEXPORT _declspec(dllexport)

else

define CGEXPORT

endif

#else

ifdef WIN32

define CGEXPORT _declspec(dllimport)

else

define CGEXPORT

endif

#endif /* __DMS_API_INIT_FKT__*/

/* ---

 Environment and General Management Services

---*/

/* Initialisation of Dms on a Gateway */

CGEXPORT DMS_RC DMSAPI_Init (

 DMS_RES_NO OwnResNo /* Own Resource Id */,

 DMS_RES_TYPE OwnResType /* Own Resource Typ */,

 DMS_INT16 NoOfSrvConn /* Number of ServerConnection */,

 DMS_BOOLEAN bStandardServer /* TRUE or FALSE */);

/* Shutdown Dms */
236 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_Exit (

 DMS_RES_NO OwnResNo /* Own Resource No */);

/* StationConnect */

CGEXPORT DMS_RC DMSAPI_ConnectByAddr(

 DMS_RES_NO OwnResNo /* Own Resource Id */,

 DMS_INT16 nBTRLnk /* take DMS_BTR_TCPIP from DMS-
TYP.h */,

 DMS_UINT32 ulIPAddr1 /* first ipaddress of remote station */,

 DMS_UINT32 ulIPAddr2 /* second ipaddress of remote station */,

 DMS_RES_NO ResNo /* resource no */,

 DMS_RES_TYPE ResType /* resource type */,

 DMS_UINT16 ulKeepAliveT /* KeepAliveTimeout */,

 DMS_CONN_HANDLE *lpConnHandle /* ConnectionHandle */,

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecConnLen /* size of RecConn */,

 DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*/);

 CGEXPORT DMS_RC DMSAPI_ConnectByName(

 DMS_RES_NO OwnResNo /* Own Resource No */,

 DMS_CHAR *ResName /* name of resource */,

 DMS_CONN_HANDLE *lpConnHandle /* ConnectionHandle */,
Referenz-Handbuch – DMS / API 237

dmsapi.h Anhang C DMS-API-Dateien

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedure Timeout */,

 DMS_UINT32 ulRecConnLen /* size of RecConn */,

 DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*/);

CGEXPORT DMS_RC DMSAPI_ConnectByNo(

 DMS_RES_NO OwnResNo /* Own Resource No */,

 DMS_RES_NO ResNo /* name of resource */,

 DMS_CONN_HANDLE *lpConnHandle /* ConnectionHandle */,

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedure Timeout */,

 DMS_UINT32 ulRecConnLen /* size of RecConn */,

 DMS_REC_CONN_DATA *RecConn /* Out -> ReceiveStruct of Conn.
*/);

/* StationDisConnect */

CGEXPORT DMS_RC DMSAPI_Disconnect(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */);

/* ConnectionData */

CGEXPORT DMS_RC DMSAPI_GetConnectionData(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 DMS_REC_CONN_DATA *Data /* Out -> ReceiveStruct of Conn. */);
238 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

/* Set RemoteTime */

#ifdef WIN32

CGEXPORT DMS_RC DMSAPI_SetSystemTime (

 SYSTEMTIME *NTDT /* Win32 date and time format */);

#endif

CGEXPORT DMS_RC DMSAPI_SetSystemTimeByDmsType (

 DMS_DT *DateTime /* DMS date and time */);

CGEXPORT DMS_RC DMSAPI_SetSystemTimeByString (

 DMS_CHAR * lpszDateTime /* date and time string */);

CGEXPORT DMS_RC DMSAPI_RestartResource(

 IN DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 IN DMS_RESTART_REASON RestartReason /* RestartReason */);

CGEXPORT DMS_RC DMSAPI_RegisterCltCB(

 DMS_INT16 nCBId /* CallbackId */,

 DMS_REC_DATA_PROC CallBackProc /* Callbackfunction */);

/* ---

 Variablemangement

---*/
Referenz-Handbuch – DMS / API 239

dmsapi.h Anhang C DMS-API-Dateien

CGEXPORT DMS_RC DMSAPI_VLCreate(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 DMS_INT16 nVLService /* Service:

 DMSAPI_VL_SINGLE_READ

 DMSAPI_VL_CYCLE_READ

 DMSAPI_VL_SINGLE_WRITE */,

 DMS_HANDLE *lpDmsHandle /* Identifier for Varlist */);

CGEXPORT DMS_RC DMSAPI_VLAddWriteVarByName(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_CHAR *lpszVarname /* Variable name */,

 DMS_VAR_TYPE VarType /* Variable type */,

 DMS_VALUE *lpvVarValue /* Variable value */,

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer to RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLAddWriteVarByAddr(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_OBJ_PATH *lpOpath /* Objectpath */,

 DMS_VAR_TYPE VarType /* Variable type */,

 DMS_VALUE *lpvVarValue /* Variable value */,

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer to RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in RecVarStruct */);
240 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_VLAddReadVarByName(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_CHAR *lpszVarname /* Variable name */,

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer to RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLAddReadVarByAddr(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_OBJ_PATH *lpOpath /* Objectpath */,

 DMS_VAR_TYPE VarType /* Variable type */,

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer to RecVarStruct */,

 DMS_INT16 *lpnIndex /* Index in RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLChangeValue(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_INT16 nIndex /* Index in RecVarStruct */,

 DMS_VAR_TYPE VarType /* Variable type */,

 DMS_VALUE *lpvVarValue /* Variable value */,

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer to RecVarStruct */);

CGEXPORT DMS_RC DMSAPI_VLDelVar(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_INT16 nIndex /* Index in RecVarStruct */,

 DMS_REC_VARLIST_DATA **lplpRecVar /* Pointer to RecVarStruct */);
Referenz-Handbuch – DMS / API 241

dmsapi.h Anhang C DMS-API-Dateien

CGEXPORT DMS_RC DMSAPI_VLClear(

 DMS_HANDLE DmsHandle /* VarListHandle */);

CGEXPORT DMS_RC DMSAPI_VLRead(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_INT16 nCBId /* CallbackId */,

 DMS_INT16 nSyncFlag /* synchron flag */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecVarLen /* size of RecVarStruct */,

 DMS_REC_VARLIST_DATA *lpRecVar /* Out -> Pointer to RecVarStruct
*/);

CGEXPORT DMS_RC DMSAPI_VLReadCycle(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_UINT32 ulCycleTime /* cycletime in ms */,

 DMS_INT16 nCBId /* CallbackId */,

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedur timeout */,

 DMS_UINT32 ulRecVarLen /* Size of RecVarStruct */,

 DMS_REC_VARLIST_DATA *lpRecVar /* Out-> Pointer to RecVarStruct
*/);

CGEXPORT DMS_RC DMSAPI_VLStopCycle(

 DMS_HANDLE DmsHandle /* VarListHandle */);
242 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_VLWrite(

 DMS_HANDLE DmsHandle /* VarListHandle */,

 DMS_INT16 nCBId /* CallbackId */,

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecVarLen /* Size of RecVarStruct */,

 DMS_REC_VARLIST_DATA *lpRecVar /* Out -> Pointer to RecVarStruct
*/);

CGEXPORT DMS_RC DMSAPI_VLDelete(

 DMS_HANDLE DmsHandle /* VarListHandle */);

/* ---

 Alarmmangement

---*/

CGEXPORT DMS_RC DMSAPI_GetAlarmSummary(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 DMS_INT16 nCBId /* CallbackId */,

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecVarLen /* size of AlarmRec */,

 DMS_REC_ALARMLIST_DATA *lpAlarmRec /* Out -> Pointer to Alarm-
ListStruct */);

CGEXPORT DMS_RC DMSAPI_AckAlarmByList(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,
Referenz-Handbuch – DMS / API 243

dmsapi.h Anhang C DMS-API-Dateien

 DMS_HANDLE *lpDmsHandle /* Identifier for Acklist */,

 DMS_INT16 nCBId /* CallbackId */,

 DMS_INT16 ActAlarmNo /* actual amount of messages */,

 DMS_REC_ACKALARM *lpAlarmAck /* Pointer to AlarmAckStruct
*/,

 DMS_INT16 nSyncFlag /* synchrone flag */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecVarLen /* size of AckAlarmRec */,

 DMS_REC_ACKALARMLIST_DATA *lpAckAlarmRec /* Out -> Pointer to
AlarmAckListStruct */);

/* ---

 DMS Name management

---*/

CGEXPORT DMS_RC DMSAPI_LockOV (

 DMS_RES_NO OwnResNo /* */);

CGEXPORT DMS_RC DMSAPI_UnlockOV (DMS_RES_NO OwnResNo /*
GWY Resource Id*/);

CGEXPORT DMS_RC DMSAPI_SetProjectDir(DMS_CHAR * szProjectDir /*
path to new Directory */);

CGEXPORT DMS_RC DMSAPI_ChangeProject(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,
244 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

 DMS_CHAR * ProjName /* new project name*/);

CGEXPORT DMS_RC DMSAPI_GetProjectInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_VERSION_DATA * VersionData /* OUT -> pointer to VersionData */);

CGEXPORT DMS_RC DMSAPI_GetVarInfoByName(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_CHAR * lpVarName /* variable name */,

 DMS_RES_NO * lpResNo /* Out -> remote resource Id */,

 DMS_OBJ_PATH * lpPath /* Out -> object path */,

 DMS_VAR_TYPE * lpVarType /* Out -> variable type */,

 DMS_WORD32 * lpAccessRights /* Out -> Access Rights */);

CGEXPORT DMS_RC DMSAPI_GetVarnameByOPath (

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_RES_NO ResNo /* remote resource Id */,

 DMS_OBJ_PATH *lpPath /* Out -> ObjectPath */,

 DMS_UINT32 VarNameLen /* max. size of Varname */,

 DMS_CHAR *lpVarName /* Out -> variable name */);

CGEXPORT DMS_RC DMSAPI_GetTagByAddr (

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_RES_NO ResNo /* remote resource Id */,

 DMS_OBJNO ObjNo /* ObjectPath */,

 DMS_UINT32 TagNameLen /* max. Size of tagname */,

 DMS_CHAR *lpTagName /* Out -> tagname */,
Referenz-Handbuch – DMS / API 245

dmsapi.h Anhang C DMS-API-Dateien

 DMS_NAME_TAG_DATA *lpTagInfo /* Out -> tagInfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstResourceInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_UINT32 *lpulNoOfRess /* Out -> amount of resources */,

 DMS_UINT32 ResNameLen /* max. size of resname */,

 DMS_CHAR *lpResName /* Out -> name of resource */,

 DMS_NAME_RESOURCE_DATA *lpResInfo /* Out -> ResInfo */);

CGEXPORT DMS_RC DMSAPI_GetNextResourceInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_UINT32 ResNameLen /* max. size of resname */,

 DMS_CHAR *lpResName /* Out -> name of resource */,

 DMS_NAME_RESOURCE_DATA *lpResInfo /* Out -> ResInfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstVarInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_UINT32 *lpulNoOfVar /* amount of variables in config */,

 DMS_UINT32 VarNameLen /* max. size of variable name */,

 DMS_CHAR *lpVarName /* Out -> variable name */,

 DMS_NAME_VAR_DATA *lpVarInfo /* Out -> variable info */);

CGEXPORT DMS_RC DMSAPI_GetNextVarInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_UINT32 VarNameLen /* max. size of variable name */,

 DMS_CHAR *lpVarName /* Out -> variable name */,
246 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

 DMS_NAME_VAR_DATA *lpVarInfo /* Out -> variable info */);

CGEXPORT DMS_RC DMSAPI_GetFirstTagInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_UINT32 *lpulNoOfTag /* amount of tags in config. */,

 DMS_UINT32 TagNameLen /* max. size of tagname */,

 DMS_CHAR *lpTagName /* Out -> tagname */,

 DMS_NAME_TAG_DATA *lpTagInfo /* Out -> taginfo */);

CGEXPORT DMS_RC DMSAPI_GetNextTagInfo(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_UINT32 TagNameLen /* max. size of tagname */,

 DMS_CHAR *lpTagName /* Out -> tagname */,

 DMS_NAME_TAG_DATA *lpTagInfo /* Out -> taginfo */);

CGEXPORT DMS_RC DMSAPI_GetFirstCmpOfObjClass(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_OBJNO ObjClass /* Object class */,

 DMS_UINT32 *lpulNoOfCmp /* amount of components */,

 DMS_UINT32 CmpNameLen /* max. size of component name */,

 DMS_CHAR *lpCmpName /* component name */,

 DMS_NAME_OBJ_DATA *lpObjInfo /* ObjectInfo */);

CGEXPORT DMS_RC DMSAPI_GetNextCmpOfObjClass(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_OBJNO ObjClass /* Object class */,
Referenz-Handbuch – DMS / API 247

dmsapi.h Anhang C DMS-API-Dateien

 DMS_UINT32 CmpNameLen /* max. size of component name */,

 DMS_CHAR *lpCmpName /* component name */,

 DMS_NAME_OBJ_DATA *lpObjInfo /* ObjectInfo */);

/* ---

 DMS-ServerManagement (Not yet implemented !)

---*/

CGEXPORT DMS_RC DMSAPI_ActivateServer(

 DMS_RES_NO OwnResNo /* GWY Resource Id */);

CGEXPORT DMS_RC DMSAPI_DeactivateServer(

 DMS_RES_NO OwnResNo /* GWY Resource Id */);

CGEXPORT DMS_RC DMSAPI_OpenVarServer(

 DMS_RES_NO OwnResNo /* GWY Resource Id */,

 DMS_VAR_SERVER_PROC DMSReadVarServerProc /* */,

 DMS_VAR_SERVER_PROC DMSWriteVarServerProc /* */,

 int MaxServer /* */);

CGEXPORT DMS_RC DMSAPI_CreateInfoReport(

 DMS_CONN_HANDLE ConnHandle /* ConnectionHandle */,

 DMS_INT16 OwnIRId /* InforeportId for Client */,

 DMS_HANDLE *lpDmsHandle /* Identifier for Informationreport */);

CGEXPORT DMS_RC DMSAPI_DeleteInfoReport(

 DMS_HANDLE DmsHandle /* Identifier for Informationreport */);
248 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmsapi.h

CGEXPORT DMS_RC DMSAPI_GetInfoReportBuffer(

 DMS_HANDLE DmsHandle /* Identifier for Informationreport */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecVarLen /* size of RecVar */,

 DMS_CHAR **lplpRecVar /* Out -> Pointer to InfoReport */);

CGEXPORT DMS_RC DMSAPI_SendInfoReportBuffer(

 DMS_HANDLE DmsHandle /* Identifier for Informationreport */,

 DMS_UINT32 ulProcT /* prozedure timeout */,

 DMS_UINT32 ulRecVarLen /* size of RecVar */,

 DMS_CHAR *lpRecVar /* Out -> Pointer to InfoReport */);

/* ---

 DMS-Utilities

---*/

CGEXPORT void DMSAPI_DumpRecData(DMS_REC_DATA * DmsRecData /*
*/) ;

CGEXPORT int DMSAPI_GetVarLen(DMS_VAR_TYPE VarType /* variable type
*/);

CGEXPORT DMS_RC DMSAPI_SetVarCode(DMS_VAR_CODE * VarCode);

CGEXPORT DMS_RC DMSAPI_GetStringByValue(

 DMS_UINT32 ulStrLen /* size of String */,

 DMS_CHAR *lpszString /* Out -> String */,

 DMS_VAR_TYPE VarType /* variable type */,
Referenz-Handbuch – DMS / API 249

dmserr.h Anhang C DMS-API-Dateien

 DMS_VALUE *lpvVarValue /* Out -> variable value */);

CGEXPORT DMS_RC DMSAPI_GetValueByString(

 DMS_UINT32 ulValLen /* size of VarValue */,

 DMS_VALUE *lpvVarValue /* Out -> Value */,

 DMS_VAR_TYPE VarType /* variable type */,

 DMS_CHAR *lpszString /* Out -> String */);

/* ---

(Not yet implemented !)

---*/

CGEXPORT DMS_RC DMSAPI_GetErrStrByErr(

 DMS_UINT32 ulStrLen /* size of String */,

 DMS_CHAR *lpszString /* Out -> String */,

 DMS_RC Rc /* ErrorCode */);

#endif /* _DMSAPI_TYP_H defined */

#if __cplusplus

}

#endif

C.3 dmserr.h
/*

COMMENT

*

250 Referenz-Handbuch – DMS / API

Anhang C DMS-API-Dateien dmserr.h

 DMS-API

 Digimatik Message Specification ApplicationInterface

 Kommunication Protocol for Digimatik Process Level

 ErrorCodes

*

COMMENT_END

FILENAME $Workfile: DMSERR.H $

VERSION $Revision: 1.5.1.0 $ (0)

HISTORY

HISTORY_END

$Log: DMSERR.H_v $

#include "errbase.hg"

#define E_DMSAPI_OK 0x00

#define E_DMSAPI_NOT_INIT (E_DMSAPI_BASE + 0x01)

#define E_DMSAPI_INVALID_CONF (E_DMSAPI_BASE + 0x02)

#define E_DMSAPI_INVALID_ARG (E_DMSAPI_BASE + 0x03)

#define E_DMSAPI_SMALL_RCV_BUFF (E_DMSAPI_BASE + 0x04)
Referenz-Handbuch – DMS / API 251

dmserr.h Anhang C DMS-API-Dateien

#define E_DMSAPI_EMPTY_CONF (E_DMSAPI_BASE + 0x05)

#define E_DMSAPI_INTERNAL_ERROR (E_DMSAPI_BASE + 0x06)

#define E_DMSAPI_ACCESS_ERROR (E_DMSAPI_BASE + 0x07)

#define E_DMSAPI_NO_CONF (E_DMSAPI_BASE + 0x08)

#define E_DMSAPI_INVALID_DMS_HANDLE (E_DMSAPI_BASE + 0x09)

#define E_DMSAPI_INVALID_CONN_HANDLE (E_DMSAPI_BASE + 0x0A)

#define E_DMSAPI_NO_RESOURCE (E_DMSAPI_BASE + 0x0B)

#define E_DMSAPI_VARLIST_IN_USE (E_DMSAPI_BASE + 0x0C)

#define E_DMSAPI_NO_CALLBACK (E_DMSAPI_BASE + 0x0D)

#define E_DMSAPI_DUPLICATE_CALLBACK (E_DMSAPI_BASE + 0x0E)

#define E_DMSAPI_INVALID_INDEX (E_DMSAPI_BASE + 0x0F)

#define E_DMSAPI_INVALID_VARTYPE (E_DMSAPI_BASE + 0x10)

#define E_DMSAPI_INVALID_VARMODE (E_DMSAPI_BASE + 0x11)

#define E_DMSAPI_NO_CONNECTION (E_DMSAPI_BASE + 0x12)

#define E_DMSAPI_ALREADY_INIT (E_DMSAPI_BASE + 0x13)

#define E_DMSAPI_MAX_APPLICATION (E_DMSAPI_BASE + 0x14)

#define E_DMSAPI_MAX_CONNECTION (E_DMSAPI_BASE + 0x15)

#define E_DMSAPI_TIMEOUT (E_DMSAPI_BASE + 0x16)

#define E_DMSAPI_INVALID_DIR (E_DMSAPI_BASE + 0x17)
252 Referenz-Handbuch – DMS / API

Stichwortverzeichnis
A
Alle Dienste .. 33
Antworten ... 33
Application .. 13

B
Basic .. 31
Basic Transport ... 31
BTR_OpenServer .. 32

D
DMS ClientManagement 33
DMS-Variablentypen 147

E
Environment and General Management Services

 34
Ethernet ... 33

F
Funktionsweise für (TCPIP) 32

I
Initialisierung und Beendigung einer DMS-Sitzung

 34

M
MMS (Manufacturing Message Specification 15

P
protokollunabhängig 31

T
TCPIP ... 33

V
Variables ... 18
Referenz-Handbuch – DMS / API 253

Stichwortverzeichnis
254 Referenz-Handbuch – DMS / API

—
Technische Änderungen der Produkte
sowie Änderungen im Inhalt dieses Doku-
ments behalten wir uns jederzeit ohne Vor-
ankündigung vor. Bei Bestellungen sind die
jeweils vereinbarten Beschaffenheiten
maßgebend. ABB übernimmt keinerlei Ver-
antwortung für eventuelle Fehler oder
Unvollständigkeiten in diesem Dokument.

Wir behalten uns alle Rechte an diesem
Dokument und den darin enthaltenen
Gegenständen und Abbildungen vor. Ver-
vielfältigung, Bekanntgabe an Dritte oder
Verwertung seines Inhaltes - auch von Tei-
len - ist ohne vorherige schriftliche
Zustimmung durch ABB verboten.
Die Rechte an allen anderen Warenzeichen
oder Marken liegen beim jeweiligen Inha-
ber.

Copyright © 2019 ABB.

—
www.abb.com/freelance
www.abb.com/controlsystems

3B
D

D
01

25
08

-1
11

 A

	Inhaltsverzeichnis
	Hinweise zu diesem Handbuch
	1 Applikationsschnittstelle Freelance für Windows
	1.1 Allgemeine Beschreibung - Applikationsschnittstelle
	1.2 MMS (Manufacturing Message Specification ISO 9506)
	1.3 DMS (Digimatik Message Specification)
	1.4 DMS / MMS -Funktionsbereiche
	1.5 Adressierbare Freelance Objekte
	1.5.1 Variablen
	1.5.2 MSR-Stellen
	1.5.3 Systemobjekte

	1.6 Freelance -Kommunikationschichtenmodell
	1.7 Installation von DMS / API
	1.8 Konfiguration des DMS / API-Gateway im Freelance Engineering
	1.9 Laden des DMS/API-Gateways
	1.9.1 Erstkonfiguration
	1.9.2 Umkonfiguration

	1.10 DMS / API-Funktionsübersicht

	2 Basic Transport Application Interface (BTR)
	2.1 Funktionsweise für (TCPIP)

	3 DMS ClientManagement
	3.1 Environment and General Management Services
	3.1.1 Initialisierung und Beendigung einer DMS-Sitzung
	DMSAPI_Init
	DMSAPI_Exit

	3.1.2 Verbindungsmanagement
	DMSAPI_ConnectByAddr
	DMSAPI_ConnectByName
	DMSAPI_ConnectByNo
	DMSAPI_Disconnect
	DMSAPI_GetConnectionData
	DMSAPI_SetSystemTime
	DMSAPI_RestartResource

	3.2 Variable Access Services
	3.3 Achtung !!!
	3.3.1 DMSAPI_VLCreate
	DMSAPI_VLAddReadVarByName
	DMSAPI_VLAddWriteVarByName
	DMSAPI_VLAddReadVarByAddr
	DMSAPI_AddWriteVarByAddr
	DMSAPI_VLChangeValue

	3.3.2 DMSAPI_VLDelVar
	3.3.3 DMSAPI_VLClear
	3.3.4 DMSAPI_VLRead
	3.3.5 DMSAPI_VLReadCycle
	3.3.6 DMSAPI_StopCycle
	3.3.7 DMSAPI_VLWrite
	3.3.8 DMSAPI_VLDelete

	3.4 Alarmmanagement
	3.4.1 DMSAPI_GetAlarmSummary
	3.4.2 DMSAPI_CreateAckAlarmList
	3.4.3 DMSAPI_AddAckAlarmByAddr
	3.4.4 DMSAPI_ClearAckAlarmList
	3.4.5 DMSAPI_AckAlarmList
	3.4.6 DMSAPI_DeleteAckAlarmList
	3.4.7 DMSAPI_AckAlarmByList

	3.5 Domainmanagement
	3.6 ProgramInvokation Management
	DMSAPI_StartPI
	DMSAPI_StopPI
	DMSAPI_ResetPI

	3.7 Empfangen/Dekodieren von Daten
	3.7.1 Strukturdefinitionen
	Verbindungsstruktur
	Infomationreportstruktur
	Alarmstruktur
	Alarmquittierungsstruktur
	Downloadstruktur
	ProgrammInvokationstruktur
	Versionsstruktur

	3.7.2 Synchrone Dienste
	DMSAPI_Receive (ReceiveTimeOut,&RecStruct);

	3.7.3 DMSAPI_RegisterCltCB
	DMSAPI_RegisterFreeCltCB (&CBID, (*DMSRC) (Fnc(&RecStruct)))

	3.7.4 Callback function (&RecStruct)

	4 Namensverwaltung
	4.1 Dateiverzeichnis
	4.1.1 DMSAPI_SetProjectDir
	4.1.2 DMSAPI_ChangeProject

	4.2 Projektinformation
	4.2.1 DMSAPI_GetProjectInfo

	4.3 Sperren des "Namemanagement"
	4.3.1 DMSAPI_LockOV
	4.3.2 DMSAPI_UnlockOV

	4.4 Stationsinformation
	!!!
	!!!
	4.4.1 DMSAPI_GetFirstResourceInfo
	4.4.2 DMSAPI_GetNextResourceInfo

	4.5 Variableninformation
	!!!
	!!!
	4.5.1 DMSAPI_GetFirstVarInfo
	4.5.2 DMSAPI_GetNextVarInfo

	4.6 MSR-Stelleninformation
	!!!
	!!!
	DMSAPI_GetFirstTagInfo
	DMSAPI_GetNextTagInfo
	DMSAPI_GetTagByAddr

	4.7 Objektklassen-Stelleninformation
	!!!
	!!!
	4.7.1 DMSAPI_GetFirstCmpOfObjClass
	4.7.2 DMSAPI_GetNextCmpOfObjClass

	4.8 Adressen-Konvertierung
	4.8.1 DMSAPI_GetVarNameByOPath
	4.8.2 DMSAPI_GetVarInfoByName

	5 Server Management
	6 DMS utilities
	6.1 DMSAPI_GetStringByValue
	6.2 DMSAPI_GetValueByString
	6.3 DMSAPI_GetVarLen
	6.4 DMSAPI_DumpRecData

	Anhang A Variablen Typen und Fehler Codes
	A.1 DMS-Variablentypen
	A.2 DMS-FehlerCodes

	Anhang B Applikationsschnittstelle Freelance Beispiele
	B.1 DMSAPI-Beispiele
	B.2 Variablendienste
	B.2.1 Einfaches Lesen "read.c"
	B.2.2 Zyklisches Lesen "acycle.c"
	B.2.3 Einfaches Schreiben "awrite.c"

	B.3 Alarmdienste "aalarm.c"
	B.4 Namensverwaltung "name.c"
	B.5 Setzen der Zeit "settime.c"
	B.6 Redundanzwechsel Primary - Secondary "toggle.c"

	Anhang C DMS-API-Dateien
	C.1 dmstyp.h
	C.2 dmsapi.h
	C.3 dmserr.h

	Stichwortverzeichnis

